Transfer of melts in the sub-arc mantle: Insights from high-pressure experiments and from the New Caledonia ophiolite.

Cassian Pirard

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University

November, 2010
All of the work presented in this thesis is my own, except where otherwise acknowledged. Some of the ideas presented have benefited from discussions with my supervisors and other colleagues, but all interpretations and conclusions are my own.

Cassian Pirard
Beforehand, I wish to thank the numerous people who were involved or contributed in some way to my thesis work over the last years. Although they cannot all be thanked individually, their help and support is greatly appreciated.

My greatest thanks goes to my supervisors, Jörg Hermann and Hugh O’Neill whom have made time to talk about any recent breakthrough and problems I may have encountered. I also thank them for providing me the freedom to explore on my own unexpected results which were not initially planned as a part of the Ph.D project. Jörg’s foresight on the potential of new discoveries and his knowledge on a wide range of subjects were a great source of inspiration and motivation over these last 3 years. Hugh’s ability to consider scientific issues from another point of view was particularly helpful in keeping an objective and effective look on my Ph.D work.

I am also indebted to John Mavrogenes, Daniela Rubatto, Bob Rapp, Oliver Nebel and Richard Arculus for the interest that they give to my research and their willingness to share their knowledge in their scientific expertise or otherwise.

Thanks to all the staff at RSES, particularly Kay Provins, Maree Coldrick for their guidance through the Australian administrative world, Charlotte Allen and Frances Jenner for the use of the death ray, Ulli Troitzsch for X-ray diffraction and fluorescence, Frank Brink for SEM imaging and analyses, Ashley Norris and Bob Rapp for microprobe discussions and Bill Hibberson, David Clark, Dean Scott for tips and tricks in the experimental lab.

I also wish to thanks Jesse Jones and Alex McCoy-West for their careful review of this thesis to polish the English language into a readable state. I also wish to thanks my Belgian colleagues, Olivier Namur and Frédéric Hatert for their knowledge and advices that they could provide on some specific parts of this thesis.

I express my gratitude to the New Caledonian administration (DIMENC, DENV, BRGM) and particularly David Paulaud for his guidance in the remote and highly protected reserves of New Caledonia outback. The granting of access to these zones as well as the Parc régional de la Rivière Bleue was essential in the study of the New Caledonia ophiolite.
To the “old” generation of PhD students (Tailbs, Fran, Duck, Sparky, Gisela, Joe, Istvan, Courtney, Nicole), I wish to thank them for their advices and their welcoming during the first year of this PhD. To my fellow PhD, honours and undergrad students as well as post-docs which have shared the last few years at RSES with me (Seann, Tanya, Tegan, Sophie, Lloyd, Dom, Juan, Clemens, Sarlae, Taz, Robert, Iona, Renaud, Jill, Tsuyoshi, Oliver, Martin, Jennie, David, Ashley,….). As mates and colleagues, your advices, comedy and availability was greatly appreciated whenever needed.

To my family, for their support and their understanding of my rock addiction which led me to the antipodes and for the interest that they gave to the latest results and adventures, even without understanding the details.

Last but not least, Bew. Thanks for your 24/7 online support service that you provide and for your patience over the last three years. Your interest into my research and your pressure valve effect was greatly appreciated in the final part of this thesis.
Transfer of melts in the sub-arc mantle:
Insights from high-pressure experiments and
from the New Caledonia ophiolite.

Abstract

The transfer of fluids produced by the dehydration of a subducted oceanic slab through the mantle wedge remains one of the least constrained segments for the element recycling in the “subduction factory”. In this thesis, the element transfer in the mantle wedge is investigated using high-pressure experiments and observations from the ophiolitic nappe of the Massif du Sud in New Caledonia.

High-pressure experiments were aimed to study the interaction between slab melts and the sub-arc mantle at depth of ~100 km in a range of P-T conditions which are representative of the mantle wedge above the subducted slab. Experiments have shown that porous reactive flow induces the formation of large amounts of phlogopite and amphibole in the pressure range of 25 to 45 kbar for 800 to 1000°C. The formation of these hydrous phases leads to a strong depletion of the residual fluid in LREE (sequestrated in amphibole) and LILE (sequestrated in phlogopite). The wet solidus obtained in the experiments is 975°C at 35 kbar. This new set of data provides constraints on the composition and the melting conditions of slab-metasomatised peridotite and highlights the major role that alkali-rich amphibole (magnesiokatophorite) play in the sub-arc mantle and the particular composition of melt produced by metasomatised peridotite.

Experimental reproduction of focused flow in the mantle wedge shows that orthopyroxenite walls form at the interface between slab melts and olivine. Therefore, there is a very limited interaction with the surrounding peridotite. The trace element composition of the slab melt is only slightly modified in this
process. Therefore, the transfer of slab melt by focused flow to the locus of partial melting in the mantle wedge provides a much more efficient way to conserve the slab signature than porous flow.

