
Deposite

	

Arc

http:

	

	

This is th

Chen, S.

Simulate

Paper pr
Computa
Piscataw

© 2012
obtained
this mate
resale or
in other

d	ANU	Resear

chived

//www

the accepted

., Xudiera, C

ed annealing

resented at t
ation, Brisba
way, NJ: IEE

IEEE. Perso
d for all other
erial for adv
r redistributio
works.

rch	repository

d in A

w.anu.ed

version, pub

C. & Montgom

g with threshe

the 2012 IEE
ane, Australi
EE

onal use of th
r uses, in any
ertising or pr
on to servers

y	

ANU R

du.au/re

blished as:

mery, J. (201

eld converge

EE Congress
ia, June 10-1

his material is
y current or f
romotional p
s or lists, or r

Resea

esearch

12, June)

ence.

on Evolution
15, 2012 (pp.

s permitted.
future media
purposes, cre
reuse of any

	

arch r

h/acces

nary
 1946-1952)

Permission f
a, including r
eating new co
copyrighted

eposit

s/

).

from IEEE m
reprinting/rep
ollective wor
component o

tory

must be
publishing
rks, for
of this work

Simulated Annealing with Thresheld Convergence

Stephen Chen
School of Information Technology

York University
Toronto, Canada
sychen@yorku.ca

Carlos Xudiera
Department of Computer Science

and Engineering
York University
Toronto, Canada

xudiera@yorku.ca

James Montgomery
Research School of Computer

Science
Australian National University

Canberra, Australia
james.montgomery@anu.edu.au

Abstract—Stochastic search techniques for multi-modal search
spaces require the ability to balance exploration with
exploitation. Exploration is required to find the best region, and
exploitation is required to find the best solution (i.e. the local
optimum) within this region. Compared to hill climbing which is
purely exploitative, simulated annealing probabilistically allows
“backward” steps which facilitate exploration. However, the
balance between exploration and exploitation in simulated
annealing is biased towards exploitation – improving moves are
always accepted, so local (greedy) search steps can occur at even
the earliest stages of the search process. The purpose of
“thresheld convergence” is to have these early-stage local search
steps “held” back by a threshold function. It is hypothesized that
early local search steps can interfere with the effectiveness of a
search technique’s (concurrent) mechanisms for global search.
Experiments show that the addition of thresheld convergence to
simulated annealing can lead to significant performance
improvements in multi-modal search spaces.

Keywords-simulated annealing; thresheld convergence;
niching; crowding; exploration; exploitation

I. INTRODUCTION

Imagine a search space with local optimum “wells” of
similar size and shape – e.g. a sinusoid superimposed over a
linear slope. On average, the difference between two random
samples from two different optimum wells in this idealized
search space will be equal to the difference between the optima
for these two wells. Many heuristic search techniques rely on
this correlation as they concentrate their search efforts in the
region(s) around the best (random) solution(s) that they have so
far discovered.

A simple example is particle swarm optimization (PSO) [1]
with a global best/star topology. If it is assumed that every
particle in this swarm starts at a random initial position, the
initial global best attractor will represent the best individual
from a set of random positions. The reason to direct all of the
particles to move towards and explore around this global
attractor is the inherent belief that the best (local) optimum will
eventually be found near it. Specifically, if the local optima
around the initial positions have the same relative fitness as the
initial random samples, then the concentration of search around
the best initial position will lead the swarm towards the best
optimum from the original set of optimum wells identified by
the initial random positions.

Producing a single local optimum from the best of a small
set of random solutions is clearly a highly greedy search
strategy [2]. In particular, PSO does not “lock on” to the initial
global attractor – the particles follow exploratory trajectories
and they can update the global best position if any of them
encounters a better position. However, redirecting the search
process towards this new global best position again implies the
assumption that the best optimum will be found in the region
around the best known solution in the search space.

There are two potential problems with directing the search
process to finding the (local) optimum nearest to the best
known solution in the search space. First, due to sampling
errors, the best local optimum found by optimizing all of the
current solutions (e.g. from a population) may not be the same
as that found by optimizing the best current solution. Second,
there is no guarantee that the current best solution is in the
optimum well with the global optimum. To continue
exploration for the global optimum well, it can be useful to
have an “even” selection of sample solutions from each newly
explored optimum well.

One example of an ideal sampling is if every solution
selected during the exploration phase has the same difference
in fitness compared to the optimum in its own optimum well.
Since such an ideal sampling is impossible, one goal is to
sample as “evenly” as possible. Although two random samples
from different optimum wells will on average have a difference
in fitness equal to the difference between their two (local)
optima, the same cannot be said about the comparison of a
random sample from one optimum well with a better-than-
random sample from a second optimum well. In particular, it is
important to avoid the situation in which a better-than-random
sample from a poor local optimum well is better than the
expected fitness of a random sample from a good local
optimum well. (See Fig. 1.) In this situation, it will become
more difficult for a search process that concentrates its search
effort around the best current solution to redirect its search
effort from the poor optimum well to the better one.

