REVEALING THE CHAMAeleON:
Young, low-mass stars surrounding η and ϵ Chamaeleontis

Simon John Murphy

A thesis submitted for the degree of
Doctor of Philosophy
of the Australian National University

Research School of Astronomy & Astrophysics

Submitted 8th November 2011
Accepted 23rd January 2012
This document makes extensive use of the hyperlinking features of \LaTeX. References to figures, tables, sections, chapters and the literature can be navigated from within the PDF by clicking on the reference. Internet addresses will be displayed in a browser.

Most object names are resolvable in the SIMBAD (http://simbad.u-strasbg.fr/simbad/) astronomical database. Click on an object to be taken to its SIMBAD entry.

The bibliography at the end of this thesis has been hyperlinked to the NASA Astrophysics Data Service (http://www.adsabs.harvard.edu/). Further information on each of the cited works is available through the link to ADS.

Several of the large catalogues used in this work have been tagged with their Virtual Observatory unique identifier (e.g. ivo://astronet.ru/cas/twomass-psc). As various data centres can have different versions and implementations of the same catalogue, this ensures any analysis is repeatable by denoting the exact catalogue and service that was used to obtain the data. Clicking on their identifiers will resolve the service descriptions in the directory hosted by the US Virtual Observatory (http://ww.us-vo.org).
Disclaimer

I hereby declare that the work in this thesis is that of the candidate alone, except where indicated below or in the text of the thesis. The work was undertaken between March 2007 and November 2011 at the Australian National University, Canberra. It has not been submitted in whole or in part for any other degree at this or any other university.

Daniel Bayliss (RSAA/ANU) observed and reduced the Magellan/MIKE spectrum of 2MASS J0820−8003 which appears in the second paper and Chapter 3.

The balance of the observations, data reduction and analysis presented in these papers and chapters was performed solely by the candidate, who also wrote the text in its entirety. The co-authors provided valuable discussions and comments on the text.

The thesis was unconditionally accepted by a panel of expert examiners and ratified by the Dean of the College of Science on 23 January 2012. Following the suggestions of the examiners, this copy contains several improvements, additions and minor corrections.

Simon J. Murphy
16th February 2012
Acknowledgments

Although it is my name on the cover page, no Ph.D. thesis has ever been written in isolation. This document is the result of a collaborative effort with the dozens of colleagues, friends and loved-ones I have been lucky enough to know and work with over the past four and a half years. As the author Gladys B. Stern once wrote, “Silent gratitude isn’t much use to anyone”, so it is my pleasure to especially thank a few people who made this all possible.

Foremost, I would like to express my sincere gratitude to my supervisors, Professors Mike Bessell and Warrick Lawson, for their continuous support and guidance throughout my candidature. Your enthusiasm for this work, patience and breadth of knowledge have been extraordinary and it has been a privilege to work with and get to know you. I hope that this thesis is just the start of a fruitful collaboration for many years to come.

To my dearest Maggie, thank you for your ever-present love, support, encouragement and interest in what I do, despite the late nights and preoccupied weekends. Although I didn’t know you when I started this work, I can’t imagine ever completing it without you. You have been, and are as always, truly wonderful.

To my friends here in Canberra and further afield—thank you for the timely distractions and the pleasure of your company these past four and a half years. You are a large part of the reason I am still sane enough to write these words.

I would be amiss if I didn’t thank my long-time officemate Wolfgang for the many hours of lively, engrossing discussions over the years, several of which I’m sure were work related! The same goes for the students and staff of Stromlo, current and former—you have made it a pleasure to come to work everyday and for this I thank you all. Thanks also to Geoff, Judy and the team at SSO for ensuring countless observing runs were as pain-free as possible.

Finally, I am perpetually grateful to my parents, who—from the time I first looked up at the dark sky over Arrowtown and started this journey too many years ago—have never wavered in their support and encouragement, even though I’m sure you wished I became an engineer, lawyer or a real doctor! This thesis is dedicated to you both.

