Shape Characterisation of Sheet Metal Assembly Variation with a View to Quality Assessment and Dimensional Control

Timothy Ian Matuszyk

April 2008

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University
To my family
Declaration

The work in this thesis is my own except where otherwise stated.

Timothy Ian Matuszyk

Publications

Acknowledgements

I'd like to thank my family for being so supportive: my grandpa Stefan, my dad Eugene, my mum Dina, my sister Leanne, my brother Andre, my father-in-law Soo-san, my mother-in-law Ok-yeon, my sister-in-law Hyun-joo, my brother-in-law Joo-hyung, and in particular I would like to thank my loving wife Kyung-ah for her support during my studies and life in general.

I'd like to thank my academic supervisors Professor Michael Cardew-Hall and Dr Bernard Rolfe for giving me such a fantastic opportunity and for their much valued guidance.

I'd like to thank all the University people who helped me out in some way over the years: Jeremy Smith in particular for helping me out during my time down at Geelong; Dr Shankar Kalyanasundaram for the handy APAC quota; Professor John Duncan for assisting me with the analytical examples; Greg Burgess and Dr Keith Lovegrove for resolving the scanner troubles; Rob Gresham, Ben Nash, and Dave Tychsen-Smith for their technical expertise; Dr Matthew Doolan for his technical advice and proof reading; Dr Teddy Mantoro, and Andrew Wilkinson; Helen Shelper, Pam Shakespeare, Marie Katselas, Kitti Whitworth; Srinivas Shridharan, Dave Ferrari, Oday Jerew, Bijaya Paudyal, Sawat Paitoonsurikarn, Kumar Kc, Huan Zhang, Piya Siangsukone; Bob Forrester, Professor Stephen Roberts, Professor Qinghua Qin, Erasmo Scipione, Ian McRobert, John Smeltink, Victor Pantano, Josephine Farmer, Paul Pounds, Mark Euston, Milli Styles, James Sinclair, Linden Coot, and many others.

I'd like to thank all of the people down at Ford of Australia who helped support this work: my industry supervisor Reinhard Muecke for his much valued guidance and for making the industry trials happen, Brendon Boyd and Andrea Cavallaro for their supervision early on in the project; the various plant managers who supported the STAMP program - Andrew Higginbotham, Dave French, and Ben Rumble; the Technical Inspection team - Peter Jenkinson and Chris Wickens for finding the time for my studies, Glenn Rush, Peter Ilievski, and Mark Vials for performing the measurements,
and Gary Williams, Andrew Hill, Petar Miletic, John Clark, and Martin Trewhella; Vinko Saric, Santosh Nadig, and John Robertson for arranging sheet metal for my experimental trials; Neil Blick and Shridahr Padaki for using manual CMMs for my first measurement study; Scott Randall and Darren Scott for getting my final trials done; the front-cross afternoon shift staff - Yolanda, Kevin, Beryll and Gill; the US people who hosted me during my 2006 visit - Janice Gall, Doug Heerema, and Jim Darkangelo; Paul Dunn and Mike Marshall for introducing me to the plant; Jasna Pavic for her work and help with the front cross; Graham Hughes for his technical support; David Law and Peter Caddy for giving me access to the iges files; Ken McCarthy and Tony Chick for their training courses; and also Trevor Bennion, Marina Krasic, Brenden Eeles, Joel Bird, Victor Schielke, Chris Wilson, Gerard Kolotelo, Jemma Wayth, Suzanne Hurst, Richard Stoljinski, Peter Hutchinson, Ralph Smith, Geoff Hughes, Barry Hunter, Adrian Dowdell, Darko Kraljevic, Wally Lakey, Barry Johnston, Vic Sesar and many others.

I’d also importantly like to thank the Australian Research Council for their funding (ARC Linkage Grant #LP0560908).
Abstract

Sheet metal assembly is a complex process involving component-to-component and component-to-tooling interactions. A key characteristic of sheet metal assemblies, the flexibility of components, means that variation does not stack-up according to the additive theorem of variance that applies to rigid bodies. Instead, components can be bent and distorted into conforming or non-conforming shapes by assembly interactions. This characteristic of flexibility also means that in comparison to rigid body assembly, additional aspects of the assembly process, such as clamp sequence and weld sequence, can influence the way in which variation propagates. Through a detailed understanding of the influence of assembly processes on variation propagation, manufacturers can adjust their processes to target particular quality assessment criteria: in this thesis, it is firstly demonstrated how assembly processes such as clamping sequence can be altered to control different variation patterns (and therefore quality) in sheet metal assemblies.

