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Abstract—Stochastic search techniques for multi-modal search 
spaces require the ability to balance exploration with 
exploitation. Exploration is required to find the best region, and 
exploitation is required to find the best solution (i.e. the local 
optimum) within this region. Compared to hill climbing which is 
purely exploitative, simulated annealing probabilistically allows 
“backward” steps which facilitate exploration. However, the 
balance between exploration and exploitation in simulated 
annealing is biased towards exploitation – improving moves are 
always accepted, so local (greedy) search steps can occur at even 
the earliest stages of the search process. The purpose of 
“thresheld convergence” is to have these early-stage local search 
steps “held” back by a threshold function. It is hypothesized that 
early local search steps can interfere with the effectiveness of a 
search technique’s (concurrent) mechanisms for global search. 
Experiments show that the addition of thresheld convergence to 
simulated annealing can lead to significant performance 
improvements in multi-modal search spaces. 

Keywords-simulated annealing; thresheld convergence; 
niching; crowding; exploration; exploitation 

I. INTRODUCTION 

Imagine a search space with local optimum “wells” of 
similar size and shape – e.g. a sinusoid superimposed over a 
linear slope. On average, the difference between two random 
samples from two different optimum wells in this idealized 
search space will be equal to the difference between the optima 
for these two wells. Many heuristic search techniques rely on 
this correlation as they concentrate their search efforts in the 
region(s) around the best (random) solution(s) that they have so 
far discovered. 

A simple example is particle swarm optimization (PSO) [1] 
with a global best/star topology. If it is assumed that every 
particle in this swarm starts at a random initial position, the 
initial global best attractor will represent the best individual 
from a set of random positions. The reason to direct all of the 
particles to move towards and explore around this global 
attractor is the inherent belief that the best (local) optimum will 
eventually be found near it. Specifically, if the local optima 
around the initial positions have the same relative fitness as the 
initial random samples, then the concentration of search around 
the best initial position will lead the swarm towards the best 
optimum from the original set of optimum wells identified by 
the initial random positions. 

Producing a single local optimum from the best of a small 
set of random solutions is clearly a highly greedy search 
strategy [2]. In particular, PSO does not “lock on” to the initial 
global attractor – the particles follow exploratory trajectories 
and they can update the global best position if any of them 
encounters a better position. However, redirecting the search 
process towards this new global best position again implies the 
assumption that the best optimum will be found in the region 
around the best known solution in the search space. 

There are two potential problems with directing the search 
process to finding the (local) optimum nearest to the best 
known solution in the search space. First, due to sampling 
errors, the best local optimum found by optimizing all of the 
current solutions (e.g. from a population) may not be the same 
as that found by optimizing the best current solution. Second, 
there is no guarantee that the current best solution is in the 
optimum well with the global optimum. To continue 
exploration for the global optimum well, it can be useful to 
have an “even” selection of sample solutions from each newly 
explored optimum well. 

One example of an ideal sampling is if every solution 
selected during the exploration phase has the same difference 
in fitness compared to the optimum in its own optimum well. 
Since such an ideal sampling is impossible, one goal is to 
sample as “evenly” as possible. Although two random samples 
from different optimum wells will on average have a difference 
in fitness equal to the difference between their two (local) 
optima, the same cannot be said about the comparison of a 
random sample from one optimum well with a better-than-
random sample from a second optimum well. In particular, it is 
important to avoid the situation in which a better-than-random 
sample from a poor local optimum well is better than the 
expected fitness of a random sample from a good local 
optimum well. (See Fig. 1.) In this situation, it will become 
more difficult for a search process that concentrates its search 
effort around the best current solution to redirect its search 
effort from the poor optimum well to the better one. 

One method to produce a better-than-random sample is to 
perform local search. Starting from an initial position, let us 
define any step/change that leads to a position in a new 
optimum well as an explorative/global search step and any 
step/change that leads to a position in the same optimum well 
as an exploitative/local search step. Without any other 
information, the first solution from an optimum well can be 
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considered to be a random sample. Subsequently, a second 
solution in the same optimum well that is better than the first 
solution can be considered to be a better-than-random sample. 
Referring again to Fig. 1, local search which leads to better-
than-random solutions for a given optimum well can interfere 
with a search technique’s ability to perform (concurrent) global 
search to find new, more promising optimum wells. 

The goal of “thresheld convergence” is to delay local search 
and thus prevent “uneven” sampling from optimum wells. 
Convergence is “held” back as (local) search steps that are less 
than a threshold function are disallowed. As this threshold 
function decays to zero, greedier local search steps are allowed. 
Conversely, until the threshold is sufficiently small, the search 
technique is forced to focus on the global search aspect of 
finding the best region/optimum well of the search space in 
which a local optimum will eventually be found. 