One method to produce a better-than-random sample is to
perform local search. Starting from an initial position, let us
define any step/change that leads to a position in a new
optimum well as an explorative/global search step and any
step/change that leads to a position in the same optimum well
as an exploitative/local search step. Without any other
information, the first solution from an optimum well can be

 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

considered to be a random sample. Subsequently, a second
solution in the same optimum well that is better than the first
solution can be considered to be a better-than-random sample.
Referring again to Fig. 1, local search which leads to better-
than-random solutions for a given optimum well can interfere
with a search technique’s ability to perform (concurrent) global
search to find new, more promising optimum wells.

The goal of “thresheld convergence” is to delay local search
and thus prevent “uneven” sampling from optimum wells.
Convergence is “held” back as (local) search steps that are less
than a threshold function are disallowed. As this threshold
function decays to zero, greedier local search steps are allowed.
Conversely, until the threshold is sufficiently small, the search
technique is forced to focus on the global search aspect of
finding the best region/optimum well of the search space in
which a local optimum will eventually be found.

This paper presents an application of thresheld convergence
to simulated annealing. A brief background to simulated
annealing and other applications of thresheld convergence to
particle swarm optimization and differential evolution are
presented in Section II. Benchmark results for simulated
annealing are presented in Section III before thresheld
convergence is added in Section IV. However, no improvement
is shown, and it is hypothesized that thresheld convergence
requires elitism which is added to simulated annealing in
Section V. With the addition of elitism, the opportunity to have
increased exploration as provided by thresheld convergence is
then shown to lead to significant performance improvements in
Section VI. The similarities and differences of thresheld
convergence when applied to simulated annealing, particle
swarm optimization, and differential evolution are discussed in
Section VII before a summary is presented in Section VIII.

II. BACKGROUND

Simulated annealing is modelled after the physical process
of annealing [3]. If an entity such as a molten metallic alloy is
cooled too quickly, it can solidify into a sub-optimal crystalline
structure. Ideally, there exists a temperature at which the
system can escape from one optimum to a fitter optimum, but
that escapes to less fit optima are much less likely. It should be

noted that the inability to find such a temperature could lead to
a given alloy mixture being discarded. Physical annealing is not
just a process that solves a problem, but it also helps determine
which problems (e.g. alloy mixtures) will be solved in the first
place. Further, physical systems have a practical limitation of
moving from one state to other nearby states, so a globally
convex search space (in which any local optimum can move to
the global optimum through a series of transitions to
neighbouring optima that have monotonically improving
fitness) is the ideal match for annealing-based optimization
processes.

In general, any search technique which concentrates its
search effort around the best current solution will be most
effective in globally convex search spaces. Since the targeted
optimum well of these search techniques will only change if a
better solution is found and these search techniques concentrate
their search efforts around the best found solution, these search
processes are most likely to follow a path through neighbouring
optimum wells. In globally convex search spaces, there is a
path of improving optimum wells from any solution to the
global optimum.

In following a path of improving optimum wells, the ability
to accurately estimate the relative fitness of the optimum in
each well can be beneficial. A key feature of heuristic search is
that the fitness of an optimum well is often estimated by the
fitness of a known solution taken from that well. To accurately
compare the fitness of two optimum wells by comparing the
fitness of two solutions taken from those wells, these two
sample solutions should ideally have the same relative fitness
within each well. By delaying local search, thresheld
convergence helps prevent the sample representing an early
optimum well from becoming so optimized that it interferes
with the comparison of (random) samples from later optimum
wells. An early local optimum which interferes with future
exploration is the essence of premature convergence. The
diversity of any other sample solutions (e.g. in a population) is
wasted if they cannot redirect the search process to concentrate
on another (more promising) optimum well.

The first use of thresheld convergence is an application to
particle swarm optimization [4]. In standard PSO which uses a
ring topology [5], particle trajectories can be drawn towards the
personal best positions of two neighbouring particles in the
swarm. These attractions concentrate the search effort of the
swarm around the best position(s) currently known by the
swarm system. When velocities slow, the swarm will conduct a
more local/exploitative search around these personal best
position(s). Thus, when velocities are faster at the beginning of
the search process, it can be viewed that the swarm is
performing an explorative search and that each personal best
position represents a promising optimum well [6].

In PSO, a particle does not move directly from its current
position to a local best attractor. Similar to birds in flight,
particles have arcing trajectories that overshoot and loop back
to their various attractors. These non-direct trajectories are the
basis of exploration, and the identification of a more promising
optimum well involves finding a better solution in it than the
current personal best position. From the previously introduced
ideas on sampling solutions from optimum wells, this process

Figure 1. The horizontal lines represent the average fitness of a random
sample taken from each optimum well. If an optimum well has a better-
than-random solution (see dot), this solution may be fitter than random
samples drawn from better optimum wells.

of exploration may be harmed if the personal best position has
a better than random relative fitness within its optimum well.

