Essays on Bond Yields

Vijay Austin Murik

November 2011

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University
Declaration

The work in this thesis is my own except where otherwise stated.

Vijay Austin Murik
For my parents
Acknowledgements

I would like to express profound gratitude to my Supervisor at the Australian National University, Professor Tom Smith, for unwavering encouragement and inspiration through the course of my Ph.D. research. It has been an absolute pleasure to undertake my Ph.D. under Tom’s expert guidance. Tom introduced me to the highest ideals of research, and taught me how to think about financial markets and the economy. I feel very fortunate to be Tom’s student. I am also grateful to the other members of my supervisory panel, Professor Doug Foster and Professor Garry Twite, for their assistance and encouragement during my studies.

I would like to thank my present and past managers at the Australian Office of Financial Management: Michael Bath, Megan Hardy, Matthew Wheadon, Hülya Yılmaz and David Ziegler for their support of my academic endeavours and career aspirations over the past five years, and for sharing their perspectives on how fixed-income and securitisation markets function in practice.

I would like to acknowledge financial support in the form of a Ph.D. scholarship from the ANU College of Business and Economics, and also flexible study leave arrangements from the AOFM.

My research has benefited greatly from the Ph.D. Internship that I undertook at the Reserve Bank of Australia from November 2010 to January 2011. I am indebted to my managers in Domestic Markets Department, Patrick D’Arcy and David Olivan, and to my colleague Alan Rai, for invaluable feedback on my research. I would also like to thank senior management at the Bank, especially Dr. Alex Heath and Dr. Jonathan Kearns, for giving me the opportunity to present my Ph.D. research to Bank staff.
I would like to thank Jonathon McGrath for many thought-provoking discussions about the nature of financial markets over the past few years, and Nicole Neveu for her wisdom and encouragement.

Finally, I would like to express deep appreciation for the support of my parents and my sister throughout the course of my studies.
List of Tables

2.1 Descriptive statistics, surface fitting errors (per cent) 17
3.1 Descriptive statistics, sample term premia (per cent) 38
3.2 Correlation matrix: excess returns and factors 39
3.3 Monotonicity test p-values, by conditioning factor 40
3.4 Empirical power: Frequencies of monotonicity outcome in tests . . . 42
4.1 Forecast error descriptive statistics 62
4.2 OLS estimates for equation (4.1) . 64
4.3 GMMIV estimates for moment conditions (4.3) 68
4.4 Forecast accuracy, GMMIV model (4.3) 70
List of Figures

2.1 Observed yield curves, 31 March 2011 .. 15
2.2 Zero coupon surface, 31 March 2011 .. 16
2.3 Decomposition, Treasury Corporation of Victoria yields 18
2.4 Decomposition, Inter-American Development Bank yields 19
2.5 Decomposition, European Investment Bank yields 20
2.6 Relative pricing, long semi-government bonds 22
2.7 Relative pricing, short supranational and agency bonds 23

3.1 Sample mean term premia .. 37
3.2 Sample mean conditional term premia 39

4.1 Fixed income market pricing .. 59
4.2 Short end root mean squared forecast errors 61
Abstract

This doctoral dissertation comprises three essays which study the determinants of bond yields.

The dissertation is organised around the idea that bond yields can be partitioned into a risky component which prices for the risk of illiquidity and default; and a risk-free component which prices for investors’ time preferences, and expected monetary policy movements (Homer and Leibowitz, 2004). The first essay considers the liquidity and credit premia in supranational, semi-government and agency bond yields; term premia in sovereign bond yields and their relation to the economy constitute the focus of the second essay; and the third essay is devoted to an inquiry into the nature of expectations of future monetary policy movements in bond yields.

The first essay presents a new method for consistent cross-sectional pricing of all traded bonds in the fixed income market. By applying thin plate regression splines (Wood, 2003) to bootstrapped zero coupon bond yields (Hagan and West, 2006), the method decomposes traded yields into a risk free component plus premia for credit and liquidity risks, where the decomposition is consistent with the market valuations and underlying cash flows of the bonds. We apply the framework to end of quarter yield data from 2008 to 2011 on Australian dollar denominated semi-government, supranational and agency bonds, and find that the surface provides an excellent fit to the underlying zero coupon yield curves. Further, the decomposition of selected yield time series and cross sections demonstrate how credit premia increased for Australian semi-government, supranational and agency bonds through the Global Financial Crisis, but were counterbalanced by liquidity discounts as investors sought safe haven securities.
The second essay designs conditional tests for the liquidity preference hypothesis, which predicts monotonicity in term premia. Drawing on the excess return forecasting literature (Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009), the tests are conditioned on information from macroeconomic variables and the current yield curve. Specifically, a filter is constructed to use this conditioning information set in new versions of the Wolak test (Boudoukh et al., 1999a) and Monotonicity Relation test (Patton and Timmermann, 2010) for the liquidity preference hypothesis. Consistent with the literature, our tests conclude that raw, unconditional term premia in U.S. Treasury bills between 1965 and 2001 do not increase monotonically. However, we find that the tests indicate term premia in Treasury bills do increase monotonically when the sample term premia are conditioned on the excess return forecasting factors. This confirms the explanatory power of the excess return forecasting factors, and also suggests that conditioning information should be used in applying inequality constraints tests to determine whether the liquidity preference hypothesis holds empirically.

The third essay evaluates the accuracy of the fixed income market in pricing for future movements in monetary policy. By generalising the approach in Gürkaynak et al. (2007) and Goodhart and Lim (2011), we compare yields and forward rates implied by market pricing on various fixed income securities to averages of the cash rate over corresponding periods with an ordinary least squares regression model. Where the market pricing is subject to risk premia, instrumental variables are used to strip away the effects of the risk premia as if they were measurement errors. When we apply our framework to Australian fixed income pricing from 2004 to 2010, we find that, consistent with findings in the extant literature, the market is quite effective in forecasting cash rate movements over horizons of up to six months. Beyond that horizon, the presence of risk premia diminishes to a large extent the signal on expectations in market pricing, but our instrumental variables framework suggests nonetheless that there is important information in fixed income market pricing regarding expected cash rate movements over the one to three year horizon.