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Abstract

This dissertation shows that the Coulomb operator and the long-range Coulomb

operators can be resolved as a sum of products of one-particle functions. These

resolutions provide a potent new route to tackle quantum chemical problems.

Replacing electron repulsion terms in Schrödinger equations by the truncated

resolutions yields the reduced-rank Schrödinger equations (RRSE). RRSEs are

simpler than the original equations but yield energies with chemical accuracy

even for low-rank approximations. Resolutions of the Coulomb operator factorize

Coulomb matrix elements to Cholesky-like sums of products of auxiliary integrals.

This factorization is the key to the reduction of computational cost of quantum

chemical methods.
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Notation and symbol

In this thesis, we have used the following choice of notation and symbol. Atomic

units and real orbitals are used throughout unless otherwise stated.

Notation

a is a scalar.

a∗ is a complex conjugate of a.

|a| is an absolute value of a.

(a)n is the Pochhammer symbol or rising factorial

a is a vector.

|a| is a norm of vector a.

A is a matrix.

A† is a conjugate transpose of matrix A.

I is the identity matrix.

Tr[A] is a trace of matrix A.

ı is the imaginary unit, ı2 = −1.

f(r) is a function of r.

f̂(x) is a Fourier transform of f(r).

F is an operator.

<(z) is the real part of z.

=(z) is the imaginary part of z.
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Mathematical symbol

Bz(a, b) Incomplete beta function(
n

k

)
binomial coefficient

C
(λ)
n (z) Gegenbauer (or ultraspherical) polynomial

C l,l′,k
m,m′,m+m′ Clebsch-Gordan coefficient

δ(x) Dirac delta function

δi,j Kronecker delta

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
hypergeometric function

pF̃q

(
a1, . . . , ap

b1, . . . , bq
; z

)
regularized hypergeometric function

Γn(z) Gamma function

H(x) Heaviside step function

Hn(z) Hermite polynomial (physicists’ Hermite polynomial)

I(z) modified Bessel function of the first kind

i(z) modified spherical Bessel function of the first kind

J(z) Bessel function of the first kind

j(z) spherical Bessel function of the first kind

Ln(z) Laguerre polynomial

Lα(z) modified Struve function

Pl Legendre polynomial

U(x, y) parabolic cylinder function

Y m
l (r) complex spherical harmonic

Ylm(r) real spherical harmonic

For more comprehensive definition of these symbols, see [8, 9, 10].



xix

Chemical symbol

B number of basis functions

E energy

L angular momentum in basis set

N number of electrons or normalization constant

ζ Gaussian basis function’s exponent

ω range-separation parameter

ρ(r) electron density

Ψ wavefunction

ϕµ atomic orbital

ψi molecular orbital

εi orbital energy

τ spin variable

〈a|b〉
∫
a∗(r)b(r)dr

〈a|T |b〉
∫ ∫

a∗(r1)T (r1, r2)b(r2)dr1dr2

For more comprehensive definition of these symbols, see [11].

Resolution symbol

φk resolution function

N ,L,K truncation points of infinite resolution

Z scaling factor

∆ logarithm of absolute error of resolution calculation

ε relative error of resolution calculation

For more comprehensive definition of these symbols, see §2.1, §3.3, §4.3 and §5.3.





Chapter 1

QM methods

Erwin Schrödinger (1887–1961) Paul Adrien Maurice Dirac (1902–1984)

The Nobel Prize in Physics 1933 was awarded jointly to Erwin Schrödinger and

Paul Adrien Maurice Dirac “for the discovery of new productive forms of atomic theory” [12].

HΨ = EΨ

— Schrödinger, 1926 [13, 14]

“The underlying physical laws necessary for the mathematical theory of a large part of physics

and the whole of chemistry are thus completely known, and the difficulty is only that the exact

application of these laws leads to equations much too complicated to be soluble. It therefore

becomes desirable that approximate practical methods of applying quantum mechanics

should be developed, which can lead to an explanation of the main features of complex

atomic systems without too much computation.”