Local search produces better than random solutions within
an optimum well, so a key goal of thresheld convergence is to
delay the transition from global search to local search. In the
previous application to PSO [4], it was first noted that the
concentration of search within a region of the search space
occurs when personal best attractors are similarly concentrated
in that region. This concentration/convergence of personal best
attractors was reduced by disallowing specific updates that
cause personal best positions to become closer than a threshold
function. The resulting benefits from thesheld convergence led
to significant performance improvements for the modified PSO
compared to standard PSO on a broad range of multi-modal
functions [7].

Thresheld convergence has subsequently been applied to
differential evolution [8]. Differential evolution (DE) [9] is
most commonly implemented with an elitist population
scheme. Therefore, in order for DE to dedicate search effort to
a new optimum well, it is necessary to find a (random) sample
from the new optimum well that is better than a target solution
which represents another optimum well currently under
consideration. Again, if the relative quality of the target
solution within its optimum well is much better than random, it
makes it less likely for a (random) candidate solution to be
better – even if it is from an optimum well with a better local
optimum (see Fig. 1).

Similar to its application in PSO, the goal of applying
thresheld convergence to DE is to delay the transition from
global search (i.e. finding promising optimum wells) to local
search (i.e. finding the best solution within an existing

optimum well). Local search occurs when points near existing
points are created, and the distance between new search points
is affected by the length of the difference vector. By
disallowing moves closer to the base solution than the
threshold function, thresheld convergence delays these local
search steps that can interfere with the effectiveness of
concurrent global search steps. The implementation of these
modifications suggested by thresheld convergence has also led
to significant performance improvements in DE across a broad
range of multi-modal functions.

III. SIMULATED ANNEALING

The benchmark implementation of simulated annealing
(SA) used in this paper is derived from the
simulannealbnd function from the MATLAB Global
Optimization Toolbox [10]. Using the default implementation,
the (maximum) step length is equal to the temperature:

 kTT 95.0*0= (1)

where 1000 =T is the initial temperature and k is the iteration
number. The actual step size is drawn using a Student’s
distribution with T as the maximum length (see Fig. 2). For a
given step which heads in a uniformly random direction, all
improving moves are accepted and non-improving moves are
accepted with a probability of

)}
max

exp(1/{1
T

∆
+ (2)

where ∆ is the (positive) difference between the new and old
objectives. The termination condition used in the benchmark
implementation is a fixed number of function evaluations.

The following analysis of simulated annealing with and
without thresheld convergence focuses on two sets from the
Black-Box Optimization Benchmarking (BBOB) functions [7]:
set 4, multi-modal functions with adequate global structure, and
set 5, multi-modal functions with weak global structure.
However, for completeness and additional insight, results for
all BBOB functions are presented. See Table I for names and
selected attributes of the 24 functions in the BBOB problem set
– separable (s), unimodal (u), global structure (gs).

TABLE I. BBOB FUNCTIONS

Set fn Function Name
Attribute

s u gs

1

1 Sphere X X X
2 Ellipsoidal, original X X X
3 Rastrigin X X
4 Büche-Rastrigin X X
5 Linear Slope X X

2

6 Attractive Sector X
7 Step Ellipsoidal X
8 Rosenbrock, original
9 Rosenbrock, rotated

3

10 Ellipsoidal, rotated X X
11 Discus X X
12 Bent Cigar X
13 Sharp Ridge X
14 Different Powers X

4

15 Rastrigin, rotated X
16 Weierstrass X
17 Schaffers F7 X
18 Schaffers F7, moderately ill-conditioned X
19 Composite Griewank-Rosenbrock F8F2 X

5

20 Schwefel
21 Gallagher’s Gaussian 101-me Peaks
22 Gallagher’s Gaussian 21-hi Peaks
23 Katsuura
24 Lunacek bi-Rastrigin

Figure 2. Step sizes are drawn from a Student’s distribution in the
benchmark implementation of simulated annealing (baseSA).

To be consistent with previous work (e.g. [4][11][12]), the
following experiments perform 25 independent trials on each
function (5 trials on each of the first 5 instances) with a fixed
limit of 5000*D function evaluations (FEs). All experiments in
this paper use D = 20 dimensions which leads to a total of
100,000 FEs. To facilitate the addition of thresheld
convergence, we re-implemented MATLAB’s version of
simulated annealing, and the results (percent difference, %-diff
= (b-a)/b) in Table II show that our new version called baseSA
(a) compares well with MATLAB’s version of simulated
annealing called simple SA (b) when reannealing is disabled.

IV. SIMULATED ANNEALING WITH THRESHELD

CONVERGENCE

The threshold function (3) developed in [4] has two
parameters: α represents the initial minimum distance as a ratio
of the search space diagonal and γ represents the decay factor.
For γ = 1, the threshold decays with a linear slope as the

iteration k goes from 0 to the maximum number of allowed
function evaluations n.

