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Abstract—Stochastic search techniques for multi-modal sealnc Producing a single local optimum from the best shall

spaces require the ability to balance exploration ith set of random solutions is clearly a highly greesbarch
exploitation. Exploration is required to find the best region, and  strategy [2]. In particular, PSO does not “lock ¢a’the initial
exploitation is required to find the best solution(i.e. the local global attractor — the particles follow exploratdrgjectories
optimum) within this region. Compared to hill climbing which is and they can update the global best position if ahthem
purely exploitative, simulated annealing probabilisically allows encounters a better position. However, redirectirg search
“backward” steps which facilitate exploration. However, the process towards this new global best position aigagties the
balance between exploration and exploitation in sioated assumption that the best optimum will be foundhie tegion

annealing is biased towards exploitation — improvig moves are around the best known solution in the search space.
always accepted, so local (greedy) search steps @atur at even

the earliest stages of the search process. The poge of There are two potential problems with directing sisarch
“thresheld convergence” is to have these early-stagocal search process to finding the (local) optimum nearest he best
steps “held” back by a threshold function. It is hyothesized that  known solution in the search space. First, dueampiing
early local search steps can interfere with the edttiveness of a  errors, the best local optimum found by optimizaiof the
search technique’s (concurrent) mechanisms for glah search.  syrrent solutions (e.g. from a population) may betthe same
Experiments show. that the addition of thresheld covergence 1o ¢ that found by optimizing the best current sohutiSecond,
simulated a”r.‘ea"”l‘?’. Ca(;‘ | lead hto significant - perfor@nce  ere is no guarantee that the current best soligian the
improvements in multi-modal search spaces. optimum well with the global optimum. To continue
exploration for the global optimum well, it can beeful to
have an “even” selection of sample solutions fr@aohenewly
explored optimum well.

Keywords-smulated annealing; threshed convergence;

niching; crowding; exploration; exploitation
.~ INTRODUCTION One example of an ideal sampling is if every sotuti

Imagine a search space with local optimum “well$” o selected during the exploration phase has the skiiieeence
similar size and shape — e.g. a sinusoid superietposer a in fitness compared to the optimum in its own opiimwell.
linear slope. On average, the difference betweenramdom  Since such an ideal sampling is impossible, ond o&o
samples from two different optimum wells in thissédized sample as “evenly” as possible. Although two randamples
search space will be equal to the difference betwee optima  from different optimum wells will on average havdifierence
for these two wells. Many heuristic search techejtely on in fitness equal to the difference between theio tflocal)
this correlation as they concentrate their seaffrt® in the  optima, the same cannot be said about the compads@
region(s) around the best (random) solution(s)tthey have so  random sample from one optimum well with a bethemt
far discovered. random sample from a second optimum well. In paldi it is
important to avoid the situation in which a bettemn-random
sample from a poor local optimum well is better nththe
expected fitness of a random sample from a goodl loc
optimum well. (See Fig. 1.) In this situation, iillwbecome
more difficult for a search process that conceafdtls search
effort around the best current solution to rediréstsearch
effort from the poor optimum well to the better one

A simple example is particle swarm optimization (5§ $1]
with a global best/star topology. If it is assuntkdt every
particle in this swarm starts at a random initiakigion, the
initial global best attractor will represent thesbéndividual
from a set of random positions. The reason to da#of the
particles to move towards and explore around thabad
attractor is the inherent belief that the bestaglpoptimum will
eventually be found near it. Specifically, if thecal optima One method to produce a better-than-random sarapie i
around the initial positions have the same reldtiness as the perform local search. Starting from an initial piosi, let us
initial random samples, then the concentratioreafch around define any step/change that leads to a positiora inew
the best initial position will lead the swarm todarthe best optimum well as an explorative/global search stag any
optimum from the original set of optimum wells itiied by  step/change that leads to a position in the sartimam well
the initial random positions. as an exploitative/local search step. Without arthiero

information, the first solution from an optimum Wwebn be



Figure 1. The horizontal lines represent the ayeifitness of a random
sample taken from each optimum well. If an optimwell has a better-
than-random solution (see dot), this solution mayfitter than random
samples drawn from better optimum wells.

considered to be a random sample. Subsequentlgcend
solution in the same optimum well that is bettenthhe first
solution can be considered to be a better-thanerargsample.
Referring again to Fig. 1, local search which letmbetter-
than-random solutions for a given optimum well aaterfere
with a search technique’s ability to perform (cament) global
search to find new, more promising optimum wells.