However, in order to truly optimise a sheet metal assembly process for dimensional control, there must be a well defined quality assessment framework from which to select the best processes. The most commonly adopted measures of assembly quality are based on the mean and standard deviation of a set of assumedly statistically independent measurement points. Such approaches are perhaps not the best measure of assembly quality. This is primarily due to their inability to adequately capture a key characteristic of assemblies: correlated variation patterns.

This thesis proposes that assembly quality cannot be simply assessed by the mean and variance of a set of assumedly statistically independent measurement points, and that correlated variation patterns in the form of bows, buckles, twists and ripples also form a large part of assembly quality perceptions. Two key methods were therefore developed to better characterise assembly variation: the multivariate statistical shape model, and the local shape descriptors. These shape characterisation measures overcome key limitations of existing univariate quality measures including an inability to capture correlated variation patterns, monitor non-normally distributed data, interpret high dimensional data, and measure local variation patterns of different sizes or scales. Through addressing these limitations, the proposed shape characterisation methods
provide significant advancements in the ability of manufacturers to accurately measure variation and discriminate between differing levels of assembly quality, and are particularly well suited for the interpretation of high dimensional measurement data made available by optical co-ordinate measuring machines. The new shape characterisation methods therefore provide a framework for achieving new levels of quality assessment, with a view to the ultimate goal of developing optimal dimensional control strategies for sheet metal assemblies.
Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
 1.1 Dimensional variation in sheet metal assembly 1
 1.1.1 Variation and tolerances 2
 1.1.2 The sheet metal assembly process 3
 1.1.3 Automotive sheet metal build approaches 4
 1.1.4 A simple assembly model 4
 1.2 Problem statement .. 8
 1.3 Proposed approaches 10
 1.3.1 The influence of processes on assembly variation 10
 1.3.2 Characterizing assembly variation 10
 1.3.3 A view to optimal assembly process design 12
 1.4 Thesis overview .. 12

2 Background 15
 2.1 Introduction ... 15
 2.2 Virtual assembly 15
 2.2.1 Finite element models 16
 2.2.2 Multi-station models 19
 2.2.3 Process optimisation 21
 2.3 Process diagnosis 23
 2.4 Knowledge-based design 26
 2.5 Industry measures of assembly quality 27
 2.6 Limitations of univariate measures of variation 28
 2.6.1 Model assumptions 29
 2.6.2 Implications of new measurement technology 30
 2.7 Characterising assembly variation 31
 2.8 Conclusion ... 33
CONTENTS

3 An introduction to sheet metal assembly 35
 3.1 Introduction . 35
 3.2 Observing assembly variation . 35
 3.2.1 Component and assembly potential 37
 3.2.2 Variation stack-up . 38
 3.2.3 Positional shifts . 39
 3.2.4 Summary of observations . 40
 3.3 Investigating assembly processes . 41
 3.3.1 Clamping sequence . 41
 3.3.2 Weld sequence . 42
 3.3.3 Summary of assembly processes . 48
 3.4 Conclusion . 48

4 The effects of clamp sequence 51
 4.1 Introduction . 51
 4.2 Simulated assembly . 51
 4.2.1 Finite element approach . 52
 4.2.2 Component variation modes . 53
 4.3 Clamp sequences . 55
 4.3.1 Clamp sequence selection . 55
 4.4 Investigating a population of assemblies 56
 4.5 Assembly population results . 58
 4.5.1 Individual variation modes . 58
 4.5.2 Combination of all variation modes 60
 4.6 Conclusion . 61

5 Experimental comparison of clamp sequences 63
 5.1 Introduction . 63
 5.2 Experimental clamping study . 63
 5.2.1 Experimental and FEM clamp sequences 64
 5.2.2 Component variation . 65
 5.2.3 Measurement point extraction . 65
 5.2.4 Component sampling . 66
 5.3 Experimental results . 67
 5.3.1 Differences in the mean shape . 67
 5.3.2 Comparison cross-sections . 68
 5.3.3 Mean shifts - univariate approach 69
 5.3.4 Mean shifts - multivariate approach 70
 5.3.5 Experimental comparison to nominal 71
 5.4 Simulated assembly . 72
5.4.1 Finite element approach .. 72
5.4.2 Simulation results .. 72
5.5 Clamp sequence and variability 75
 5.5.1 Population of input components 75
 5.5.2 Assembly and variability comparison 76
5.6 Clamp sequence design ... 77
 5.6.1 Clamp sequence comparison 78
 5.6.2 Clamp sequence performance 79
5.7 Conclusion .. 80