This paper presents an application of thresheld convergence 
to simulated annealing. A brief background to simulated 
annealing and other applications of thresheld convergence to 
particle swarm optimization and differential evolution are 
presented in Section II. Benchmark results for simulated 
annealing are presented in Section III before thresheld 
convergence is added in Section IV. However, no improvement 
is shown, and it is hypothesized that thresheld convergence 
requires elitism which is added to simulated annealing in 
Section V. With the addition of elitism, the opportunity to have 
increased exploration as provided by thresheld convergence is 
then shown to lead to significant performance improvements in 
Section VI. The similarities and differences of thresheld 
convergence when applied to simulated annealing, particle 
swarm optimization, and differential evolution are discussed in 
Section VII before a summary is presented in Section VIII. 

II. BACKGROUND 

Simulated annealing is modelled after the physical process 
of annealing [3]. If an entity such as a molten metallic alloy is 
cooled too quickly, it can solidify into a sub-optimal crystalline 
structure. Ideally, there exists a temperature at which the 
system can escape from one optimum to a fitter optimum, but 
that escapes to less fit optima are much less likely. It should be 

noted that the inability to find such a temperature could lead to 
a given alloy mixture being discarded. Physical annealing is not 
just a process that solves a problem, but it also helps determine 
which problems (e.g. alloy mixtures) will be solved in the first 
place. Further, physical systems have a practical limitation of 
moving from one state to other nearby states, so a globally 
convex search space (in which any local optimum can move to 
the global optimum through a series of transitions to 
neighbouring optima that have monotonically improving 
fitness) is the ideal match for annealing-based optimization 
processes. 

In general, any search technique which concentrates its 
search effort around the best current solution will be most 
effective in globally convex search spaces. Since the targeted 
optimum well of these search techniques will only change if a 
better solution is found and these search techniques concentrate 
their search efforts around the best found solution, these search 
processes are most likely to follow a path through neighbouring 
optimum wells. In globally convex search spaces, there is a 
path of improving optimum wells from any solution to the 
global optimum. 

In following a path of improving optimum wells, the ability 
to accurately estimate the relative fitness of the optimum in 
each well can be beneficial. A key feature of heuristic search is 
that the fitness of an optimum well is often estimated by the 
fitness of a known solution taken from that well. To accurately 
compare the fitness of two optimum wells by comparing the 
fitness of two solutions taken from those wells, these two 
sample solutions should ideally have the same relative fitness 
within each well. By delaying local search, thresheld 
convergence helps prevent the sample representing an early 
optimum well from becoming so optimized that it interferes 
with the comparison of (random) samples from later optimum 
wells. An early local optimum which interferes with future 
exploration is the essence of premature convergence. The 
diversity of any other sample solutions (e.g. in a population) is 
wasted if they cannot redirect the search process to concentrate 
on another (more promising) optimum well. 

The first use of thresheld convergence is an application to 
particle swarm optimization [4]. In standard PSO which uses a 
ring topology [5], particle trajectories can be drawn towards the 
personal best positions of two neighbouring particles in the 
swarm. These attractions concentrate the search effort of the 
swarm around the best position(s) currently known by the 
swarm system. When velocities slow, the swarm will conduct a 
more local/exploitative search around these personal best 
position(s). Thus, when velocities are faster at the beginning of 
the search process, it can be viewed that the swarm is 
performing an explorative search and that each personal best 
position represents a promising optimum well [6]. 

In PSO, a particle does not move directly from its current 
position to a local best attractor. Similar to birds in flight, 
particles have arcing trajectories that overshoot and loop back 
to their various attractors. These non-direct trajectories are the 
basis of exploration, and the identification of a more promising 
optimum well involves finding a better solution in it than the 
current personal best position. From the previously introduced 
ideas on sampling solutions from optimum wells, this process 

 

Figure 1.  The horizontal lines represent the average fitness of a random 
sample taken from each optimum well. If an optimum well has a better-
than-random solution (see dot), this solution may be fitter than random 
samples drawn from better optimum wells. 



of exploration may be harmed if the personal best position has 
a better than random relative fitness within its optimum well. 

Local search produces better than random solutions within 
an optimum well, so a key goal of thresheld convergence is to 
delay the transition from global search to local search. In the 
previous application to PSO [4], it was first noted that the 
concentration of search within a region of the search space 
occurs when personal best attractors are similarly concentrated 
in that region. This concentration/convergence of personal best 
attractors was reduced by disallowing specific updates that 
cause personal best positions to become closer than a threshold 
function. The resulting benefits from thesheld convergence led 
to significant performance improvements for the modified PSO 
compared to standard PSO on a broad range of multi-modal 
functions [7]. 