The goal of “thresheld convergence” is to delapl@earch
and thus prevent “uneven” sampling from optimum Isvel
Convergence is “held” back as (local) search diegisare less
than a threshold function are disallowed. As ttiseghold
function decays to zero, greedier local searchssiep allowed.
Conversely, until the threshold is sufficiently dinéhe search
technique is forced to focus on the global searspeet of
finding the best region/optimum well of the seaspgace in
which a local optimum will eventually be found.

This paper presents an application of thresheldergence
to simulated annealing. A brief background to sated
annealing and other applications of thresheld ageree to
particle swarm optimization and differential evabat are
presented in Section Il. Benchmark results for tabed
annealing are presented in Section Il before tees
convergence is added in Section IV. However, naavgment
is shown, and it is hypothesized that thresheldvexgence
requires elitism which is added to simulated aringain
Section V. With the addition of elitism, the oppaority to have
increased exploration as provided by thresheld egence is
then shown to lead to significant performance inapnoents in
Section VI. The similarities and differences of esineld
convergence when applied to simulated annealingticlea
swarm optimization, and differential evolution aiscussed in
Section VIl before a summary is presented in Sedfiidl.

II.  BACKGROUND

Simulated annealing is modelled after the phygicatess
of annealing [3]. If an entity such as a molten atliet alloy is
cooled too quickly, it can solidify into a sub-opal crystalline
structure. ldeally, there exists a temperature hictw the
system can escape from one optimum to a fittemapti, but
that escapes to less fit optima are much lesgylikeshould be

noted that the inability to find such a temperattweld lead to
a given alloy mixture being discarded. Physicaleating is not
just a process that solves a problem, but it a¢tpshdetermine
which problems (e.g. alloy mixtures) will be solvedthe first

place. Further, physical systems have a praciicetiation of

moving from one state to other nearby states, gtobally

convex search space (in which any local optimummawne to
the global optimum through a series of transitioms
neighbouring optima that have monotonically impngvi
fitness) is the ideal match for annealing-basednopation

processes.

In general, any search technique which concentritdes
search effort around the best current solution \wél most
effective in globally convex search spaces. Siheetargeted
optimum well of these search techniques will ortiarge if a
better solution is found and these search techaigaecentrate
their search efforts around the best found solutivese search
processes are most likely to follow a path throogighbouring
optimum wells. In globally convex search spacesydhs a
path of improving optimum wells from any solution the
global optimum.

In following a path of improving optimum wells, tlaility
to accurately estimate the relative fithess of dpimum in
each well can be beneficial. A key feature of hetiarisearch is
that the fitness of an optimum well is often estedaby the
fitness of a known solution taken from that welh dccurately
compare the fitness of two optimum wells by compgrihe
fitness of two solutions taken from those wellsesth two
sample solutions should ideally have the sameivelditness
within each well. By delaying local search, thrédhe
convergence helps prevent the sample representingady
optimum well from becoming so optimized that iterferes
with the comparison of (random) samples from lajgimum
wells. An early local optimum which interferes withture
exploration is the essence of premature convergehbe
diversity of any other sample solutions (e.g. imopulation) is
wasted if they cannot redirect the search proaessricentrate
on another (more promising) optimum well.

The first use of thresheld convergence is an agiic to
particle swarm optimization [4]. In standard PSQahtuses a
ring topology [5], particle trajectories can bewnatowards the
personal best positions of two neighbouring paticin the
swarm. These attractions concentrate the searoht eff the
swarm around the best position(s) currently known tioe
swarm system. When velocities slow, the swarm ecafiduct a
more local/exploitative search around these pefstest
position(s). Thus, when velocities are faster atliaginning of
the search process, it can be viewed that the swarm
performing an explorative search and that eachopatsbest
position represents a promising optimum well [6].