— Dirac, 1929 [15]
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The birth of quantum mechanics dates back to early 19th century. Classical

or Newtonian mechanics failed to explain a number of experiments, for example,

blackbody radiation, gas discharge tube and cathode ray. Attempts to explain

these experiments led to the discovery of a new concept of physics whereby energy

levels are not continuous but discrete.

During the 19th century and early 20th century, there were many renowned

scientists including Boltzmann [16], Planck [17], Einstein [18], de Broglie [19] and

Heisenberg [20] involved in the conception of this new field of physics. As the

unique feature of this new theory is the discretization or quantization of energy

levels, it later became known as “quantum mechanics”. The term was first used

by Born in early 1920s [21].

The two most important theoretical developments to the field were the formu-

lation of the Schrödinger equation in 1926 [13, 14] and its relativistic extension,

the Dirac equation in 1928 [22]. In principle, we can predict any observable of a

system of interest from the wavefunction Ψ obtained by solving one of the two

equations. Therefore, the solutions are of great importance to scientists.

However, Dirac made the popular quote in his 1929 proceeding [15] that math-

ematical description of physics and chemistry is mostly known and the only major

problem left is to obtain numerical solutions from the theory. Time has proven

that Dirac’s comment is correct. The equations can be solved exactly for one-

electron systems but have proven difficult in most other cases.

There have been numerous attempts to solve the Schrödinger and the Dirac

equations. Even with the massive computing power available in the 21st century,

ab initio methods, based on solving equations using the first principles of quan-

tum mechanics, are still relatively expensive and are limited to moderately-sized

molecules.

For molecular systems, the Hamiltonian operator H and wavefunction Ψ de-

pends on time and coordinates of all nuclei and electrons. In this thesis, we are

only interested in time-independent non-relativistic electronic Schrödinger equa-

tion. The justification to remove the dependence on nuclear coordinates is the

Born-Oppenheimer approximation [23] and the dependence on time is removed

because we are interested in stationary states of a system. We will therefore deal

with electronic Hamiltonian operator of the form:

He = −1

2

∑
i

∇2
i −

∑
i,A

ZA
riA

+
∑
i>j

1

rij
(1.1)

where i and j represent electrons, A represents nuclei and ∇2 is the Laplacian.
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The electronic Schrödinger equation is a partial differential equation. The

Hamiltonian operator H is known from a description of the system – coordinates

and charges of nuclei and total number of electrons. We want to solve the equation

for wavefunction Ψ and energy E. The strategy mathematicians often use to solve

this kind of equation is to start with a guess form of Ψ.

The most difficult terms in the equation are r−1
ij which describe electron-

electron interactions. Without these terms, the equation could be exactly solv-

able. However, we do not have a liberty to simply drop these terms from the

Hamiltonian but rather have to deal with them wisely.

In this chapter, the standard quantum mechanics methods that will be refered

to in later chapters are briefly summarized.

1.1 Hartree-Fock wavefunction

In 1928, Hartree [24] suggested that the wavefunction of an N -electron system is

simply a product of one-electron wavefunctions.

Ψ(r1, r2, r3, . . . , rN) = χ1(r1)χ2(r2)χ3(r3) . . . χN(rN) (1.2)

This guess was inadequate because this form of wavefunction implies that elec-

trons are distinguishable and does not comply with the well-known Pauli exclusion

principle formulated in 1925 [25].

In 1930, Fock [26] improved this guess by using linear combination of all

possible permutations of N individual wavefunctions. The general expression of

Hartree-Fock Ψ can be described by a Slater determinant

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)
...

...
...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣
(1.3)

where x={r, τ}. The one-electron spin orbital χi is a product of a spatial orbital

ψ(r) and a spin function α(τ) or β(τ) which are orthornormal 〈χi|χj〉 = δij,

〈α|α〉 = 〈β|β〉 = 1 and 〈α|β〉 = 0.