I would like to gratefully acknowledge the financial support of an RSAA Joan Duffield Research Scholarship and an ANU College of Science Distinguished Research Scholarship.
Abstract

The deep southern sky surrounding the Chamaeleon dark clouds is abundant with pre–main sequence stars of various ages. Because of their youth (5–10 Myr) and proximity ($d \sim 100$ pc), members of two such stellar populations—the open cluster η Chamaeleontis and the nearby ϵ Chamaeleontis Association—are ideal laboratories in which to study the formation and evolution of sparse stellar groups and proto-planetary systems. To better understand their role as some of the closest evidence of recent star formation, this thesis explores the birth, dynamical evolution, accretion and disk properties of both groups’ low-mass members.

The notable lack of low-mass stars in the young open cluster η Cha has long been a puzzle. Two possible explanations have been suggested; a top-heavy initial mass function or dynamical evolution, which preferentially ejected the low-mass members. Previous efforts to find these stars several degrees from the cluster core have been unsuccessful. By undertaking a wider (95 deg2) photometric and proper motion survey with extensive follow-up spectroscopy, we have identified eight low-mass stars that were ejected from η Cha over the past 5–10 Myr. Comparison with recent N-body simulations shows our results are consistent with a dynamical origin for the current configuration of the cluster, without the need to invoke an initial mass function deficient in low mass stars.

Two of the dispersed members exhibited strong, variable Hα emission during our observations, including a star which had an event suggestive of accretion from a circumstellar disk. New infrared photometry confirms the presence of the disk. This star demonstrates that infrequent, episodic accretion can continue at low levels long after most disks around ‘old’ pre-main sequence stars have dissipated. Furthermore, we show that dynamical evolution is likely to be responsible for the higher-than-expected disk fraction observed in η Cha.

Another two non-members are slightly older than the cluster, but are only 42 arcseconds apart and share similar kinematics and distances. We have shown that they almost certainly form a wide (4000–6000 AU) ~ 10 Myr-old binary at 100–150 pc. The system is one of the widest pre-main sequence binaries known. Its isolation and dynamical fragility put strong constraints on any birthplace and mode of formation, which we propose was in a turbulent gas filament in the vicinity of the Scorpius-Centaurus OB Association.

In addition to η Cha, we have also examined membership of the unbound ϵ Chamaeleontis Association, which lies some 10 degrees to the east and has similar age, distance and kinematics. The two groups were almost certainly born in the outer regions of Sco-Cen only a few million years apart. Many members of ϵ Cha have been proposed in the decade since its discovery. After considering the kinematics of candidates from the literature, we have confirmed 11 further stars as likely members. Many of the new members possess infrared spectral energy distributions attributable to circumstellar disks, including four stars with strong Hα and forbidden emission which are actively accreting material.

This work on η and ϵ Chamaeleontis has identified many interesting targets for follow-up studies of disk evolution, accretion, binarity, and other investigations that require samples of nearby, intermediate-age pre-main sequence stars. Several avenues for future work are discussed in the last chapter of the thesis, including the impact of photometry and astrometry from the forthcoming SkyMapper Southern Sky Survey.
Contents

Notes on the digital copy ... 0
List of Figures ... ix
List of Tables ... xiii

1 Introduction ... 1
 1.1 Low-mass star formation ... 1
 1.2 Young stars near the Sun ... 2
 1.3 The Chamaeleon region ... 14
 1.4 Thesis outline ... 19

2 The low-mass stellar halo surrounding η Chamaeleontis 21
 2.1 Introduction ... 21
 2.2 Candidate selection .. 23
 2.3 DBS low-resolution spectroscopy 29
 2.4 WiFeS medium-resolution spectroscopy 35
 2.5 Other young stars in the region 40
 2.6 Dynamics ... 41
 2.7 Cluster membership ... 45
 2.8 Discussion .. 53