6 Multivariate statistical shape model 83
 6.1 Introduction .. 83
 6.2 Multivariate process monitoring 84
 6.2.1 Computer vision ... 84
 6.2.2 Chemical process control 85
 6.3 Methods .. 85
 6.3.1 Measurement of free-form manufactured parts 85
 6.3.2 Gaussian distribution 86
 6.3.3 Dimensional reduction using PCA 86
 6.3.4 Kernel density estimation 86
 6.3.5 Statistical shape models 88
 6.4 Results ... 89
 6.4.1 Simulated case study 90
 6.4.2 Univariate shape model 92
 6.4.3 Point Distribution Model 93
 6.4.4 Kernel Density Estimate/Point Distribution Model 95
 6.4.5 Industry case study 96
 6.5 Discussion .. 98
 6.5.1 Creating the KDE-PDM 99
 6.5.2 Data mining with the KDE-PDM 99
 6.5.3 A tolerancing approach for the KDE-PDM 99
 6.5.4 Computational issues 100
 6.6 Conclusion .. 100

7 Local shape characterization 103
 7.1 Introduction .. 103
 7.2 Surface classification 104
 7.3 Example manufactured components 105
 7.3.1 Registration and Normalization 106
 7.3.2 Qualitative surface descriptions 107
7.4 Approach to local shape characterization ... 111
7.5 Average curvature energy ... 112
 7.5.1 Surface curvature ... 112
 7.5.2 Curvature energy ... 113
 7.5.3 Surface assessment ... 114
7.6 Multi-scale surface assessment ... 115
 7.6.1 The continuous wavelet transform ... 115
 7.6.2 Surface example ... 116
 7.6.3 Selecting scales ... 118
 7.6.4 Average power ... 119
 7.6.5 Surface assessment ... 120
7.7 Curvature segmentation ... 121
 7.7.1 Surface assessment ... 122
7.8 Local shape characterization vector .. 123
7.9 Future developments ... 123
 7.9.1 Registration and Normalization ... 124
 7.9.2 Curvature-based methods ... 124
 7.9.3 Multi-scale surface analysis .. 125
 7.9.4 A view to surface classification .. 125
7.10 Conclusion ... 126

8 Conclusion ... 127
 8.1 Introduction ... 127
 8.2 A framework for quality assessment .. 127
 8.2.1 Multivariate statistical shape model 128
 8.2.2 Local shape descriptors .. 133
 8.2.3 Summary of quality assessment framework 135
 8.3 Contributions ... 135
 8.3.1 Clamp sequence simulation ... 136
 8.3.2 Clamp sequence design ... 136
 8.3.3 Multivariate statistical shape model 136
 8.3.4 Local shape descriptors .. 137
 8.3.5 Dimensional assessment framework 137
 8.4 Suggestions for further work ... 137
 8.4.1 Mechanistic simulation ... 137
 8.4.2 Virtual assembly and metal forming 138
 8.4.3 Stochastic simulation ... 138
 8.4.4 Multivariate shape model .. 138
 8.4.5 Localized shape model ... 139
CONTENTS

8.4.6 Application of quality assessment framework 139

A Experimental assembly setup ... 141
 A.1 Channel section fabrication ... 141
 A.2 Bending tool ... 142
 A.3 Channel with bow .. 143
 A.4 Assembly rig ... 144

B Virtual assembly .. 147
 B.1 Nonlinear finite element model .. 147
 B.2 Finite element model mapping .. 148

C Clamp sequence study ... 151

D Local shape descriptors ... 153
 D.1 Continuous wavelet transform: Signal extension 153

E Statistical tools .. 155
 E.1 Statistical inference ... 155
 E.1.1 Comparison of means .. 155
 E.1.2 Comparison of variances ... 156

F Data fitting .. 157
 F.1 Simple linear regression ... 157
 F.2 Cubic piece-wise splines ... 158
 F.3 Thin-plate splines .. 159

G Mean shifts ... 163

H Other methods .. 165
 H.1 Linear discriminant analysis ... 165
 H.2 Discrete cosine transform .. 167

Bibliography ... 168