In an unrestricted Hartree-Fock (UHF) calculation, there are two sets of spa-

tial orbitals ψα(r) and ψβ(r) for α and β electrons. This is the most general

and expensive form of HF theory. However, it is not necessary to differentiate

between the two spins in a closed-shell system (even number of electrons and all
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electrons are paired), thus only one set of ψ(r) is used in a restricted Hartree-

Fock (RHF) calculation. A variant of RHF for open-shell system is “restricted

open-shell Hartree-Fock” (ROHF) where doubly occupied molecular orbitals are

used as far as possible and singly occupied orbitals are then used for unpaired

electrons.

This antisymmetric HF wavefunction (1.3) leads to HF energy.

EHF =
∑
i

Hi +
∑
i<j

(Jij −Kij) (1.4)

where Hii are one-electron integrals and Coulomb integral Jij and exchange inte-

gral Kij are two-electron integrals.

Hi =

∫
χ∗i (x1)

(
1

2
∇2

1 −
∑
A

ZA
r1A

)
χi(x1)dx1 (1.5)

Jij =

∫ ∫
χ∗i (x1)χi(x1)

1

r12

χ∗j(x2)χj(x2)dx1dx2 (1.6)

Kij =

∫ ∫
χ∗i (x1)χj(x1)

1

r12

χ∗j(x2)χi(x2)dx1dx2 (1.7)

The Coulomb term can be classically interpreted as the repulsion energy between

two spatial orbitals which have electron densities |ψi|2 and |ψj|2. In contrast, the

exchange interaction is a result of the exclusion principle and is a purely quantum

mechanical effect with no classical analog.

The above formulae describe the heart of HF theory but in practice one still

need further information about molecular orbitals ψi to calculate the energy. The

two subsections below explain how we obtain the HF orbitals.

1.1.1 Basis set

In 1929, Lennard–Jones [27] proposed the Linear Combination of Atomic Orbitals

(LCAO) approximations. The means spatial molecular orbitals (MO) ψ(r) are

expanded in the basis of atomic orbitals (AO) ϕ(r).

ψi(r) =
∑
ν

cνiϕν(r) (1.8)

The AOs can be modelled by a set of basis functions.

In theory, there is a myriad of basis functions that one can use for AOs. In

1930, Slater proposed Slater-type orbitals (STO) which decay exponentially with

distance [28].

ϕSTO(x, y, z) = NSTO
α,ax,ay ,az(x− Ax)ax(y − Ay)ay(z − Az)az exp(−α|r −A|) (1.9)
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The rationale behind STOs is that they resemble the exact solution of the.

Schrödinger equation for hydrogenic ions. However, the STO basis has led to

difficulties in the two-electron integral calculations that are at the heart of quan-

tum chemical methods.

In 1950, Boys suggested Gaussian-type orbitals (GTO) [29].

ϕGTO(x, y, z) = NGTO
α,ax,ay ,az(x−Ax)ax(y−Ay)ay(z−Az)az exp(−α|r−A|2) (1.10)

They do not have a cusp nor correct long-range decay behavior for wavefunctions

but are much easier to manipulate. This was an important breakthrough and

calculations today are mostly performed using GTOs. There are numerous GTO

basis sets available for quantum chemical calculations. Most of basis sets often

used in quantum chemistry fall into three categories.

• Minimal basis sets, for example, STO-nG, are relatively small basis sets.

They often yield rough results but are computationally cheap.

• Split-valence basis sets, for example, Pople’s X-YZG and X-YZWG are basis

sets that represent valence orbitals by more than one basis function.

• Correlation-consistent basis sets, for example, Dunning’s cc-pVNZ are basis

sets that are designed to converge systematically to the complete-basis-set

(CBS) limit.

1.1.2 The self-consistent field procedure

From the time-independent electronic Schrödinger equation and HF theory with

LCAO approximation one can derive Pople-Nesbet-Berthier equations [30].