 () []()γα nkndiagonalthreshold /** −= (3)

To simplify the generation of new solutions, the threshold
is applied to each dimension (and the diagonal is replaced with
the range for that dimension). Specifically, compared to the
student function in Fig. 2, the distribution is “squeezed” at the
edges to accommodate the gap created by the threshold in the
middle (see Fig. 3). When applied to each dimension, this gap
leads to a hypercube “tabu” region as opposed to the
hypersphere region previously used in PSO [4] and DE [8].

The effects of thresheld convergence on simulated
annealing were examined over a range of values for α = 0.001,
0.005, 0.01, 0.05, and 0.1 using γ = 2. The results in Table III
show the percent difference ((b-a)/b) in mean performance
between baseSA (b) and its performance with thresheld
convergence (a). A positive percent difference represents an
improvement with thresheld convergence, and the bolded
values highlight the best value of α for each function.

The larger step sizes taken by simulated annealing as
caused by the effects of thresheld convergence (see Fig. 3) lead
to some improvements on several unimodal functions (e.g.
slope – BBOB fn 5). When the optimal solution is very far
from the current solution (e.g. in the corner of the search
space), increased exploration can lead to improved
performance. However, on the targeted multi-modal functions
(BBOB fn 15-24), thresheld convergence has negligible (and
generally negative) effects. Increased exploration has not lead
to improved performance on these functions.

TABLE II. BENCHMARK SIMULATED ANNEALING RESULTS

Set fn
simple SA baseSA

%-diff t-test
mean stddev mean stddev

1

1 4.02e+1 1.76e+1 3.46e+1 6.69e+0 14.0% 0.07
2 3.28e+5 2.38e+5 2.60e+4 6.81e+3 92.1% 0.00
3 3.17e+2 8.90e+1 2.40e+2 3.02e+1 24.4% 0.00
4 3.84e+2 7.59e+1 2.83e+2 2.36e+1 26.2% 0.00
5 1.46e+2 4.10e+1 6.69e+1 1.65e+1 54.1% 0.00

2

6 2.29e+4 3.22e+4 3.30e+2 4.85e+2 98.6% 0.00
7 1.42e+2 6.02e+1 7.44e+1 1.44e+1 47.7% 0.00
8 5.83e+3 3.97e+3 4.64e+2 9.51e+1 92.0% 0.00
9 1.10e+2 8.87e+0 1.17e+2 1.25e+1 -6.4% 0.01

3

10 3.06e+5 1.89e+5 1.96e+4 1.58e+4 93.6% 0.00
11 2.20e+2 8.51e+1 6.67e+1 1.02e+1 69.7% 0.00
12 3.00e+7 2.01e+7 1.44e+5 9.48e+4 99.5% 0.00
13 1.00e+3 2.27e+2 7.32e+2 9.52e+1 26.9% 0.00
14 2.17e+1 6.39e+0 1.07e+1 1.87e+0 50.7% 0.00

4

15 3.40e+2 1.04e+2 2.37e+2 2.16e+1 30.1% 0.00
16 2.14e+1 6.37e+0 1.67e+1 2.59e+0 21.6% 0.00
17 1.25e+1 3.28e+0 6.97e+0 6.09e−1 44.0% 0.00
18 3.56e+1 9.64e+0 2.31e+1 2.37e+0 35.1% 0.00
19 2.50e−1 0.00e+0 2.50e−1 0.00e+0 0.0% 0.00

5

20 1.16e+2 2.12e+2 3.21e+0 1.22e−1 97.2% 0.01
21 7.21e+1 1.23e+1 5.06e+1 6.96e+0 29.9% 0.00
22 7.70e+1 6.89e+0 5.66e+1 1.13e+1 26.5% 0.00
23 2.23e+0 7.81e−1 2.00e+0 2.56e−1 10.3% 0.08
24 2.22e+2 4.33e+1 2.09e+2 1.15e+1 5.8% 0.08

Figure 3. Step sizes are drawn from a Student’s distribution with a gap
width specified by the threshold function.

TABLE III. RESULTS WITH THRESHELD CONVERGENCE

Set fn
α

0.001 0.005 0.01 0.05 0.1

1

1 -1.9% 2.7% -2.7% -12.0% -15.2%
2 16.8% -9.6% -50.2% -92.4% -170.8%
3 -0.8% -2.5% 0.7% 1.5% 1.8%
4 0.1% -1.2% 1.5% -3.3% -4.2%
5 8.3% 7.3% 6.8% 10.3% 32.2%

2

6 72.3% 80.5% 78.9% 70.7% 75.3%
7 3.2% 3.7% 6.8% 6.7% 0.3%
8 25.5% 49.1% 54.0% 48.9% 43.5%
9 -1.4% -5.4% -5.5% -4.8% -5.2%