Thresheld convergence has subsequently been applied to 
differential evolution [8]. Differential evolution (DE) [9] is 
most commonly implemented with an elitist population 
scheme. Therefore, in order for DE to dedicate search effort to 
a new optimum well, it is necessary to find a (random) sample 
from the new optimum well that is better than a target solution 
which represents another optimum well currently under 
consideration. Again, if the relative quality of the target 
solution within its optimum well is much better than random, it 
makes it less likely for a (random) candidate solution to be 
better – even if it is from an optimum well with a better local 
optimum (see Fig. 1). 

Similar to its application in PSO, the goal of applying 
thresheld convergence to DE is to delay the transition from 
global search (i.e. finding promising optimum wells) to local 
search (i.e. finding the best solution within an existing 

optimum well). Local search occurs when points near existing 
points are created, and the distance between new search points 
is affected by the length of the difference vector. By 
disallowing moves closer to the base solution than the 
threshold function, thresheld convergence delays these local 
search steps that can interfere with the effectiveness of 
concurrent global search steps. The implementation of these 
modifications suggested by thresheld convergence has also led 
to significant performance improvements in DE across a broad 
range of multi-modal functions. 

III.  SIMULATED ANNEALING 

The benchmark implementation of simulated annealing 
(SA) used in this paper is derived from the 
simulannealbnd function from the MATLAB Global 
Optimization Toolbox [10]. Using the default implementation, 
the (maximum) step length is equal to the temperature: 

 kTT 95.0*0=  (1) 

where 1000 =T  is the initial temperature and k is the iteration 
number. The actual step size is drawn using a Student’s 
distribution with T as the maximum length (see Fig. 2). For a 
given step which heads in a uniformly random direction, all 
improving moves are accepted and non-improving moves are 
accepted with a probability of 

 )}
max

exp(1/{1
T

∆
+  (2) 

where ∆ is the (positive) difference between the new and old 
objectives. The termination condition used in the benchmark 
implementation is a fixed number of function evaluations. 

The following analysis of simulated annealing with and 
without thresheld convergence focuses on two sets from the 
Black-Box Optimization Benchmarking (BBOB) functions [7]: 
set 4, multi-modal functions with adequate global structure, and 
set 5, multi-modal functions with weak global structure. 
However, for completeness and additional insight, results for 
all BBOB functions are presented. See Table I for names and 
selected attributes of the 24 functions in the BBOB problem set 
– separable (s), unimodal (u), global structure (gs). 

TABLE I. BBOB FUNCTIONS 

Set fn Function Name 
Attribute 

s u gs 

1 

1 Sphere X X X 
2 Ellipsoidal, original X X X 
3 Rastrigin X  X 
4 Büche-Rastrigin X  X 
5 Linear Slope X X  

2 

6 Attractive Sector  X  
7 Step Ellipsoidal   X 
8 Rosenbrock, original    
9 Rosenbrock, rotated    

3 

10 Ellipsoidal, rotated  X X 
11 Discus  X X 
12 Bent Cigar  X  
13 Sharp Ridge  X  
14 Different Powers  X  

4 

15 Rastrigin, rotated   X 
16 Weierstrass   X 
17 Schaffers F7   X 
18 Schaffers F7, moderately ill-conditioned   X 
19 Composite Griewank-Rosenbrock F8F2   X 

5 

20 Schwefel    
21 Gallagher’s Gaussian 101-me Peaks    
22 Gallagher’s Gaussian 21-hi Peaks    
23 Katsuura    
24 Lunacek bi-Rastrigin    

 

 
Figure 2.  Step sizes are drawn from a Student’s distribution in the 
benchmark implementation of simulated annealing (baseSA). 



To be consistent with previous work (e.g. [4][11][12]), the 
following experiments perform 25 independent trials on each 
function (5 trials on each of the first 5 instances) with a fixed 
limit of 5000*D function evaluations (FEs). All experiments in 
this paper use D = 20 dimensions which leads to a total of 
100,000 FEs. To facilitate the addition of thresheld 
convergence, we re-implemented MATLAB’s version of 
simulated annealing, and the results (percent difference, %-diff 
= (b-a)/b) in Table II show that our new version called baseSA 
(a) compares well with MATLAB’s version of simulated 
annealing called simple SA (b) when reannealing is disabled. 

IV. SIMULATED ANNEALING WITH THRESHELD 

CONVERGENCE 

The threshold function (3) developed in [4] has two 
parameters: α represents the initial minimum distance as a ratio 
of the search space diagonal and γ represents the decay factor. 
For γ = 1, the threshold decays with a linear slope as the 

iteration k goes from 0 to the maximum number of allowed 
function evaluations n. 