The New Caledonia ultramafic ophiolite provides a natural laboratory for the interactions between arc magmas and the upper mantle. This thesis gives the first comprehensive overview of the Massif du Sud ophiolite on the basis of petrological and geochemical data. The Massif du Sud is one of the most depleted and the largest mantle ophiolite on Earth. This thesis shows that the preserved 3000 m thick mantle section is related to an arc environment that develops on a previous spreading ridge.

A suite of rocks involving dunite channels, pyroxenite channels, pyroxenite dykes and gabbro dykes present in the Massif du Sud show the evolution of hydrous and silica-rich melts transferred by focused porous flow. Melts that are transported through these channels and dykes are feeding the bottom part of an arc crust. The observation of such melt evolution at sub-Moho levels provides critical information in solving the arc paradox which necessitates large amount of pyroxenite cumulate in the mantle to explain the bulk composition of arc crust.

A late generation of pyroxenite and amphibole dykes has been connected to the emplacement of large felsic intrusions at the crust-mantle boundary. U-Pb dating of separated zircons from these intrusions and associated dykes provides Eocene ages confirming that this series of rocks are a pre-obductive feature of the Massif du Sud. These rocks represent a late fore-arc igneous activity and provide new information on melt-mantle interaction and the composition of melts in a colder part of the mantle wedge. The relative timing of events recorded in the New Caledonia ophiolite also imposes new constraints on the geodynamics of the South West Pacific from the middle Cretaceous to recent times.
Caractérisation du transfert de magma dans le manteau de sous-arc au moyen de la pétrologie expérimentale à haute pression et de l’ophiolite de Nouvelle Calédonie.

Résumé

Le transfert de fluides produit par la déshydratation de la plaque océanique subductée dans le coin mantellique reste l'une des parties les moins contrainte dans le recyclage d'éléments de la « subduction factory ». Dans cette thèse, le transfert d'éléments dans le coin mantellique est étudié au travers d'expériences à haute pression et d'observations faites dans la nappe ophiolitique du Massif du Sud en Nouvelle Calédonie.

Les expériences à haute pression ont pour but d'étudier les interactions entre les magmas issus de la croute océanique subductée et le manteau de sous-arc à une profondeur de ~100 km, dans un champ de conditions P-T qui est représentatif du coin mantellique au dessus d'une plaque océanique subductée. Les expériences ont montré que le transfert par flux en utilisant la porosité du manteau produit une quantité importante de phlogopite et d'amphibole dans l'intervalle de pression de 25 à 45 kbar pour des températures de 800 à 1000°C. La cristallisation de ces phases hydratées entraîne un appauvrissement important du fluide résiduel en LREE (séquestrée par l'amphibole) et LILE (séquestré par la phlogopite). Le solidus hydraté obtenu pour ces expériences est de 975°C pour 35 kbar. Ces nouvelles données imposent des contraintes additionnelles sur la composition et les conditions de fusion d'une péridotite métasomatisée par les fluides et soulignent le rôle majeur que joue les amphiboles alcalines (magnesiokatophorite) dans le manteau de sous-arc et en particulier la composition des liquides produits par les péridotites métasomatisées.
La reproduction expérimentale d’un écoulement canalisé dans le coin mantellique montre que des épontes d’orthopyroxénite se forment à l’interface entre le liquide provenant de la plaque océanique et l’olivine. Il y a donc une interaction très limitée avec la roche ultramafique hôte. La teneur en éléments en traces dans le liquide présent dans les conduits ne varie que de manière insignifiante lors de ce processus. Il semble donc que le transfert de magma au travers de chenaux quittant la croute océanique subductée pour atteindre la région de fusion partielle dans le coin mantellique soit beaucoup plus efficace pour conserver la signature crustale que lorsque ce transfert se fait par percolation.

L’ophiolite ultramafique de Nouvelle Calédonie fourni un laboratoire naturel où les interactions entre des magmas d’arc et le manteau supérieur peuvent être observées. Ce travail fourni le premier aperçu général de l’ophiolite du Massif du Sud sur bases de données pétrologiques et géochimiques. Le Massif du Sud est la plus grande des ophiolites mantelliques sur Terre. C’est aussi l’un des massif ultramafique les plus appauvri. Cette thèse donne une description détaillée de plus de 3000 m de séquence mantellique ainsi que la zone de transition la surmontant et montre comment cette ophiolite est liée a un environnement d’arc qui s’est développé sur une croute océanique plus ancienne.