3

10 23.8% 19.2% -16.8% -51.1% -83.0%
11 0.0% -4.1% -7.0% -19.2% -16.2%
12 94.0% 94.9% 89.0% 46.1% 16.5%
13 0.7% 6.8% 25.8% 31.1% 26.1%
14 1.7% 1.2% 4.0% -9.7% -14.9%

4

15 -0.7% 2.3% 2.7% 0.3% -3.9%
16 -4.3% -2.4% -5.3% -5.1% -6.2%
17 1.6% 0.5% -0.2% -4.7% -3.9%
18 -0.2% 2.1% -0.8% -6.8% -5.4%
19 0.0% 0.0% 0.0% 0.0% 0.0%

5

20 1.4% 5.1% 4.8% 4.1% 3.3%
21 1.3% -0.7% -3.3% -3.0% -8.0%
22 -5.5% -5.7% -7.3% -5.1% -7.5%
23 5.1% -0.2% 0.7% -1.9% -9.0%
24 -1.2% 1.9% -1.6% -3.6% -9.0%

V. SIMULATED ANNEALING WITH ELITISM

The benchmark implementation of simulated annealing
does not include elitism. Like physical annealing, there is no
memory in the system – there is only the current state. In this
situation, the risks of exploration are much higher. Every
attempt to find a better optimum well has an inherent risk of
leading to a worse optimum well. Without elitism, the ability to
backtrack these steps is not guaranteed, so extra caution should
be exercised before large exploratory steps are taken.

In simulated annealing, concurrent local search steps effect
a form of caution by reducing the probability of large
exploratory steps. Specifically, local search steps which lead to
better-than-random samples of the current optimum well will
make it more difficult to escape from the current optimum well
to explore another (see Fig. 1). Without elitism, this lower level
of exploration in baseSA often leads to better results on the
multi-modal functions (e.g. BBOB fn 15-24). The idea of
“even sampling” presented in Section I implies picking the best
from a set of samples, and the current implementation of
simulated annealing does not support this assumption.

Elitism can be implemented in simulated annealing by
resetting the position to the best known position every r
iterations. In the limits, simulated annealing becomes hill
climbing when r = 1 and elitism has no effect when r is equal
to the total number of function evaluations (100,000). In Table
IV, the effects of elitism for r = 1, 10, 100, 1000, and 10000 are
shown as the percent difference ((b-a)/b) between baseSA (b)
and baseSA with elitism (a).

In general, the results for simulated annealing improve as
the frequency of resets increases. In fact, the best overall results
occur with a reset after every iteration – which was originally
thought to be the equivalent to hill climbing. However, the

difference between “simulated annealing” which never accepts
a worsening move and typical implementations of hill climbing
is the variable step size. Hill climbing tends to imply a greedy,
local search whereas a decreasing step size in baseSA (further)
supports a transition from exploration/global search to
exploitation/local search.

VI. SIMULATED ANNEALING WITH ELITISM AND

THRESHELD CONVERGENCE

Similar to the experiments in Section IV, thresheld
convergence has been applied to baseSA with elitism. Building
from the best results in Section V with a reset after every
iteration (i.e. never accepting a worse move), the results in
Table V show the percent difference ((b-a)/b) between baseSA
with elitism (b) and simulated annealing with elitism and
thresheld convergence (a). The parameters for the threshold
function (3) are α = 0.001, 0.005, 0.01, 0.05, and 0.1 and γ = 2.

Exploration for new optimum wells involves the risk of
ending up in a worse optimum well. However, this risk is
greatly reduced with elitism since the system can always return
from the worse optimum well back to the best-known optimum
well. As seen in Table IV, the performance of the benchmark
implementation of simulated annealing (baseSA) improves
with elitism which increases the amount of exploitation in the
system. With this increase in exploitation, the performance is
further improved by an increase in exploration as effected by
the addition of thresheld convergence. Across the full set of
BBOB functions, the best result with thresheld convergence
delivers statistically significant improvements (as indicated by
a t-test with p < 0.05) of at least 10% on 18 of 24 functions (see
Table VI).

The development of simulated annealing with thresheld
convergence is now complete, so comparisons with more

TABLE IV: RESULTS WITH ELITISM

Set fn
r

10,000 1,000 100 10 1

1

1 8.3% 31.2% 73.4% 95.4% 99.2%
2 1.2% -8.1% 0.7% -9.0% -1.6%
3 3.3% 8.0% 26.2% 36.5% 32.4%
4 3.8% 11.5% 25.5% 32.5% 27.6%
5 13.8% 10.4% 8.7% 47.8% 75.9%

2

6 -3.1% 56.6% 64.9% 78.0% 73.2%
7 2.9% 28.1% 57.5% 71.9% 75.6%
8 14.9% 41.6% 68.3% 72.7% 76.4%
9 -0.5% 6.1% 61.9% 85.9% 88.4%