 ( ) [ ]( )γα nkndiagonalthreshold /** −=  (3) 

To simplify the generation of new solutions, the threshold 
is applied to each dimension (and the diagonal is replaced with 
the range for that dimension). Specifically, compared to the 
student function in Fig. 2, the distribution is “squeezed” at the 
edges to accommodate the gap created by the threshold in the 
middle (see Fig. 3). When applied to each dimension, this gap 
leads to a hypercube “tabu” region as opposed to the 
hypersphere region previously used in PSO [4] and DE [8]. 

The effects of thresheld convergence on simulated 
annealing were examined over a range of values for α = 0.001, 
0.005, 0.01, 0.05, and 0.1 using γ = 2. The results in Table III 
show the percent difference ((b-a)/b) in mean performance 
between baseSA (b) and its performance with thresheld 
convergence (a). A positive percent difference represents an 
improvement with thresheld convergence, and the bolded 
values highlight the best value of α for each function. 

The larger step sizes taken by simulated annealing as 
caused by the effects of thresheld convergence (see Fig. 3) lead 
to some improvements on several unimodal functions (e.g. 
slope – BBOB fn 5). When the optimal solution is very far 
from the current solution (e.g. in the corner of the search 
space), increased exploration can lead to improved 
performance. However, on the targeted multi-modal functions 
(BBOB fn 15-24), thresheld convergence has negligible (and 
generally negative) effects. Increased exploration has not lead 
to improved performance on these functions. 

TABLE II.  BENCHMARK SIMULATED ANNEALING RESULTS 

Set fn 
simple SA baseSA 

%-diff t-test 
mean stddev mean stddev 

1 

1 4.02e+1 1.76e+1 3.46e+1 6.69e+0 14.0% 0.07 
2 3.28e+5 2.38e+5 2.60e+4 6.81e+3 92.1% 0.00 
3 3.17e+2 8.90e+1 2.40e+2 3.02e+1 24.4% 0.00 
4 3.84e+2 7.59e+1 2.83e+2 2.36e+1 26.2% 0.00 
5 1.46e+2 4.10e+1 6.69e+1 1.65e+1 54.1% 0.00 

2 

6 2.29e+4 3.22e+4 3.30e+2 4.85e+2 98.6% 0.00 
7 1.42e+2 6.02e+1 7.44e+1 1.44e+1 47.7% 0.00 
8 5.83e+3 3.97e+3 4.64e+2 9.51e+1 92.0% 0.00 
9 1.10e+2 8.87e+0 1.17e+2 1.25e+1 -6.4% 0.01 

3 

10 3.06e+5 1.89e+5 1.96e+4 1.58e+4 93.6% 0.00 
11 2.20e+2 8.51e+1 6.67e+1 1.02e+1 69.7% 0.00 
12 3.00e+7 2.01e+7 1.44e+5 9.48e+4 99.5% 0.00 
13 1.00e+3 2.27e+2 7.32e+2 9.52e+1 26.9% 0.00 
14 2.17e+1 6.39e+0 1.07e+1 1.87e+0 50.7% 0.00 

4 

15 3.40e+2 1.04e+2 2.37e+2 2.16e+1 30.1% 0.00 
16 2.14e+1 6.37e+0 1.67e+1 2.59e+0 21.6% 0.00 
17 1.25e+1 3.28e+0 6.97e+0 6.09e−1 44.0% 0.00 
18 3.56e+1 9.64e+0 2.31e+1 2.37e+0 35.1% 0.00 
19 2.50e−1 0.00e+0 2.50e−1 0.00e+0 0.0% 0.00 

5 

20 1.16e+2 2.12e+2 3.21e+0 1.22e−1 97.2% 0.01 
21 7.21e+1 1.23e+1 5.06e+1 6.96e+0 29.9% 0.00 
22 7.70e+1 6.89e+0 5.66e+1 1.13e+1 26.5% 0.00 
23 2.23e+0 7.81e−1 2.00e+0 2.56e−1 10.3% 0.08 
24 2.22e+2 4.33e+1 2.09e+2 1.15e+1 5.8% 0.08 

 

 
Figure 3.  Step sizes are drawn from a Student’s distribution with a gap 
width specified by the threshold function. 