Fα Cα = SCα εα

Fβ Cβ = SCβ εβ (1.11)

In the RHF version, the two matrix equations above are reduced to one be-

cause we just need one spatial orbital per pair of electrons. In this case, the
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equations are called Roothaan-Hall equations [31, 32].

FC = SCε (1.12)

Fµν = Hcore
µν +

∑
λσ

Pλσ

[
(µν|λσ)− 1

2
(µσ|λν)

]
(1.13)

Hcore
µν =

∫
ϕ∗µ(r1)

(
1

2
∇2

1 −
∑
A

ZA
r1A

)
ϕν(r1)dr1 (1.14)

Pµν = 2
N∑
i

cµicνi (1.15)

(µν|λσ) =

∫ ∫
ϕ∗µ(r1)ϕν(r1)

1

r12

ϕ∗λ(r2)ϕσ(r2)dr1dr2 (1.16)

Sµν =

∫
ϕ∗µ(r1)ϕν(r1)dr1 (1.17)

The MO coefficients C and the orbital energies ε are unknown and need to be

determined. The overlap matrix S can be calculated independently. However, F

depends on C and this suggests that the equations must be solved iteratively.

The equations can be further simplified to an eigenvalue problem. First, we

need to find a matrix X which orthonormalizes the AO basis.

X†SX = I (1.18)

An obvious choice of X is S−1/2. This matrix is multiplied to the left of

Roothaan-Hall equations and yields

F′C′ = C′ε (1.19)

F′ = X†FX (1.20)

C = XC′ (1.21)

We solve these equations by the self-consistent field (SCF) procedure:

1. Obtain an initial guess for the density matrix P.

2. Build the Fock matrix F.

3. Construct F′ and diagonalize it to get C′.

4. Construct the MO coefficient C

5. Calculate the new density matrix P and energy E = 1
2

Tr[P(Hcore + F)].

6. If E and/or P are not converged go to step 2. Otherwise, stop.
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Infinite 

basis set 

 Exact 

solution 

QZ-  

TZ- 

DZ- 

Minimal 

basis set 

  

 HF       MP2      MP3       MP4 

           CISD    CISDT   CISDTQ 

           CCSD  CCSDT  CCSDTQ 

Full CI 

 

Figure 1.1: Pople diagram [33]
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1.2 Post-HF methods

Hartree-Fock theory is arguably the simplest approach to obtain approximate

ground-state wavefunctions and energies, that is to obtain solutions to the Schrödinger

equation. However, there are a number of factors that make HF solutions differ

from the correct answers.

• External electromagnetic field and relativistic effect are usually neglected.

This is only noticeable for calculation involving heavy atoms or strong ex-

ternal field.

• We solely deal with electronic wavefunction because nuclear masses are

much greater than electronic masses (Born-Oppenheimer approximation).

This can lead to an incorrect description of tunneling for light atoms.

• Theoretically, we need an infinite number of basis functions to completely

and accurately model molecular wavefunctions. However, in reality, we have

a finite computing resource and are forced to use sensible and affordable

basis sets. It is usually not practical to perform calculations at CBS limit.

• Mean-field approximation is a fundamental flaw in HF theory. Replacing

the electron-electron interactions by an average interaction neglects elec-

tron correlation. (Some electron correlation, between like-spin electrons, is

already treated in the exchange term.)

The last two factors are often most pronounced and need to be systematically

addressed together. This can be summarized in a Pople diagram which shows a

combination of method and basis set chosen for a calculation.

We discuss below three methods that provide remedy to HF fundamental

failure to capture electron correlation. They are classified as post-HF methods

because HF solutions form a basis for the construction of more a flexible wave-

function whose exact form is determined by the nature of each post-HF method.

1.2.1 Møller-Plesset perturbation theory

Rayleigh-Schrödinger perturbation theory (RSPT) was introduced to quantum

mechanics in Schrödinger’s 1926 paper [34] that made a reference to the work

of Lord Rayleigh [35]. Møller-Plesset perturbation theory (MPPT) is a special

application of RSPT proposed by Møller and Plesset [36].
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Perturbation theory is based on the assumption that H0 differs only slightly

from the exact H and the contribution from perturbation term V is small. Under

this condition, one can expand the eigenvalues and eigenfunctions as Taylor series

in λ, a parameter which will be set to unity later.