3

10 -2.3% -3.6% -0.7% 1.1% -7.6%
11 13.3% 47.6% 56.2% 57.3% 55.4%
12 -1.0% -3.2% -18.9% 4.6% 18.8%
13 3.0% 16.8% 52.7% 78.2% 80.6%
14 9.3% 30.4% 68.8% 92.9% 98.2%

4

15 0.0% 9.7% 22.8% 40.7% 37.6%
16 -4.6% -0.8% 12.3% 26.9% 26.5%
17 1.3% 13.9% 33.3% 50.8% 53.1%
18 2.8% 7.8% 33.7% 55.5% 51.6%
19 0.0% 0.0% 0.1% 0.1% 1.2%

5

20 3.7% 7.5% 20.8% 24.1% 20.8%
21 2.6% 27.9% 68.5% 80.4% 77.4%
22 -1.6% 15.6% 61.5% 80.2% 87.1%
23 -3.7% 5.9% 2.3% 10.9% 21.9%
24 2.5% 6.2% 20.7% 34.2% 43.3%

TABLE V: RESULTS WITH ELITISM AND THRESHELD CONVERGENCE

Set fn
α

0.001 0.005 0.01 0.05 0.1

1

1 88.5% 93.6% 91.7% 78.4% 69.7%
2 4.0% -16.8% -43.7% -128.8% -135.2%
3 11.6% 26.6% 33.8% 32.2% 27.4%
4 9.9% 17.5% 21.3% 13.8% 15.3%
5 -16.7% 65.1% 86.1% 100.0% 100.0%

2

6 59.3% 89.8% 94.6% 89.0% 90.8%
7 21.5% 39.5% 46.0% 9.9% 5.0%
8 15.8% 14.3% 41.5% 25.1% 40.7%
9 -11.6% -75.5% -88.3% -171.6% -354.8%

3

10 28.0% 16.4% 10.0% -47.3% -76.0%
11 0.5% 12.5% 15.8% 22.3% 28.6%
12 92.4% 93.4% 88.9% 46.9% 23.4%
13 58.8% 81.8% 78.9% 61.2% 60.4%
14 79.6% 86.4% 83.0% 70.1% 65.7%

4

15 7.2% 21.5% 33.7% 26.6% 31.3%
16 17.5% 38.4% 37.5% 47.1% 42.1%
17 -10.0% 11.9% 25.8% 38.1% 38.8%
18 0.6% 17.3% 29.1% 35.2% 19.7%
19 -1.1% -1.1% -1.2% -1.2% -1.3%

5

20 6.0% 13.2% 19.0% 34.8% 36.3%
21 31.2% 26.3% 33.3% 11.9% 51.6%
22 5.5% -3.6% 8.7% -58.1% 3.7%
23 19.9% -0.9% -2.7% -14.7% -21.6%
24 -2.6% 5.3% 8.9% -10.2% -16.8%

sophisticated versions of simulated annealing are now
meaningful. Specifically, MATLAB’s simulannealbnd
function [10] implements adaptive simulated annealing based
on [13]. In Table VII, the best result with thresheld
convergence is compared against MATLAB’s implementation
of simulated annealing.

The comparisons show that reannealing and adaptive step
sizes can be very effective at improving exploitation (e.g.
unimodal functions BBOB fn 10-14). However, exploitation is
easily achieved by local optimization (e.g. gradient descent), so
the more difficult task is usually exploration. The enhanced
exploration provided by thresheld convergence is demonstrated
on the multi-modal functions (e.g. BBOB fn 15-24) where
statistically significant improvements (as indicated by a t-test
with p < 0.05) of at least 10% are achieved on 8 of the 10
functions in BBOB sets 4 and 5.

VII. DISCUSSION

Thresheld convergence has similarities to niching (e.g.
[14]) and crowding [15]. A key difference is that thresheld
convergence affects how new candidate solutions are created as
opposed to which candidate solutions are kept (e.g. as part of a
population). One advantage of this difference is efficiency –
threheld convergence can be implemented with a single
distance measurement [4][8] while niching and crowding can
use up to p (the population size) distance measurements [15]. A
second advantage is the ability to apply thresheld convergence
to non-population-based search techniques such as simulated
annealing.

The current application with simulated annealing provides
new insights into the operation of thresheld convergence that
were not possible with previous implementations [4][8].
Specifically, the founding principle of “even sampling”

involves an implicit use of elitism. Without elitism, the risks of
exploration become much greater – any attempt to find a better
optimum well may sacrifice the opportunity to exploit the
current optimum well. The results in Section IV show that the
increase in exploration caused by thresheld convergence often
leads to worse results in standard simulated annealing which
does not have elitism.

The limits on exploration caused by a lack of elitism can
also be seen in genetic algorithms (GAs) with generational
replacement schemes [16]. Compared to steady-state GAs [17],
generational GAs often perform better with smaller crossover
rates. This reduced rate of crossover can be viewed as a form of
elitism since it increases the chance that (good) solutions can
pass unchanged from one generation to the next.