TABLE III.  RESULTS WITH THRESHELD CONVERGENCE 

Set fn 
α 

0.001 0.005 0.01 0.05 0.1 

1 

1 -1.9% 2.7% -2.7% -12.0% -15.2% 
2 16.8% -9.6% -50.2% -92.4% -170.8% 
3 -0.8% -2.5% 0.7% 1.5% 1.8% 
4 0.1% -1.2% 1.5% -3.3% -4.2% 
5 8.3% 7.3% 6.8% 10.3% 32.2% 

2 

6 72.3% 80.5% 78.9% 70.7% 75.3% 
7 3.2% 3.7% 6.8% 6.7% 0.3% 
8 25.5% 49.1% 54.0% 48.9% 43.5% 
9 -1.4% -5.4% -5.5% -4.8% -5.2% 

3 

10 23.8% 19.2% -16.8% -51.1% -83.0% 
11 0.0% -4.1% -7.0% -19.2% -16.2% 
12 94.0% 94.9% 89.0% 46.1% 16.5% 
13 0.7% 6.8% 25.8% 31.1% 26.1% 
14 1.7% 1.2% 4.0% -9.7% -14.9% 

4 

15 -0.7% 2.3% 2.7% 0.3% -3.9% 
16 -4.3% -2.4% -5.3% -5.1% -6.2% 
17 1.6% 0.5% -0.2% -4.7% -3.9% 
18 -0.2% 2.1% -0.8% -6.8% -5.4% 
19 0.0% 0.0% 0.0% 0.0% 0.0% 

5 

20 1.4% 5.1% 4.8% 4.1% 3.3% 
21 1.3% -0.7% -3.3% -3.0% -8.0% 
22 -5.5% -5.7% -7.3% -5.1% -7.5% 
23 5.1% -0.2% 0.7% -1.9% -9.0% 
24 -1.2% 1.9% -1.6% -3.6% -9.0% 

 



V. SIMULATED ANNEALING WITH ELITISM  

The benchmark implementation of simulated annealing 
does not include elitism. Like physical annealing, there is no 
memory in the system – there is only the current state. In this 
situation, the risks of exploration are much higher. Every 
attempt to find a better optimum well has an inherent risk of 
leading to a worse optimum well. Without elitism, the ability to 
backtrack these steps is not guaranteed, so extra caution should 
be exercised before large exploratory steps are taken. 

In simulated annealing, concurrent local search steps effect 
a form of caution by reducing the probability of large 
exploratory steps. Specifically, local search steps which lead to 
better-than-random samples of the current optimum well will 
make it more difficult to escape from the current optimum well 
to explore another (see Fig. 1). Without elitism, this lower level 
of exploration in baseSA often leads to better results on the 
multi-modal functions (e.g. BBOB fn 15-24). The idea of 
“even sampling” presented in Section I implies picking the best 
from a set of samples, and the current implementation of 
simulated annealing does not support this assumption. 

Elitism can be implemented in simulated annealing by 
resetting the position to the best known position every r 
iterations. In the limits, simulated annealing becomes hill 
climbing when r = 1 and elitism has no effect when r is equal 
to the total number of function evaluations (100,000). In Table 
IV, the effects of elitism for r = 1, 10, 100, 1000, and 10000 are 
shown as the percent difference ((b-a)/b) between baseSA (b) 
and baseSA with elitism (a). 

In general, the results for simulated annealing improve as 
the frequency of resets increases. In fact, the best overall results 
occur with a reset after every iteration – which was originally 
thought to be the equivalent to hill climbing. However, the 

difference between “simulated annealing” which never accepts 
a worsening move and typical implementations of hill climbing 
is the variable step size. Hill climbing tends to imply a greedy, 
local search whereas a decreasing step size in baseSA (further) 
supports a transition from exploration/global search to 
exploitation/local search. 

VI. SIMULATED ANNEALING WITH ELITISM AND 

THRESHELD CONVERGENCE 

Similar to the experiments in Section IV, thresheld 
convergence has been applied to baseSA with elitism. Building 
from the best results in Section V with a reset after every 
iteration (i.e. never accepting a worse move), the results in 
Table V show the percent difference ((b-a)/b) between baseSA 
with elitism (b) and simulated annealing with elitism and 
thresheld convergence (a). The parameters for the threshold 
function (3) are α = 0.001, 0.005, 0.01, 0.05, and 0.1 and γ = 2. 

Exploration for new optimum wells involves the risk of 
ending up in a worse optimum well. However, this risk is 
greatly reduced with elitism since the system can always return 
from the worse optimum well back to the best-known optimum 
well. As seen in Table IV, the performance of the benchmark 
implementation of simulated annealing (baseSA) improves 
with elitism which increases the amount of exploitation in the 
system. With this increase in exploitation, the performance is 
further improved by an increase in exploration as effected by 
the addition of thresheld convergence. Across the full set of 
BBOB functions, the best result with thresheld convergence 
delivers statistically significant improvements (as indicated by 
a t-test with p < 0.05) of at least 10% on 18 of 24 functions (see 
Table VI). 