H = H0 + λV (1.22)

E = λ0E(0) + λ1E(1) + λ2E(2) + . . . (1.23)

Ψ = λ0Ψ(0) + λ1Ψ(1) + λ2Ψ(2) + . . . (1.24)

EMPn ≡ E(n) (1.25)

There exists two formulations of perturbation theory. The original one gives

EMP0 = EHF and EMP1 = 0 while the chemistry formulation gives EMP0 +EMP1 =

EHF. The higher-order corrections are the same in both formulations and we first

obtain a correction to HF energy at MP2 level. The MP2 energy is given by

EMP2 =
∑
ijab

(ia|jb)× 2(ia|jb)− (ja|ib)
εi + εj − εa − εb

(1.26)

(ia|jb) =

∫ ∫
ψ∗i (r1)ψa(r1)

1

r12

ψ∗j (r2)ψb(r2)dr1dr2 (1.27)

where i, j are labels of occupied orbitals and a, b are labels of virtual orbitals.

Though the MPn calculation can be done up to an arbitrary order in theory,

the cost of the calculation will skyrocket. Perturbation theory is not variational

but size consistent at any order. MP2 is considered as one of the computationally

cheapest methods to obtain a correlation correction to HF energy. However, the

MPn convergence behavior was described as “slow, rapid, oscillatory, regular,

highly erratic or simply non-existent, depending on the precise chemical system

or basis set” in Leininger et. al.’s 2000 paper. [37]

MP2, MP3, MP4 and sometimes MP5 are used in quantum chemistry calcu-

lations. Typically a large fraction of the correlation energy is recovered at MP2

level whose formal computational cost is quintic with respect to the size of basis

set. Higher-order MP theory are expensive and may be less competitive compared

to other post-HF methods.

1.2.2 Configuration interaction

Configuration interation (CI), the conceptually simplest method for post-HF cor-

relation energy was developed by Boys in 1950s [38]. In this method, the exact
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electronic wavefunction is obtained by mixing (interaction) all the different elec-

tronic states (configurations).

ΨFCI = c0Ψ0 +
∑
ar

craΨ
r
a +

∑
abrs

crsabΨ
rs
ab +

∑
abcrst

crstabcΨ
rst
abc + . . . (1.28)

|Ψ0〉 = |χ1χ2 . . . χaχb . . . χN〉 (1.29)

|Ψr
a〉 = |χ1χ2 . . . χrχb . . . χN〉 (1.30)

|Ψrs
ab〉 = |χ1χ2 . . . χrχs . . . χN〉 (1.31)

where a, b, c, . . . represents occupied orbitals and r, s, t, . . . represent virtual or-

bitals. |Ψ0〉, |Ψr
a〉, |Ψrs

ab〉 are ground state, singly-excited and doubly-excited de-

terminants respectively. (See the definition of Slater determinant in HF section.)

If the basis set is complete and all configurations are used, the CI method

gives the exact solution to Schrödinger equation. This is the most accurate, the

most expensive, size-consistent and variational procedure in quantum chemistry.

Unfortunately, because the computational cost grows exponentially with respect

to the size of basis set, CI methods are still only applicable to small atoms and

molecules.

However, there are other cheaper variants of CI methods. To avoid confusion,

we refer to the method that use all configurations as full CI (FCI). One can

obtain less expensive and computationally feasible methods by truncating the

FCI wavefunction. CID, CISD and CISDT are examples of these variants. The

S, D or T mean that the method incorporates single, double or triple electronic

excitations into the wavefunction. Unlike MP theory, truncated CI methods are

not size-consistent but variational.