In simulated annealing, it is possible to leave a good
optimum well for a worse one. Without elitism to provide a
guarantee that these “disruptive” search steps can be undone, it
becomes important to limit these steps. Small local search steps
which improve the fitness of the current location also reduce
the probability that large exploratory steps (which can cause
large gains in the evaluation function) will be accepted. To
limit “disruption” also limits exploration, and one of the key
goals of thresheld convergence is to reduce the interference
between the mechanisms of exploration and exploitation that
can occur when these processes operate concurrently.

It should be noted that the application of thresheld
convergence in simulated annealing completely eliminates all
(local) search steps that are smaller than the threshold function.
This differs from the first implementation of thresheld
convergence to particle swarm optimization [4]. In the PSO
implementation, the threshold function prevented a particle
from updating its pbest position to be within the threshold from

TABLE VI : SUMMARY OF RESULTS

Set fn
with elitism best result

α %-diff t-test
mean stddev mean stddev

1

1 2.90e−1 2.22e−1 1.87e−2 9.19e−3 0.005 93.6% 0.00
2 2.64e+4 6.30e+3 2.54e+4 9.58e+3 0.001 4.0% 0.33
3 1.62e+2 4.17e+1 1.07e+2 2.15e+1 0.01 33.8% 0.00
4 2.05e+2 5.54e+1 1.61e+2 4.77e+1 0.01 21.3% 0.00
5 1.61e+1 6.06e+0 0.00e+0 0.00e+0 0.1 100.0% 0.00

2

6 8.86e+1 1.15e+2 4.81e+0 7.61e+0 0.01 94.6% 0.00
7 1.81e+1 8.44e+0 9.79e+0 5.60e+0 0.01 46.0% 0.00
8 1.09e+2 4.07e+1 6.40e+1 5.84e+1 0.01 41.5% 0.00
9 1.36e+1 4.87e+0 1.52e+1 1.63e+1 0.001 -11.6% 0.32

3

10 2.11e+4 1.72e+4 1.52e+4 9.78e+3 0.001 28.0% 0.07
11 2.98e+1 7.08e+0 2.13e+1 9.45e+0 0.1 28.6% 0.00
12 1.17e+5 8.04e+4 7.73e+3 3.20e+3 0.005 93.4% 0.00
13 1.42e+2 5.32e+1 2.60e+1 8.67e+0 0.005 81.8% 0.00
14 1.97e−1 9.91e−2 2.68e−2 7.54e−3 0.005 86.4% 0.00

4

15 1.48e+2 2.94e+1 9.82e+1 2.56e+1 0.01 33.7% 0.00
16 1.23e+1 2.11e+0 6.51e+0 1.90e+0 0.05 47.1% 0.00
17 3.27e+0 9.94e−1 2.00e+0 1.14e+0 0.1 38.8% 0.00
18 1.12e+1 3.95e+0 7.25e+0 3.50e+0 0.05 35.2% 0.00
19 2.47e−1 2.59e−3 2.50e−1 8.37e−4 0.001 -1.1% 0.00

5

20 2.54e+0 3.96e−1 1.62e+0 3.47e−1 0.1 36.3% 0.00
21 1.15e+1 9.97e+0 5.55e+0 5.45e+0 0.1 51.6% 0.01
22 7.32e+0 6.02e+0 6.68e+0 5.94e+0 0.01 8.7% 0.35
23 1.56e+0 2.79e−1 1.25e+0 3.07e−1 0.001 19.9% 0.00
24 1.18e+2 2.15e+1 1.08e+2 2.71e+1 0.01 8.9% 0.07

TABLE VII: RESULTS VS. MATLAB’ S SIMULATED ANNEALING

Set fn
MATLAB SA best result

α %-diff t-test
mean stddev mean stddev

1

1 6.93e+0 2.04e+0 1.87e−2 9.19e−3 0.005 99.7% 0.00
2 2.65e+3 1.39e+3 2.54e+4 9.58e+3 0.001 -855.4% 0.00
3 1.65e+2 6.17e+1 1.07e+2 2.15e+1 0.01 35.1% 0.00
4 2.31e+2 6.16e+1 1.61e+2 4.77e+1 0.01 30.1% 0.00
5 6.49e+1 8.87e+0 0.00e+0 0.00e+0 0.1 100.0% 0.00

2

6 1.10e−1 7.89e−2 4.81e+0 7.61e+0 0.01 -4270.2% 0.00
7 1.09e+1 4.19e+0 9.79e+0 5.60e+0 0.01 9.9% 0.22
8 2.82e+1 2.65e+1 6.40e+1 5.84e+1 0.01 -126.9% 0.00
9 7.34e+0 4.99e+0 1.52e+1 1.63e+1 0.001 -107.3% 0.01