Une suite de roches comprenant des chenaux dunitiques et pyroxènitiques ainsi que des dykes de pyroxènites et de gabbros ont été observés dans le Massif du Sud. Ces veines sont le témoin de l’évolution d’un liquide silicaté hydraté qui est transféré au travers de conduits poreux pour former la croute océanique. Le magma est transporté aux travers de ces conduits pour alimenter la partie inférieure de l’arc volcanique. L’observation de l’évolution de liquide silicaté à un niveau sub-Moho donne de nouvelles informations essentielles pour résoudre le paradoxe de l’arc qui nécessite de grande quantité de cumulats de pyroxènes pour expliquer la composition globale de la croute d’un arc.
Une génération tardive de pyroxènites et de dykes d’amphibole est liée à la mise en place de larges intrusions felsiques au niveau de la transition manteau-croute. La datation U-Pb sur des zircons séparés de ces intrusions ainsi que des dykes associés donne un âge Eocène qui confirme que ces roches ont été formées avant l’obduction du Massif du Sud. Ces roches représentent une activité magmatique tardive d’avant-arc et fourni de nouvelles informations sur les interactions entre magma et manteau et sur la composition de ces magmas dans des régions plus froides du coin mantellique. La datation relative des différents événements enregistrés dans l’ophiolite de Nouvelle Calédonie impose également de nouvelles contraintes sur les reconstructions géodynamiques du Pacifique du Crétacé moyen à nos jours.
Table of Contents

Chapter 1. Introduction

1.1. Preamble 1
1.2. Subject and aim of the thesis 3
1.3. Structure of the thesis 4
1.4. List of acronyms, units and specific definitions 5

PART A

A.1. Fluids and rocks 7
 A.1.1. Aqueous fluids, hydrous melts and supercritical fluids 7
 A.1.2. Wet solidus of mantle rocks 10
A.2. Slab fluids 11
 A.2.1. Nature and composition of the slab fluids 11
 A.2.2. Geochemical relations with arc lavas 14
A.3. Metasomatised peridotites 17
 A.3.1. Pervasive metasomatism 17
 A.3.2. Veined metasomatism 19

Chapter 2. High pressure stability of alkali amphibole in the mantle wedge

2.1. Introduction 23
2.2. Experimental procedures 25
 2.2.1. Starting materials 25
 2.2.2. Experimental conditions and apparatus 28
2.3. Analytical techniques 29
2.4. Results 30
 2.4.1. Phase relations 30
 2.4.1.1. Mineral phases 31
 2.4.1.2. Fluid phases 34
 2.4.1.3. Phase assemblages 36
 2.4.2. Phase chemistry 38
 2.4.2.1. Anhydrous minerals 38
 2.4.2.2. Amphiboles 40
 2.4.2.3. Micas 49
 2.4.2.4. Melt & Fluids 51
 2.4.3. Mass balance 55
2.5. Discussion 62
 2.5.1. Stability field of the K-Na amphibole-mica system 62
 2.5.1.1. Amphiboles 63
 2.5.1.2. Micas 67
 2.5.2. Fluid-mantle interaction and hydrous melting 69
 2.5.2.1. Melt:rock ratio 69
2.5.2. Composition of the fluids
2.5.2.3. Solidus of metasomatised peridotite 73
2.5.3. Trace element partitioning 74
2.5.4. Natural evidence 82
2.5.5. Implications for the subduction factory 84

Chapter 3. Transfer of fluids in the sub-arc mantle

3.1. Introduction 88
3.2. Experimental procedures
 3.2.1. Starting materials 90
 3.2.2. Experimental designs, conditions and apparatus 92
3.3. Analytical techniques 93
3.4. Results
 3.4.1. Phase assemblage and textures 94
 3.4.1.1. Layered experiments 94
 3.4.1.2. Mixed experiments 98
 3.4.1.3. Fluid traps 100
 3.4.2. Phase compositions 103
 3.4.2.1. Anhydrous minerals 103
 3.4.2.2. Hydrous minerals 107
 3.4.2.3. Hydrous melts & aqueous fluids 109
 3.4.3. Dehydration experiments 115
3.5. Discussion
 3.5.1. Mixed series 118
 3.5.1.1. Mass balance and fluid compositions 118
 3.5.1.2. Trace element signatures in fluids 127
 3.5.2. Layered series 131
 3.5.2.1. Mass balance and fluid compositions 131
 3.5.2.2. Trace element signature in fluids 134
 3.5.3. Comparison of fluid transfer processes within a sub-arc environment
 3.5.3.1. Variation between large ion lithophile elements 135
 3.5.3.2. Transfer of LILE enrichment and slab signatures in the mantle wedge 137
 3.5.3.3. Transfer of slab thermometer signatures 139
 3.5.4. Comparison of experiments with previous work and natural rocks
 3.5.4.1. Porous flow 145
 3.5.4.2. Focused flow 149

A.4. Conclusions of Part A 152
PART B

B.1. Ophiolites
 B.1.1. General description of ophiolites
 B.1.2. Generation of replacive dunites