In PSO, a particle does not move directly fromcitisrent
position to a local best attractor. Similar to biroh flight,
particles have arcing trajectories that overshook laop back
to their various attractors. These non-direct ttajges are the
basis of exploration, and the identification of arenpromising
optimum well involves finding a better solution iinthan the
current personal best position. From the previousipduced
ideas on sampling solutions from optimum wellss thiocess



TABLE I. BBOB FUNCTIONS

Set fn Function Name __Atribute
S u gs
1 Sphere X X X
2 Ellipsoidal, original X X X
1 3 Rastrigin X X
4 Biiche-Rastrigin X X
5 Linear Slope X X
6 Attractive Sector X
2 7 Step Ellipsoidal X
8 Rosenbrock, original
9 Rosenbrock, rotated
10 Ellipsoidal, rotated X X
11 Discus X X
3 12 Bent Cigar X
13 Sharp Ridge X
14 Different Powers X
15 Rastrigin, rotated X
16 Weierstrass X
4 17 Schaffers F7 X
18  Schaffers F7, moderately ill-conditioned X
19 Composite Griewank-Rosenbrock F8F2 X
20 Schwefel
21 Gallagher’s Gaussian 101-me Peaks
5 22 Gallagher’s Gaussian 21-hi Peaks
23 Katsuura
24 Lunacek bi-Rastrigin

of exploration may be harmed if the personal besttion has
a better than random relative fitness within itiropm well.

Local search produces better than random solutigitsn
an optimum well, so a key goal of thresheld consrog is to
delay the transition from global search to locairek. In the
previous application to PSO [4], it was first notédht the
concentration of search within a region of the deaspace
occurs when personal best attractors are simitamhcentrated
in that region. This concentration/convergenceasspnal best
attractors was reduced by disallowing specific tgslahat
cause personal best positions to become closeattfareshold
function. The resulting benefits from thesheld amgence led
to significant performance improvements for the ified PSO
compared to standard PSO on a broad range of madal
functions [7].

optimum well). Local search occurs when points resasting
points are created, and the distance between rashspoints
is affected by the length of the difference vect&®y
disallowing moves closer to the base solution thhe
threshold function, thresheld convergence delagsethlocal
search steps that can interfere with the effecésen of
concurrent global search steps. The implementaifothese
modifications suggested by thresheld convergensealsa led
to significant performance improvements in DE asr@adroad
range of multi-modal functions.

I1l.  SIMULATED ANNEALING

The benchmark implementation of simulated annealing
(SA) used in this paper is derived from the
si mul anneal bnd function from the MATLAB Global
Optimization Toolbox [10]. Using the default implemation,
the (maximum) step length is equal to the tempegatu

T=T,* 095 (1)

whereT, = 100is the initial temperature arldis the iteration

number. The actual step size is drawn using a Stigde
distribution withT as the maximum length (see Fig. 2). For a
given step which heads in a uniformly random dicectall
improving moves are accepted and non-improving ma@re
accepted with a probability of

141+ eXpHmixT )} (2)

whereA is the (positive) difference between the new alad o
objectives. The termination condition used in tlemdhmark
implementation is a fixed number of function evéilas.

The following analysis of simulated annealing wéhd
without thresheld convergence focuses on two gserm the
Black-Box Optimization Benchmarking (BBOB) functmifi/]:
set 4, multi-modal functions with adequate gloltalcture, and
set 5, multi-modal functions with weak global sture.
However, for completeness and additional insigésults for
all BBOB functions are presented. See Table | faimes and

Thresheld convergence has subsequently been applied selected attributes of the 24 functions in the BB@&blem set

differential evolution [8]. Differential evolutio{DE) [9] is
most commonly implemented with an elitist populatio
scheme. Therefore, in order for DE to dedicatecbeaffort to
a new optimum well, it is necessary to find a (@myl sample
from the new optimum well that is better than @eétrsolution
which represents another optimum well currently asnd
consideration. Again, if the relative quality ofethtarget
solution within its optimum well is much better theandom, it
makes it less likely for a (random) candidate sotutto be
better — even if it is from an optimum well withbatter local
optimum (see Fig. 1).

Similar to its application in PSO, the goal of ajppud
thresheld convergence to DE is to delay the triansifrom
global search (i.e. finding promising optimum wglls local
search (i.e. finding the best solution within anistxg

— separable (s), unimodal (u), global structuré. (gs

N

Figure 2. Step sizes are drawn from a Students¢ribition in the
benchmark implementation of simulated annealing€5#).