The development of simulated annealing with thresheld 
convergence is now complete, so comparisons with more 

TABLE IV:  RESULTS WITH ELITISM  

Set fn 
r 

10,000 1,000 100 10 1 

1 

1 8.3% 31.2% 73.4% 95.4% 99.2% 
2 1.2% -8.1% 0.7% -9.0% -1.6% 
3 3.3% 8.0% 26.2% 36.5% 32.4% 
4 3.8% 11.5% 25.5% 32.5% 27.6% 
5 13.8% 10.4% 8.7% 47.8% 75.9% 

2 

6 -3.1% 56.6% 64.9% 78.0% 73.2% 
7 2.9% 28.1% 57.5% 71.9% 75.6% 
8 14.9% 41.6% 68.3% 72.7% 76.4% 
9 -0.5% 6.1% 61.9% 85.9% 88.4% 

3 

10 -2.3% -3.6% -0.7% 1.1% -7.6% 
11 13.3% 47.6% 56.2% 57.3% 55.4% 
12 -1.0% -3.2% -18.9% 4.6% 18.8% 
13 3.0% 16.8% 52.7% 78.2% 80.6% 
14 9.3% 30.4% 68.8% 92.9% 98.2% 

4 

15 0.0% 9.7% 22.8% 40.7% 37.6% 
16 -4.6% -0.8% 12.3% 26.9% 26.5% 
17 1.3% 13.9% 33.3% 50.8% 53.1% 
18 2.8% 7.8% 33.7% 55.5% 51.6% 
19 0.0% 0.0% 0.1% 0.1% 1.2% 

5 

20 3.7% 7.5% 20.8% 24.1% 20.8% 
21 2.6% 27.9% 68.5% 80.4% 77.4% 
22 -1.6% 15.6% 61.5% 80.2% 87.1% 
23 -3.7% 5.9% 2.3% 10.9% 21.9% 
24 2.5% 6.2% 20.7% 34.2% 43.3% 

 

TABLE V: RESULTS WITH ELITISM AND THRESHELD CONVERGENCE 

Set fn 
α 

0.001 0.005 0.01 0.05 0.1 

1 

1 88.5% 93.6% 91.7% 78.4% 69.7% 
2 4.0% -16.8% -43.7% -128.8% -135.2% 
3 11.6% 26.6% 33.8% 32.2% 27.4% 
4 9.9% 17.5% 21.3% 13.8% 15.3% 
5 -16.7% 65.1% 86.1% 100.0% 100.0% 

2 

6 59.3% 89.8% 94.6% 89.0% 90.8% 
7 21.5% 39.5% 46.0% 9.9% 5.0% 
8 15.8% 14.3% 41.5% 25.1% 40.7% 
9 -11.6% -75.5% -88.3% -171.6% -354.8% 

3 

10 28.0% 16.4% 10.0% -47.3% -76.0% 
11 0.5% 12.5% 15.8% 22.3% 28.6% 
12 92.4% 93.4% 88.9% 46.9% 23.4% 
13 58.8% 81.8% 78.9% 61.2% 60.4% 
14 79.6% 86.4% 83.0% 70.1% 65.7% 

4 

15 7.2% 21.5% 33.7% 26.6% 31.3% 
16 17.5% 38.4% 37.5% 47.1% 42.1% 
17 -10.0% 11.9% 25.8% 38.1% 38.8% 
18 0.6% 17.3% 29.1% 35.2% 19.7% 
19 -1.1% -1.1% -1.2% -1.2% -1.3% 

5 

20 6.0% 13.2% 19.0% 34.8% 36.3% 
21 31.2% 26.3% 33.3% 11.9% 51.6% 
22 5.5% -3.6% 8.7% -58.1% 3.7% 
23 19.9% -0.9% -2.7% -14.7% -21.6% 
24 -2.6% 5.3% 8.9% -10.2% -16.8% 

 



sophisticated versions of simulated annealing are now 
meaningful. Specifically, MATLAB’s simulannealbnd 
function [10] implements adaptive simulated annealing based 
on [13]. In Table VII, the best result with thresheld 
convergence is compared against MATLAB’s implementation 
of simulated annealing.  

The comparisons show that reannealing and adaptive step 
sizes can be very effective at improving exploitation (e.g. 
unimodal functions BBOB fn 10-14). However, exploitation is 
easily achieved by local optimization (e.g. gradient descent), so 
the more difficult task is usually exploration. The enhanced 
exploration provided by thresheld convergence is demonstrated 
on the multi-modal functions (e.g. BBOB fn 15-24) where 
statistically significant improvements (as indicated by a t-test 
with p < 0.05) of at least 10% are achieved on 8 of the 10 
functions in BBOB sets 4 and 5. 

