Towards control of avian influenza H5N1 virus in Indonesia: Human infection, and the role of live bird markets.

by

Gina Samaan, BPsys (Hons), MAppEpid

A thesis submitted for the degree of: Doctor of Philosophy of The Australian National University

December 2011
Declaration

I declare that the work contained in this thesis is the result of original research and has not been submitted to any other University or Institution.

The research I conducted and the papers published in this thesis are based on data collected and analysed from a public health surveillance system and three research studies. I was principal researcher in all of the work and played a central role in research design, data collection, analysis and interpretation of findings. For studies pertaining to public health surveillance system data, I facilitated and worked collaboratively with other epidemiologists, statisticians and mathematical modellers to analyze the data and ensure the validity of the findings. For the research studies, I collaborated with laboratory scientists to test collected samples and report microbiological findings. I was solely responsible for overall project management, data management and analysis. I also was responsible for preparation of scientific manuscripts and coordination of co-author input for all papers published as part of this thesis.

The analyses in this thesis are my own work, except where indicated by references or acknowledgements in the text.

Signed: __________________________
Acknowledgements

There are many people to thank for their assistance during my PhD candidature. I appreciated the support and guidance of supervisors, colleagues, family and friends both in Australia and in Indonesia.

I want to begin by acknowledging the important role the Australian Government plays in enabling Australians from all walks of life to undertake higher research degrees by providing an enabling environment for learning and skills development through the Research Training Scheme. During my PhD candidature, I was awarded the Prime Minister’s Australia-Asia Endeavour Award that funded various aspects of my research and travels through Indonesia for one year. I was also granted a PhD scholarship from the ANU throughout the duration of my study.

In Indonesia, I wish to thank colleagues, mentors and friends at the Ministry of Health, Ministry of Agriculture, South Sulawesi Market Authority, AusAID and World Health Organization for their support for the conduct and publication of my research. In particular, I thank Dr Nyoman Kandun, Professor Tjandra Aditama, Dr Rita Kusriastuti, Dr Hari Santoso, Professor Mohammad Sudomo, Dr Agus Wiyono, Dr Bagoes Poermadjaja, Dr Soegiarto and all the staff at the Environmental Health Directorate, Zoonosis, Surveillance and Respiratory Disease Subdirectorates. Thank you for welcoming me to your country, for opening doors and for providing me with opportunities for collaboration. I also thank all the research participants and staff who took the time to enable the conduct of this research. I hope I can continue to contribute to public health in Indonesia and show my appreciation for all of the kindness and friendship received over the last few years.

Throughout my professional development, I have been blessed with the support of mentors who have taken me under their wings: Dr Mahomed Patel, Dr Leslee Roberts, Ms Mary Murnane, Dr Steven Bjorge, Dr Margaret Chan and the late Professor Aileen Plant. All of you repeatedly reminded me about the importance of the PhD in my career.
and have been amazing advocates for my work! I continue to be inspired by you and can only hope to make you proud.

Thank you to my academic advisors for the various parts of this PhD research: Dr Kathryn Glass and Dr Mark Clements at the ANU, Dr Alex Cook at the National University of Singapore, and Dr Peter Daniel and Mr Trevor Taylor at the Australian Animal Health Laboratory. I also appreciated the input of colleague PhD students: Martyn, Vernon and Ya Ling – brothers and sisters in arms!

This PhD would not have been possible without my two amazing PhD academic supervisors: Dr Paul Kelly and Dr Kamalini Lokuge at the ANU. Your guidance, encouragement, technical input, feedback and support over the PhD have been truly wonderful! I am so fortunate and truly proud to have you as my supervisors and hope to apply the skills you have provided me in my future work, as well as to continue our professional discourse. You are not done with me yet!

Lastly, thank you to my family and friends for their support during my PhD candidature. This has been a highly rewarding life experience and it would not have been possible without you. My sincere appreciation and gratitude!
Abstract

Background:
Indonesia has been heavily affected by the emerging avian influenza (AI) H5N1 virus, with continued outbreaks in farmed birds and periodic detection of human cases. The epidemiology of human AI H5N1 infection in Indonesia is poorly understood, and control measures at the animal-human interface such as in live bird markets (LBMs) have had limited impact. This thesis had two aims: (a) to examine the epidemiology of human AI H5N1 infection and, (b) to inform disease control measures in LBMs in Indonesia.

Methods:
For the first aim, public health surveillance data from June 2005 till July 2009 were analyzed to assess exposures and risk factors for infection, case clustering and disease transmission patterns in outbreak households. For the second aim, a cross-sectional study was conducted to assess environmental contamination in LBMs and to identify risk factors and critical control points. A non-experimental field intervention trial was conducted to assess the practical application of implementing interventions in two LBMs.

Results:
Multivariable analyses showed that age and type of exposure to virus impact the risk of H5N1 infection and case clustering. First degree relatives to an index case, especially siblings were at most risk of becoming secondary cases in a household. The overall attack rate in households was 18.3% and the secondary attack rate was 5.5%. Secondary attack rate remained stable with household size. The disease transmission models found that the majority of cases resulted from zoonotic transmission of the virus, and most evidence for human-to-human transmission came from one large outlier cluster of eight cases. The reproduction numbers were below the threshold for sustained transmission. The mean interval between onset of illness between cases in a household was 5.6 days. Direct exposure to sources of virus tripled the odds of infection. Contaminated garden fertiliser was found to be a possible source of human infection.
Widespread environmental contamination with the H5N1-virus was found in 47% (39 of 83) LBMs sampled in the cross-sectional study. Slaughter, workflow zoning and sanitation practices impact the risk of environmental contamination. Five critical control points were identified to help control this contamination. The intervention trial found that control measures could be feasibly implemented using a combination of infrastructure and behaviour change interventions. Use of a participatory approach to translate control measures into practice was well received by stakeholders.

Conclusions:
The epidemiological findings can be used to reduce the risk of zoonotic transmission of the virus, prevent secondary cases and provide baseline comparison for the early detection of changes in virus transmissibility. The LBM studies demonstrated that control measures can be introduced in LBMs in a low resource setting such and that the interventions should reflect resources available, stakeholder needs and critical control points.
Table of contents

Author’s Statement i.
Acknowledgements iv
Abstract vi

Chapter 1. Introduction 1
Chapter 2. Background 13
Chapter 3. Research design 31
Chapter 4. Paper 1: Risk factors for cluster outbreaks of avian influenza A H5N1 infection, Indonesia. 49
Chapter 5. Paper 2: Avian Influenza H5N1 Transmission in Households, Indonesia. 63
Chapter 6. Paper 3: Chicken faeces garden fertilizer: possible source of human avian influenza H5N1 infection. 75
Chapter 7. Paper 4: Environmental sampling for avian influenza virus A (H5N1) in live-bird markets, Indonesia. 87
Chapter 9. Paper 6: Application of a healthy food markets guide to two Indonesian markets to reduce transmission of “avian flu.” 113
Chapter 10. Discussion and conclusions 125