TABLEII. BENCHMARK SIMULATED ANNEALING RESULTS TABLE IlI. RESULTS WITHTHRESHELDCONVERGENCE

simple SA baseSA . a
Set M  ean  siddev mean  stadev i Etest Set M —G501  0.005 0.01 0.05 01
1 4.02e+1 1.76e+1 3.46e+1 6.69e+0 14.04 007 1 19%  27%  2.7%  12.0%  -15.2%
2 3.28e+5 2.38e+5 2.60e+4 6.81e+3 92.1% 0.00 2 16.8%  -9.6%  -502%  -92.4% -170.8%
1 3 3.17e+2 8.90e+l 2.40e+2 3.02e+1 24.4% 0.00 13 08%  25% 0.7% 15%  1.8%
4 384e+2 7.59e+1 2.83e+2 2.36e+l 26.2% 0.00 4 01%  -1.2%  15%  -33%  -4.2%
5  1.46e+2 4.10e+1 6.69e+1 1.65e+1 54.1% 0.00 5 8.3% 7.3% 6.8%  10.3% 32.2%
6 2.20e+4 3.22e+4 3.30e+2 4.85e+2 98.6% 0.00 6 723%  805%  78.9%  70.7% _ 75.3%
, 7 1A42e+26.02e+l 7.4de+rl Ldde+l 47.7% 000 , 7 3.2% 37%  6.8% 6.7% 0.3%
8  5.83e+3 3.97e+3 4.64e+2 951le+l 92.0% 0.00 8 255%  49.1% 54.0%  48.9%  43.5%
9 1.10e+2 8.87e+0 1.17e+2 1.25e+1 6.4% 001 9 14%  -54%  55%  -48%  -52%
10 3.06e+5 1.89e+5 1.96e+4 158e+4 93.6% 0.00 10 238%  19.2%  -168%  51.1%  -83.0%
11 2.20e+2 8.5le+l 6.67e+1 1.02e+1 69.7% 0.00 11 00%  -41%  -7.0%  -19.2%  -16.2%
3 12 3.00e+7 2.01e+7 1.44e+5 9.48e+d 99.5% 0.00 3 12 940% 949%  89.0%  46.1%  16.5%
13 1.00e+3 2.27e+2 7.32e+2 9.52e+1 26.9% 0.00 13 0.7% 6.8%  258% 31.1%  26.1%
14 2.17e+1 6.39e+0 1.07e+1 1.87e+0 50.7% 0.00 14 1.7% 12%  40%  9.7%  -14.9%
15 3.40e+2 1.04e+2 2.37e+2 2.16e+1 30.1% 0.00 15 0.7% 23%  2.7% 03%  -3.9%
16 2.14e+1 6.37e+0 1.67e+l 2.59e+0 21.6% 0.00 16 43%  24%  53%  51%  -6.2%
4 17  1.25e+1 3.28e+0 6.97e+0 6.09e-1 44.0% 0.00 4 17 1.6% 05%  -02%  -47%  -3.9%
18 3.56e+1 9.64e+0 2.31e+l 2.37e+0 35.1% 0.00 18 02%  21%  -08%  6.8%  -54%
19 2.50e-1 0.00e+0 2.50e-1 0.00e+0  0.0% 0.00 19 0.0% 0.0% 0.0% 0.0% 0.0%
20 1.16e+2 2.12e+2 3.21e+0 1.22e-1 97.2% 0.01 20 14%  51% 4.8% 21% 3.3%
21 7.21e+1 1.23e+1 5.06e+1 6.96e+0 29.9% 0.00 21 13%  0.7%  -33%  -3.0%  -8.0%
5 22 7.70e+l 6.89e+0 5.66e+1 1.13e+l 26.5% 0.00 5 22 B55%  57%  7.3%  51%  -7.5%
23 2.23e+0 7.81e-1 2.00e+0 2.56e-1 10.3% 0.08 23 51%  -02% 07%  -1.9%  -9.0%
24 222e+2 433e+1 2.09e+2 1.15e+1 58% 0.08 24 42%  19%  -1.6%  -36%  -9.0%

To be consistent with previous work (e.g. [4][1P]1 the iteration k goes from O to the maximum number of allowed
following experiments perform 25 independent triats each  function evaluations.
function (5 trials on each of the first 5 instarjcetth a fixed
limit of 5000*D function evaluations (FEs). All experiments in — (o * di * ([ v
this paper us® = 20 dimensions which leads to a total of threshold (a d|agonal) ([n k]/n) 3)
100,000 FEs. To facilitate the addition of thredhel _ . .
convergence, we re-implemented MATLAB's version of 'O Simplify the generation of new solutions, theeghold
simulated annealing, and the results (percentrdifiee, %-diff 1S @Pplied to each dimension (and the diagonagptaced with
= (b-a)/b) in Table Il show that our new versiofiazhbaseSA he range for that dimension). Specifically, conegato the
(a) compares well with MATLAB's version of simulate student function in Fig. 2, the distribution is tegzed” at the

annealing called simple SA (b) when reannealirdisabled. edges to accommodate the gap created byhteshold in the
g P (b) b middle (see Fig. 3). When applied to each dimenstus gap
IV. SIMULATED ANNEALING WITH THRESHELD leads to a hypercube “tabu” region as opposed ® th
CONVERGENCE hypersphere region previously used in PSO [4] aid8).