VII.  DISCUSSION 

Thresheld convergence has similarities to niching (e.g. 
[14]) and crowding [15]. A key difference is that thresheld 
convergence affects how new candidate solutions are created as 
opposed to which candidate solutions are kept (e.g. as part of a 
population). One advantage of this difference is efficiency – 
threheld convergence can be implemented with a single 
distance measurement [4][8] while niching and crowding can 
use up to p (the population size) distance measurements [15]. A 
second advantage is the ability to apply thresheld convergence 
to non-population-based search techniques such as simulated 
annealing. 

The current application with simulated annealing provides 
new insights into the operation of thresheld convergence that 
were not possible with previous implementations [4][8]. 
Specifically, the founding principle of “even sampling” 

involves an implicit use of elitism. Without elitism, the risks of 
exploration become much greater – any attempt to find a better 
optimum well may sacrifice the opportunity to exploit the 
current optimum well. The results in Section IV show that the 
increase in exploration caused by thresheld convergence often 
leads to worse results in standard simulated annealing which 
does not have elitism. 

The limits on exploration caused by a lack of elitism can 
also be seen in genetic algorithms (GAs) with generational 
replacement schemes [16]. Compared to steady-state GAs [17], 
generational GAs often perform better with smaller crossover 
rates. This reduced rate of crossover can be viewed as a form of 
elitism since it increases the chance that (good) solutions can 
pass unchanged from one generation to the next. 

In simulated annealing, it is possible to leave a good 
optimum well for a worse one. Without elitism to provide a 
guarantee that these “disruptive” search steps can be undone, it 
becomes important to limit these steps. Small local search steps 
which improve the fitness of the current location also reduce 
the probability that large exploratory steps (which can cause 
large gains in the evaluation function) will be accepted. To 
limit “disruption” also limits exploration, and one of the key 
goals of thresheld convergence is to reduce the interference 
between the mechanisms of exploration and exploitation that 
can occur when these processes operate concurrently.  

It should be noted that the application of thresheld 
convergence in simulated annealing completely eliminates all 
(local) search steps that are smaller than the threshold function. 
This differs from the first implementation of thresheld 
convergence to particle swarm optimization [4]. In the PSO 
implementation, the threshold function prevented a particle 
from updating its pbest position to be within the threshold from 

TABLE VI : SUMMARY OF RESULTS 

Set fn 
with elitism best result 

α %-diff t-test 
mean stddev mean stddev 

1 

1 2.90e−1 2.22e−1 1.87e−2 9.19e−3 0.005 93.6% 0.00 
2 2.64e+4 6.30e+3 2.54e+4 9.58e+3 0.001 4.0% 0.33 
3 1.62e+2 4.17e+1 1.07e+2 2.15e+1 0.01 33.8% 0.00 
4 2.05e+2 5.54e+1 1.61e+2 4.77e+1 0.01 21.3% 0.00 
5 1.61e+1 6.06e+0 0.00e+0 0.00e+0 0.1 100.0% 0.00 

2 

6 8.86e+1 1.15e+2 4.81e+0 7.61e+0 0.01 94.6% 0.00 
7 1.81e+1 8.44e+0 9.79e+0 5.60e+0 0.01 46.0% 0.00 
8 1.09e+2 4.07e+1 6.40e+1 5.84e+1 0.01 41.5% 0.00 
9 1.36e+1 4.87e+0 1.52e+1 1.63e+1 0.001 -11.6% 0.32 

3 

10 2.11e+4 1.72e+4 1.52e+4 9.78e+3 0.001 28.0% 0.07 
11 2.98e+1 7.08e+0 2.13e+1 9.45e+0 0.1 28.6% 0.00 
12 1.17e+5 8.04e+4 7.73e+3 3.20e+3 0.005 93.4% 0.00 
13 1.42e+2 5.32e+1 2.60e+1 8.67e+0 0.005 81.8% 0.00 
14 1.97e−1 9.91e−2 2.68e−2 7.54e−3 0.005 86.4% 0.00 

4 

15 1.48e+2 2.94e+1 9.82e+1 2.56e+1 0.01 33.7% 0.00 
16 1.23e+1 2.11e+0 6.51e+0 1.90e+0 0.05 47.1% 0.00 
17 3.27e+0 9.94e−1 2.00e+0 1.14e+0 0.1 38.8% 0.00 
18 1.12e+1 3.95e+0 7.25e+0 3.50e+0 0.05 35.2% 0.00 
19 2.47e−1 2.59e−3 2.50e−1 8.37e−4 0.001 -1.1% 0.00 