Chapter 4. The New Caledonia obduction complex

4.1. Introduction
4.2. Geological framework
 4.2.1. General historical introduction of New Caledonia
 4.2.2. Geological settings of New Caledonia
 4.2.2.1. Regional geological settings
 4.2.2.2. General tectonics
 4.2.2.3. Terranes of New Caledonia
 4.2.3. The ultramafic terrane
4.3. Results
 4.3.1. Field strategy
 4.3.2. Analytical techniques
 4.3.3. Rock descriptions
 4.3.3.1. Harzburgite
 4.3.3.2. Dunite
 4.3.3.3. Transition zone
 4.3.3.4. Gabbro
 4.3.3.5. Other rock types
 4.3.4. Major element mineral chemistry
 4.3.4.1. Olivine
 4.3.4.2. Orthopyroxene
 4.3.4.3. Clinopyroxene
 4.3.4.4. Spinel
 4.3.4.5. Plagioclase
 4.3.4.6. Other phases
 4.3.5. Trace element mineral chemistry
 4.3.5.1. Olivine
 4.3.5.2. Orthopyroxene
 4.3.5.3. Other minerals
4.4. Discussion
 4.4.1. Stratigraphic scale and ophiolitic sequence
 4.4.1.1. The ultramafic sequence
 4.4.1.2. The dunite complex
 4.4.1.3. The crustal sequence
 4.4.2. Origin of variations within single members of the ophiolite
 4.4.2.1. Ultramafic zone
 4.4.2.2. Dunite zone
 4.4.2.3. Crustal rocks
 4.4.3. General interpretation of the magmatic environment
 4.4.3.1. Ultra-depleted mantle and SSZ environment
 4.4.3.2. Chromitites and cumulate pods
4.5. Conclusions
Chapter 5. Focused melt transport in the sub-arc mantle

5.1. Introduction 226
5.2. Analytical techniques 227
5.3. Results 228
5.3.1. Sampling and field relations 228
5.3.1.1. Dunite to pyroxenites 230
5.3.1.2. Pyroxenites 233
5.3.1.3. Composite dykes and cumulative rocks 234
5.3.2. Major elements mineral chemistry 236
5.3.2.1. Olivine 236
5.3.2.2. Orthopyroxene 238
5.3.2.3. Clinopyroxene 239
5.3.2.4. Spinel 240
5.3.2.5. Plagioclase 240
5.3.3. Trace elements mineral chemistry 240
5.3.3.1. Olivine 240
5.3.3.2. Orthopyroxene 242
5.3.3.3. Clinopyroxene 244
5.3.3.4. Spinel 245
5.4. Discussion 245
5.4.1. Sub-arc environment 245
5.4.2. Relationships between channels, dykes and cumulates 246
5.4.3. Evolution of channels and dykes in the sub-arc mantle 250
5.4.3.1. Dunite channels 250
5.4.3.2. Orthopyroxenites channels 253
5.4.3.3. Pyroxenite dykes 255
5.4.3.4. Gabbro dykes 257
5.4.4. Morphology of the plumbing system under the arc crust 258
5.4.5. Implications of melt-mantle interactions and fractionation in the sub-arc mantle 260
5.5. Conclusions 265

Chapter 6. Melt-mantle interaction in a fore-arc environment

6.1. Introduction 267
6.2. Magmatism in a fore-arc environment 268
6.3. Results 269
6.3.1. Field observations 269
6.3.1.1. Granitoids 270
6.3.1.2. Trondhjemites 272
6.3.1.3. Hornblendites s.l. 274
6.3.1.4. Pyroxenites 277
6.3.2. Analytical techniques 279
6.3.3. Major elements mineral chemistry 280
6.3.3.1. Olivine 280
6.3.3.2. Orthopyroxene 280
6.3.3.3. Clinopyroxene 284
6.3.3.4. Amphibole 285
6.3.3.5. Feldspars 289
6.3.3.6. Other phases 290
6.3.4. Trace elements mineral chemistry 291
 6.3.4.1. Orthopyroxene 293
 6.3.4.2. Clinopyroxene 294
 6.3.4.3. Amphibole 295
 6.3.4.4. Plagioclase 296
 6.3.4.5. Other phases 298
6.3.5. Isotopic data 299
 6.3.5.1. U-Pb dating 299
 6.3.5.2. Hafnium isotopes 301

6.4. Discussion 302
 6.4.1. Evidence of a late magmatic event 302
 6.4.2. Relationship between pyroxenites, hornblendites and granitoids 305
 6.4.3. Melt compositions and evolution 308
 6.4.4. Spatial distribution of magmatic activity in the ophiolite 316
 6.4.5. Timing of magmatic events in New Caledonia 319

6.5. Conclusions 321

B.2. Conclusions of Part B 322

Chapter 7. General conclusions 328

References 332

Appendices
 Part A 356
 Part B 364

Notes 381