The threshold function (3) developed in [4] has two The effects of thresheld convergence on simulated
parametersx represents the initial minimum distance as a ratiannealing were examined over a range of values $0.001,
of the search space diagonal angpresents the decay factor. 0.005, 0.01, 0.05, and 0.1 usipg 2. The results in Table 11l
For y = 1, the threshold decays with a linear slopehss t show the percent difference ((b-a)/b) in mean perémce
between baseSA (b) and its performance with thidshe
convergence (a). A positive percent difference espnts an
improvement with thresheld convergence, and theldubl
values highlight the best valueofor each function.

The larger step sizes taken by simulated anneadisig
caused by the effects of thresheld convergenceHige8) lead
to some improvements on several unimodal functifmg.
slope — BBOB fn 5). When the optimal solution igwéar
from the current solution (e.g. in the corner oé thearch
space), increased exploration can lead to improved
performance. However, on the targeted multi-modacttions
(BBOB fn 15-24), thresheld convergence has nedég(and
generally negative) effects. Increased exploratias not lead
to improved performance on these functions.

Figure 3. Step sizes are drawn from a Studenssiblition with a gap
width specified by the threshold function.



TABLE IV: RESULTS WITHELITISM
Set f !
et M 775,000 1,000 100 10 1
1 8.3% 31.2% 73.4% 95.4% 99.2%
2 1.2% 8.1% 0.7% -9.0% -1.6%
1 3 3.3% 8.0% 26.2% 36.5% 32.4%
4 3.8% 11.5% 25.5% 32.5% 27.6%
5 13.8% 10.4% 8.7% 47.8% 75.9%
6 3.1% 56.6% 64.9% 78.0% 73.2%
5 7 2.9% 28.1% 57.5% 71.9% 75.6%
8 14.9% 41.6% 68.3% 72.7% 76.4%
9 -0.5% 6.1% 61.9% 85.9% 88.4%
10 2.3% -3.6% 07% 1.1% -7.6%
11 13.3% 47.6% 56.2% 57.3% 55.4%
3 12 -1.0% 3.2% -18.9% 4.6% 18.8%
13 3.0% 16.8% 52.7% 78.2% 80.6%
14 9.3% 30.4% 68.8% 92.9% 98.2%
15 0.0% 9.7% 22.8% 40.7% 37.6%
16 -4.6% -0.8% 12.3% 26.9% 26.5%
4 17 1.3% 13.9% 33.3% 50.8% 53.1%
18 2.8% 7.8% 33.7% 555% 51.6%
19 0.0% 0.0% 0.1% 01% 1.2%
20 3.7% 7.5% 20.8% 24.1% 20.8%
21 2.6% 27.9% 68.5% 80.4% 77.4%
5 22 -1.6% 15.6% 61.5% 80.2% 87.1%
23 3.7% 5.9% 2.3% 10.9% 21.9%
24 2.5% 6.2% 20.7% 34.2% 43.3%
V. SIMULATED ANNEALING WITH ELITISM

The benchmark implementation of simulated annealin
does not include elitism. Like physical annealitttgre is no
memory in the system — there is only the currestiestin this
situation, the risks of exploration are much highEwery
attempt to find a better optimum well has an inherésk of
leading to a worse optimum well. Without elitisietability to
backtrack these steps is not guaranteed, so edtsre should
be exercised before large exploratory steps aentak

In simulated annealing, concurrent local searcpssegfect
a form of caution by reducing the probability ofrge
exploratory steps. Specifically, local search stepigh lead to
better-than-random samples of the current optimuet will
make it more difficult to escape from the curreptimum well
to explore another (see Fig. 1). Without elitishis fower level
of exploration in baseSA often leads to better Iteson the
multi-modal functions (e.g. BBOB fn 15-24). The adef
“even sampling” presented in Section | implies pigkthe best
from a set of samples, and the current implememtatf
simulated annealing does not support this assumptio