3 Episodic disk accretion in the halo of η Chamaeleontis 57
 3.1 Introduction ... 57
 3.2 Multi-epoch spectroscopy .. 58
 3.3 Infrared photometry ... 68
 3.4 Discussion .. 71
 3.5 Conclusion .. 80
4 The young, wide binary system RX J0942.7–7726AB
 4.1 Introduction .. 81
 4.2 Other stars in the region 83
 4.3 Spectral types and reddening 87
 4.4 Age of RX J0942.7–7726AB 89
 4.5 Distance and kinematics 94
 4.6 Discussion .. 98
 4.7 Conclusion .. 103

5 An improved membership of the ε Chamaeleontis Association
 5.1 Introduction .. 105
 5.2 Observations .. 110
 5.3 Kinematic membership analysis 114
 5.4 Discussion .. 121
 5.5 Summary .. 134

6 Conclusions ... 137
 6.1 Future prospects .. 140
 6.2 Afterword ... 145

Bibliography ... 147

Appendix A Isochrone colour transformations 165

Appendix B Derivation of the epicyclic approximation 169

Appendix C WiFeS radial velocity precision 173
List of Figures

1.1 Schematic overview of low-mass star formation .. 3
1.2 Members of young local associations on the sky .. 7
1.3 XYZUVW positions of YLA members ... 8
1.4 Disk fraction of young clusters with age .. 10
1.5 Disks in η Chamaeleontis ... 12
1.6 The brown-dwarf 2M1207 and its Jupiter-mass companion 13
1.7 The Chamaeleon constellation .. 15
1.8 Chamaeleon region as observed by IRAS .. 16
1.9 The η Chamaeleontis open cluster ... 18

2.1 DENIS/2MASS colour-magnitude diagram around η Cha 24
2.2 Distribution of η Cha candidates on the sky ... 25
2.3 η Cha space motion decomposed into observables 27
2.4 Proper motion candidate selection diagram .. 28
2.5 Dwarf and pre–main sequence spectra comparison 30
2.6 DBS gravity–temperature diagram ... 32
2.7 DBS spectra of the intermediate-gravity candidates 34
2.8 WiFeS integral-field spectrum image format .. 35
2.9 Lithium equivalent widths ... 37
2.10 Comparison of proper motion catalogues .. 44
2.11 Results of candidate dynamical simulations .. 45
2.12 Observed late-type η Cha cluster sequence .. 50
2.13 Results of Moraux et al. (2007) N-body simulations 54
3.1 Hα equivalent width – \(v_{10} \) velocity width diagram 61
3.2 2MASS J0801–8058 Hα profiles during the April 2010 outburst 62
3.3 2MASS J0820–8003 Hα profiles during the February 2010 outburst 63
3.4 Magellan/MIKE 2MASS J0820–8003 Hα profile 64
3.5 Multi-epoch Hα line profiles: 2MASS J0801–8058 65
3.6 Multi-epoch Hα line profiles: 2MASS J0820–8003 66
3.7 2MASS two-colour diagram of \(\eta \) Cha members 69
3.8 2MASS/WISE spectral energy distributions 69
3.9 WISE Atlas colour images .. 70
3.10 2MASS/WISE two-colour diagram .. 71
3.11 IRAS colour image of \(\eta \) Cha and surrounds 72
3.12 DBS spectra of 2MASS J0801–8058 and 2MASS J0820–8003 73
3.13 The effects of continuum veiling .. 74
3.14 2MASS J0801–8058 periodicity analysis 76

4.1 RX J0942.7–7726AB and young groups on the sky 82
4.2 RX J0942.7–7726AB finder chart ... 83
4.3 Stars within 10' of RX J0942.7–7726AB 84
4.4 Chance alignment comparison sample 86
4.5 WiFeS R3000 spectra of RX J0942.7–7726 and 2MASS J0942–7727 88
4.6 Na I indices of RX J0942.7–7726AB and young associations 90
4.7 Lithium equivalent widths ... 91
4.8 ASAS3 light curve for RX J0942.7–7726 93
4.9 RX J0942.7–7726AB space motions ... 96
4.10 Dynamical simulations for TW Hydrae and \(\beta \) Pic 98
4.11 Dynamical simulations for Sco-Cen subgroups LCC and UCL 99
4.12 \(\beta \) Pictoris colour-magnitude diagram 100