5 

20 2.54e+0 3.96e−1 1.62e+0 3.47e−1 0.1 36.3% 0.00 
21 1.15e+1 9.97e+0 5.55e+0 5.45e+0 0.1 51.6% 0.01 
22 7.32e+0 6.02e+0 6.68e+0 5.94e+0 0.01 8.7% 0.35 
23 1.56e+0 2.79e−1 1.25e+0 3.07e−1 0.001 19.9% 0.00 
24 1.18e+2 2.15e+1 1.08e+2 2.71e+1 0.01 8.9% 0.07 

 

TABLE VII:  RESULTS VS. MATLAB’ S SIMULATED ANNEALING 

Set fn 
MATLAB SA best result 

α %-diff t-test 
mean stddev mean stddev 

1 

1 6.93e+0 2.04e+0 1.87e−2 9.19e−3 0.005 99.7% 0.00
2 2.65e+3 1.39e+3 2.54e+4 9.58e+3 0.001 -855.4% 0.00
3 1.65e+2 6.17e+1 1.07e+2 2.15e+1 0.01 35.1% 0.00
4 2.31e+2 6.16e+1 1.61e+2 4.77e+1 0.01 30.1% 0.00
5 6.49e+1 8.87e+0 0.00e+0 0.00e+0 0.1 100.0% 0.00

2 

6 1.10e−1 7.89e−2 4.81e+0 7.61e+0 0.01 -4270.2% 0.00
7 1.09e+1 4.19e+0 9.79e+0 5.60e+0 0.01 9.9% 0.22
8 2.82e+1 2.65e+1 6.40e+1 5.84e+1 0.01 -126.9% 0.00
9 7.34e+0 4.99e+0 1.52e+1 1.63e+1 0.001 -107.3% 0.01

3 

10 2.70e+3 1.46e+3 1.52e+4 9.78e+3 0.001 -462.8% 0.00
11 6.74e+1 2.65e+1 2.13e+1 9.45e+0 0.1 68.4% 0.00
12 4.52e+0 7.98e+0 7.73e+3 3.20e+3 0.005 -1.7e+5% 0.00
13 4.88e+0 5.47e+0 2.60e+1 8.67e+0 0.005 -431.6% 0.00
14 7.31e+0 1.21e+0 2.68e−2 7.54e−3 0.005 99.6% 0.00

4 

15 1.84e+2 6.79e+1 9.82e+1 2.56e+1 0.01 46.6% 0.00
16 8.30e+0 2.04e+0 6.51e+0 1.90e+0 0.05 21.6% 0.00
17 6.55e+0 7.63e−1 2.00e+0 1.14e+0 0.1 69.5% 0.00
18 1.69e+1 3.11e+0 7.25e+0 3.50e+0 0.05 57.0% 0.00
19 2.50e−1 0.00e+0 2.50e−1 8.37e−4 0.001 0.2% 0.00

5 

20 2.23e+0 1.63e-1 1.62e+0 3.47e−1 0.1 27.2% 0.00
21 2.64e+1 1.07e+1 5.55e+0 5.45e+0 0.1 79.0% 0.00
22 3.70e+1 1.47e+1 6.68e+0 5.94e+0 0.01 81.9% 0.00
23 8.51e−1 2.18e−1 1.25e+0 3.07e−1 0.001 -47.1% 0.00
24 1.56e+2 5.35e+1 1.08e+2 2.71e+1 0.01 31.0% 0.00

 



its lbest position. However, positions within the threshold could 
still be evaluated and stored (in the lbest position). Since this 
PSO implementation allowed local search throughout the 
search process, it could still converge with relatively large 
values for α. Applications of thresheld convergence that 
completely eliminate local search will likely require smaller 
values for α and a truncated threshold function. 

More than α, the key “parameter” in thresheld convergence 
is the required “gap” between new sample solutions. The 
threshold function (3) is just a preliminary and relatively crude 
means of adapting the threshold. The development of adaptive 
threshold functions is a promising area for future research. 

VIII.  SUMMARY  

Many heuristic search techniques have concurrent 
processes of exploration and exploitation.  Since exploration 
often depends on estimating the quality of a new region of the 
search space based on a few random samples, it is important to 
evaluate these samples fairly.  In particular, it is not reasonable 
to compare a random solution from one region of the search 
space with a locally optimized solution from another.  
Concurrent exploitation can thus interfere with exploration.  
The goal of thresheld convergence is to help separate the 
processes of exploration and exploitation, and its addition has 
been successful in search techniques like simulated annealing, 
particle swarm optimization, and differential evolution. 
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