Elitism can be implemented in simulated annealing b
resetting the position to the best known positiorere r
iterations. In the limits, simulated annealing bmes hill
climbing whenr = 1 and elitism has no effect whens equal

to the total number of function evaluations (100)00n Table

TABLE V: RESULTS WITHELITISM AND THRESHELDCONVERGENCE
Set f “
et M 5001 0.005 0.01 0.05 0.1
1 885%  93.6%  91.7%  784%  69.7%
2 4.0%  -16.8%  -43.7% -128.8%  -135.2%
13 11.6%  26.6% 33.8%  32.2%  27.4%
4 9.9%  175% 213%  13.8%  15.3%
5 167%  65.1%  86.1%  100.0% 100.0%
6 590.3%  89.8% 94.6%  89.0% _ 90.8%
, 7 215%  395%  46.0% 9.9% 5.0%
8 15.8%  143% 415%  251%  40.7%
9 116%  -755%  -88.3% -171.6%  -354.8%
10 28.0%  164%  100%  -473%  -76.0%
11 05%  125%  158%  22.3% 28.6%
3 12 92.4% 93.4%  88.9%  46.9%  23.4%
13 58.8% 81.8%  78.9%  61.2%  60.4%
14 79.6% 86.4%  83.0%  70.1%  65.7%
15 72%  215% 33.7%  266%  31.3%
16 175%  38.4%  375% 47.1%  42.1%
4 17 -100%  11.9%  258%  38.1% 38.8%
18 0.6%  17.3%  29.1% 352%  19.7%
19 11%  11%  12%  -12%  -1.3%
20 6.0%  132%  19.0%  34.8% 363%
21 312%  263%  333%  11.9% 51.6%
5 22 55%  -36% 87%  -58.1% 3.7%
23 19.9%  09%  2.7%  -147%  -21.6%
24 2.6% 53%  89% -102%  -16.8%

difference between “simulated annealing” which meaecepts
a worsening move and typical implementations dfdtiinbing

s the variable step size. Hill climbing tendstaply a greedy,
local search whereas a decreasing step size iiSAg$erther)
supports a transition from exploration/global skarto

exploitation/local search.

VI. SIMULATED ANNEALING WITH ELITISM AND

THRESHELDCONVERGENCE

Similar to the experiments in Section 1V, thresheld
convergence has been applied to baseSA with elissridding
from the best results in Section V with a reseeraftvery
iteration (i.e. never accepting a worse move), ribsults in
Table V show the percent difference ((b-a)/b) betwbaseSA
with elitism (b) and simulated annealing with eliti and
thresheld convergence (a). The parameters for hteshold
function (3) arex = 0.001, 0.005, 0.01, 0.05, and 0.1 a=d2.

Exploration for new optimum wells involves the risk
ending up in a worse optimum well. However, thiskris
greatly reduced with elitism since the system damays return
from the worse optimum well back to the best-knagtimum
well. As seen in Table IV, the performance of tlemdhmark
implementation of simulated annealing (baseSA) oves
with elitism which increases the amount of explaia in the
system. With this increase in exploitation, thef@enance is
further improved by an increase in exploration fiscted by

IV, the effects of elitism for = 1, 10, 100, 1000, and 10000 arethe addition of thresheld convergence. Across tilleskt of

shown as the percent difference ((b-a)/b) betwesseBA (b)
and baseSA with elitism (a).

In general, the results for simulated annealingrowe as
the frequency of resets increases. In fact, thedwesall results
occur with a reset after every iteration — whichsvagiginally
thought to be the equivalent to hill climbing. Howe, the

BBOB functions, the best result with thresheld @ygence
delivers statistically significant improvements (adicated by

a t-test withp < 0.05) of at least 10% on 18 of 24 functions (see
Table VI).