5.1 \(\epsilon \) Cha members and candidates on the sky 109
5.2 POSS2-IR image of the region surrounding \(\epsilon \) Cha and HD 104237 109
5.3 Finding charts for RX J1150.9–7411 and RX J1243.1–7458 110
5.4 \(\epsilon \) Cha proper motion diagram ... 111
5.5 WiFeS/R3000 spectra of \(\epsilon \) Cha candidates 115
5.6 Dynamical simulations for \(\epsilon \) Cha 12 .. 119
5.7 Northern \(\epsilon \) Cha/LCC members ... 122
5.8 \(\epsilon \) Cha colour-magnitude diagram 125
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>Multi-epoch Hα velocity profiles</td>
<td>127</td>
</tr>
<tr>
<td>5.10</td>
<td>WISE photometry of ε Cha candidates</td>
<td>129</td>
</tr>
<tr>
<td>5.11</td>
<td>2MASS/WISE spectral energy distributions</td>
<td>130</td>
</tr>
<tr>
<td>5.12</td>
<td>Distribution of η and ε Cha members on the sky</td>
<td>131</td>
</tr>
<tr>
<td>5.13</td>
<td>η and ε Cha traceback simulations</td>
<td>132</td>
</tr>
<tr>
<td>5.14</td>
<td>Ortega et al. (2009) simulations of the formation of η and ε Cha</td>
<td>133</td>
</tr>
<tr>
<td>6.1</td>
<td>Chamaeleon region colour-magnitude diagram</td>
<td>141</td>
</tr>
<tr>
<td>6.2</td>
<td>Simulated SkyMapper $(r - i), (r - Hα)$ colour plane</td>
<td>144</td>
</tr>
<tr>
<td>A.1</td>
<td>Linear transformation between i_{DENIS} and Cousins I_{C}</td>
<td>166</td>
</tr>
<tr>
<td>A.2</td>
<td>Transformed and reddened 10 Myr Baraffe et al. (1998) isochrone</td>
<td>168</td>
</tr>
<tr>
<td>B.1</td>
<td>Schematic of epicyclic motion</td>
<td>171</td>
</tr>
<tr>
<td>B.2</td>
<td>Orbital motion in the epicyclic approximation</td>
<td>171</td>
</tr>
<tr>
<td>C.1</td>
<td>Histogram of WiFeS radial velocity differences</td>
<td>174</td>
</tr>
<tr>
<td>C.2</td>
<td>Results of Kolmogorov-Smirnov tests</td>
<td>174</td>
</tr>
<tr>
<td>C.3</td>
<td>HAT-South WiFeS radial velocity curve</td>
<td>175</td>
</tr>
<tr>
<td>C.4</td>
<td>Histogram of HAT-South binary fit RMS values</td>
<td>175</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Nearby young associations from Torres et al. (2008) 6
1.2 Census of the η Chamaeleontis cluster prior to this work 18
2.1 Photometric candidates within 5.5 deg of η Cha 26
2.2 DBS observations of the photometric candidates 33
2.3 WiFeS observations of η Cha candidates ... 39
2.4 Updated kinematic parameters for η Cha ... 43
2.5 Summary of the dynamical simulations .. 51
3.1 WiFeS observations of 2MASS J0801–8058 .. 59
3.2 WiFeS observations of 2MASS J0820–8003 .. 60
4.1 Dynamical simulations against young local associations 97
5.1 Late-type ε Cha candidates from the literature 108
5.2 Early and solar-type ε Cha candidates from the literature 108
5.3 WiFeS observations of ε Cha candidates .. 113
5.4 WiFeS time-series and literature velocities ... 117
5.5 Kinematics of ε Cha members within LCC .. 123