3

10 2.70e+3 1.46e+3 1.52e+4 9.78e+3 0.001 -462.8% 0.00
11 6.74e+1 2.65e+1 2.13e+1 9.45e+0 0.1 68.4% 0.00
12 4.52e+0 7.98e+0 7.73e+3 3.20e+3 0.005 -1.7e+5% 0.00
13 4.88e+0 5.47e+0 2.60e+1 8.67e+0 0.005 -431.6% 0.00
14 7.31e+0 1.21e+0 2.68e−2 7.54e−3 0.005 99.6% 0.00

4

15 1.84e+2 6.79e+1 9.82e+1 2.56e+1 0.01 46.6% 0.00
16 8.30e+0 2.04e+0 6.51e+0 1.90e+0 0.05 21.6% 0.00
17 6.55e+0 7.63e−1 2.00e+0 1.14e+0 0.1 69.5% 0.00
18 1.69e+1 3.11e+0 7.25e+0 3.50e+0 0.05 57.0% 0.00
19 2.50e−1 0.00e+0 2.50e−1 8.37e−4 0.001 0.2% 0.00

5

20 2.23e+0 1.63e-1 1.62e+0 3.47e−1 0.1 27.2% 0.00
21 2.64e+1 1.07e+1 5.55e+0 5.45e+0 0.1 79.0% 0.00
22 3.70e+1 1.47e+1 6.68e+0 5.94e+0 0.01 81.9% 0.00
23 8.51e−1 2.18e−1 1.25e+0 3.07e−1 0.001 -47.1% 0.00
24 1.56e+2 5.35e+1 1.08e+2 2.71e+1 0.01 31.0% 0.00

its lbest position. However, positions within the threshold could
still be evaluated and stored (in the lbest position). Since this
PSO implementation allowed local search throughout the
search process, it could still converge with relatively large
values for α. Applications of thresheld convergence that
completely eliminate local search will likely require smaller
values for α and a truncated threshold function.

More than α, the key “parameter” in thresheld convergence
is the required “gap” between new sample solutions. The
threshold function (3) is just a preliminary and relatively crude
means of adapting the threshold. The development of adaptive
threshold functions is a promising area for future research.

VIII. SUMMARY

Many heuristic search techniques have concurrent
processes of exploration and exploitation. Since exploration
often depends on estimating the quality of a new region of the
search space based on a few random samples, it is important to
evaluate these samples fairly. In particular, it is not reasonable
to compare a random solution from one region of the search
space with a locally optimized solution from another.
Concurrent exploitation can thus interfere with exploration.
The goal of thresheld convergence is to help separate the
processes of exploration and exploitation, and its addition has
been successful in search techniques like simulated annealing,
particle swarm optimization, and differential evolution.

REFERENCES
[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” IEEE

ICNN, 1995, pp. 1942–1948.

[2] S. Chen, K. Miura, and S. Razzaqi, “Analyzing the role of "smart" start
points in coarse search-greedy search”, ACAL, 2007, pp. 13–24.

[3] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[4] S. Chen and J. Montgomery, “A simple strategy to maintain diversity
and reduce crowding in particle swarm optimization,” Austalasian AI,
2011, pp. 281–290.

[5] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” IEEE SIS, 2007, pp. 120–127.

[6] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Evolving
cognitive and social experience in particle swarm optimization through
differential evolution,” IEEE CEC, 2010, pp. 2400–2407.

[7] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-box
optimization benchmarking 2009: noiseless functions definitions,”
INRIA Technical Report RR-6829, 2009.

[8] J. Montgomery and S. Chen, “A simple strategy to maintain diversity
and reduce crowding in differential evolution,” in press.

[9] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimization, vol. 11, pp. 341–359, 1997.

[10] http://www.mathworks.com/help/toolbox/gads/bq2g2yi-15.html – Nov.
14, 2011.

[11] S. Chen and J. Montgomery, “Selection strategies for initial positions
and initial velocities in multi-optima particle swarms,” GECCO, 2011,
pp. 53–60.

[12] S. Chen and Y. Noa Vargas, “Improving the performance of particle
swarms through dimension reductions – a case study with locust
swarms,” IEEE CEC, 2010, pp. 2950–2957.

[13] L. Ingber, “Adaptive simulated annealing (ASA): Lessons learned,”
Control and Cybernetics, vol. 25, pp. 33–54, 1996.

[14] R. Brits, A. P. Engelbrecht, and F. Van den Bergh, “A niching particle
swarm optimizer,” SEAL, 2002, pp. 692–696.

[15] K. A. De Jong, An analysis of the behavior of a class of genetic adaptive
systems, PhD thesis. Dept. of Computer and Communication Sciences,
University of Michigan, 1975.

[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA: Addison Wesley, 1989.

[17] L.D. Whitley and T. Starkweather, “GENITOR II: a distributed genetic
algorithm,” J. Experimental and Theoretical Artificial Intelligence, vol.
2, pp. 189–214, 1990.

	Chen_SimulatedAnnealing2012
	Chen_Simulated2012
	Chen_SimulatedAnnealing2012
	Chen_Simulated2012
	Chen_Simulated2012CoverPage
	Chen_Simulated2012