The development of simulated annealing with thrieshe
convergence is now complete, so comparisons witlremo



TABLE VI:

SUMMARY OF RESULTS

—
=}

Set

with elitism best result
mean stddev mean stddev

a %-diff

t-test

2.90e-12.22e-11.87e-29.19e-3
2.64e+4.30e+32.54e+4 9.58e+3
1.62e+24.17e+11.07e+2 2.15e+1
2.05e+5.54e+11.61e+2 4.77e+1
1.61e+16.06e+00.00e+0 0.00e+0

0.005 93.6%
0.001 4.0%
0.01 33.8%
0.01 21.3%
0.1 100.0%

0.00

0.33

0.00
0.00
0.00

O©CoO~NOOOOTEA WNPEF

8.86e+11.15e+24.81e+0 7.61e+0
1.81e+18.44e+09.79e+0 5.60e+0
1.09e+24.07e+16.40e+1 5.84e+1
1.36e+14.87e+01.52e+1 1.63e+1

0.01 94.6%
0.01 46.0%
0.01 41.5%
0.001 -11.6%

0.00
0.00
0.00

0.32

2.11e+41.72e+41.52e+4 9.78e+3
2.98e+17.08e+02.13e+1 9.45e+0
1.17e+38.04e+47.73e+3 3.20e+3
1.42e+25.32e+12.60e+1 8.67e+0
1.97e-19.91e-22.68e-2 7.54e-3

0.001 28.0%

0.1 28.6%
0.005 93.4%
0.005 81.8%
0.005 86.4%

0.07

0.00
0.00
0.00
0.00

1.48e+2.94e+19.82e+1 2.56e+1
1.23e+12.11e+06.51e+0 1.90e+0
3.27e+(®.94e-12.00e+0 1.14e+0
1.12e+13.95e+07.25e+0 3.50e+0
2.47e-12.59e-32.50e-1 8.37e-4

0.01 33.7%
0.05 47.1%
0.1 38.8%
0.05 35.2%
0.001  -1.1%

0.00
0.00
0.00
0.00

0.00

2.54e+(B.96e-11.62e+0 3.47e-1
1.15e+19.97e+05.55e+0 5.45e+0
7.32e+(.02e+06.68e+0 5.94e+0
1.56e+@.79e-11.25e+0 3.07e-1
1.18e+2.15e+11.08e+2 2.71e+1

0.1 36.3%
0.1 51.6%
0.01 8.7%
0.001 19.9%
0.01 8.9%

0.00
0.01

0.35

0.00

0.07

TABLE VII:

RESULTS VS MATLAB’ SSIMULATED ANNEALING

Set fn MATLAB SA best result u %-diff  t-test
mean stddev mean stddev
1 6.93e+@.04e+01.87e-29.19e-3 0.005 99.7% 0.00
2 2.65e+31.39e+32.54e+4 9.58e+3 0.001 -855.4% 0.00
1 3 1.65e+%.17e+11.07e+2 2.15e+1 0.01 35.1% 0.00
4 23le+X.16e+11.61e+24.77e+1 0.01 30.1% 0.00
5 6.49e+18.87e+00.00e+0 0.00e+0 0.1 100.0% 0.00
6 1.10e-17.89e-24.81e+07.61e+0 0.01 -4270.2% 0.00
2 7 1.09e+14.19e+09.79e+05.60e+0 0.01 9.9% 0.22
8 2.82e+12.65e+16.40e+15.84e+1 0.01 -126.9% 0.00
9 7.34e+(.99e+01.52e+1 1.63e+1 0.001 -107.3% 0.01
10 2.70e+3.46e+31.52e+49.78e+3 0.001 -462.8% 0.00
11 6.74e+12.65e+12.13e+19.45e+0 0.1 68.4% 0.00
3 12 4.52e+(.98e+07.73e+3 3.20e+3 0.005 -1.7e+5% 0.00
13 4.88e+(.47e+02.60e+1 8.67e+0 0.005 -431.6% 0.00
14 7.31e+Q.21e+02.68e-2 7.54e-3 0.005 99.6% 0.00
15 1.84e+X6.79e+19.82e+12.56e+1 0.01 46.6% 0.00
16 8.30e+®.04e+06.51e+01.90e+0 0.05 21.6% 0.00
4 17 6.55e+(7.63e-12.00e+01.14e+0 0.1 69.5% 0.00
18 1.69e+1.11e+07.25e+03.50e+0 0.05 57.0% 0.00
19 2.50e-10.00e+02.50e-18.37e-4 0.001 0.2% 0.00
20 2.23e+01.63e-11.62e+03.47e-1 0.1 27.2% 0.00
21 2.64e+11.07e+15.55e+05.45e+0 0.1 79.0% 0.00
5 22 3.70e+11.47e+16.68e+05.94e+0 0.01 81.9% 0.00
23 8.51e-12.18e-11.25e+03.07e-1 0.001 -47.1% 0.00
24 1.56e+5.35e+11.08e+22.71e+1 0.01 31.0% 0.00

sophisticated versions of simulated annealing amv n
meaningful. Specifically, MATLAB’s si nul anneal bnd
function [10] implements adaptive simulated anmgplbased
on [13]. In Table VI, the best result with threkhe
convergence is compared against MATLAB'’s implemtoita
of simulated annealing.

The comparisons show that reannealing and adagtiage
sizes can be very effective at improving explodtati(e.g.
unimodal functions BBOB fn 10-14). However, exphbion is
easily achieved by local optimization (e.g. gratidescent), so
the more difficult task is usually exploration. Tleehanced
exploration provided by thresheld convergence matestrated
on the multi-modal functions (e.g. BBOB fn 15-24hexe
statistically significant improvements (as indichtey a t-test

with p < 0.05) of at least 10% are achieved on 8 of the 1

functions in BBOB sets 4 and 5.

VII.

Thresheld convergence has similarities to nichiegy.(
[14]) and crowding [15]. A key difference is thdtrésheld
convergence affects how new candidate solutionsragged as
opposed to which candidate solutions are kept és.gart of a
population). One advantage of this difference f&ieficy —

DISCcUSSION

involves an implicit use of elitism. Without elitis the risks of
exploration become much greater — any attempntbdi better
optimum well may sacrifice the opportunity to explthe
current optimum well. The results in Section 1V shihat the
increase in exploration caused by thresheld comwer often
leads to worse results in standard simulated aimgeathich
does not have elitism.

The limits on exploration caused by a lack of fitican
also be seen in genetic algorithms (GAs) with gatiaral
replacement schemes [16]. Compared to steady&tesg17],
generational GAs often perform better with smatlevssover
rates. This reduced rate of crossover can be viasedform of
elitism since it increases the chance that (gooti)tisns can
pass unchanged from one generation to the next.

In simulated annealing, it is possible to leave aody
optimum well for a worse one. Without elitism tcopide a
guarantee that these “disruptive” search stepdeamdone, it
becomes important to limit these steps. Small Ieealch steps
which improve the fithess of the current locatideoareduce
the probability that large exploratory steps (whdm cause
large gains in the evaluation function) will be eged. To
limit “disruption” also limits exploration, and on&f the key
goals of thresheld convergence is to reduce therfarence

threheld convergence can be implemented with alesingpanveen the mechanisms of exploration and expimitahat

distance measurement [4][8] while niching and criogdcan
use up t@ (the population size) distance measurements fL5].
second advantage is the ability to apply threshetdergence
to non-population-based search techniques suchmadased
annealing.

The current application with simulated annealingviles
new insights into the operation of thresheld cogeece that
were not possible with previous implementations[8§]
Specifically, the founding principle of “even saingl’

can occur when these processes operate concurrently

It should be noted that the application of thresghel
convergence in simulated annealing completely atitas all
(local) search steps that are smaller than thetlboid function.
This differs from the first implementation of thihetd
convergence to particle swarm optimization [4].the PSO
implementation, the threshold function preventegaaticle
from updating its pbest position to be within theeshold from



its Ibest position. However, positions within theegshold could
still be evaluated and stored (in the Ibest pasjtiGince this
PSO implementation allowed local search throughtie
search process, it could still converge with redsi large
values for a. Applications of thresheld convergence that
completely eliminate local search will likely regaismaller
values fora and a truncated threshold function.

[4]

(5]
(6]

More thane, the key “parameter” in thresheld convergencem

is the required “gap” between new sample solutiohse
threshold function (3) is just a preliminary anthtieely crude
means of adapting the threshold. The developmeatiaptive
threshold functions is a promising area for fut@search.

VIIl. SUMMARY

(8]
9]

Many heuristic search techniques have concurrerif0]

processes of exploration and exploitation. Singglogation
often depends on estimating the quality of a neyioreof the
search space based on a few random samplesmipgstant to
evaluate these samples fairly. In particulars mot reasonable
to compare a random solution from one region of gbarch
space with a locally optimized solution from anothe
Concurrent exploitation can thus interfere with lergtion.
The goal of thresheld convergence is to help sé&patze
processes of exploration and exploitation, ancaddition has
been successful in search techniques like simukeealing,
particle swarm optimization, and differential evaba.
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