1.2.3 Coupled cluster

Coupled cluster (CC) method was developed in 1950s by Coester and Kümmel

for nuclear physics problems. It was later introduced into quantum chemistry by

Č́ıžek [39] and Paldus [40]. The derivation starts from the excitation operator T
which is related to the FCI wavefunction.

T = T 1 + T 2 + T 3 + · · · (1.32)

T 1|Ψ0〉 =
∑
ar

cra|Ψr
a〉 (1.33)

T 2|Ψ0〉 =
∑
abrs

crsab|Ψrs
ab〉 (1.34)

|ΨFCI〉 = (1 + T )|Ψ0〉 (1.35)
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The CC wavefunction is defined by

|ΨCC〉 = eT |Ψ0〉 (1.36)

eT =
T 0

0!
+
T 1

1!
+
T 2

2!
+ · · · (1.37)

As in CI methods, in practice, T is truncated so that only the few first terms

are included. The same name conventions are used for CC, for example, CCSD

means single excitation operator T 1 and double excitation operator T 2 are used

in the method. CCSD are size-consistent and capture more correlation energy

than CISD. However, it should be noted that CC methods are not variational.

CCSD(T) [41] is often called a gold standard in quantum chemistry for its

excellent compromise between the accuracy and computational cost. CCSDT

and CCSDTQ are expensive and only used for small molecules.

1.3 Alternative approaches

In the previous two sections, the HF and post-HF methods, traditional ways of

solving electronic Schrödinger equation are presented. In this section, we turn to

a number of recent promising alternatives.

1.3.1 Composite methods

Quantum chemistry composite methods (or thermochemical recipes [42]) com-

bine results of several calculations at different theory/basis set levels to get high

accuracy results (often within 1 kcal/mol of the experimental value or chemical

accuracy). The approach carefully mixes high level of theory/small basis set and

low level of theory/large basis set to mimic the result of high level of theory/large

basis set. Composite methods often start with geometry optimization, follow by

several electronic calculations and end with a frequency calculation to obtain the

zero-point vibrational energy (ZPVE).

In 1989, Pople introduced his first composite method for broad chemistry

application, Gaussian-1 (G1) [43]. It was quickly replaced by its successor G2

[44]. Composite methods used today include CBS [45, 46], Gn [45, 47], Wn [48],

T1 [42], ccCA [49], HEAT [50] and their variants.
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1.3.2 Multireference methods

Instead of using a single Slater determinant obtained from HF, multireference

methods start with several chemically relevant determinants.

ΨMCSCF =

NCONFIG∑
i

CiΨi (1.38)

The SCF process in this context is called multi-configurational self-consistent field

(MCSCF) [51]. MCSCF can be classified into

• Complete active space SCF (CASSCF)

• Restricted active space SCF (RASSCF)

MCSCF can also be regarded to as a generalization of CI with restricted excitation

space and concurrent orbital optimization. In analogous to HF and post-HF

methods, there are a number of methods that build upon MCSCF, for example,

• Multireference configuration interaction (MRCI)

• Complete active space perturbation theory (CASPT2)

• Multireference coupled-cluster (MRCC)

1.3.3 Density functional theory

The QM methods described in the previous sections are based on the electronic

wavefunction that is a function of the coordinates of all electrons. This makes

these theories computationally expensive. Density functional theory (DFT) is

instead concerned with the electron density.

ρ(r) = N

∫ ∫
. . .

∫
|Ψ(r, r2, r3, . . . , rN)|2 dr2dr3 . . . drN (1.39)

The root of DFT concept is in the Thomas-Fermi model of electron gas [52, 53]

but is rigorously proven by two Hohenberg-Kohn theorems [54].

• The first theorem states that the electronic ground state of a system can

be uniquely determined by the electron density that depends on only three

spatial coordinates.

• The second theorem states that DFT is variational i.e. the correct density

with a hypothetical “exact functional” will give the lowest energy.
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Kohn and Sham [55] developed the theory further by partitioning the energy

into terms and introducing orbitals that provide a practical implementation of

the theory. The Kohn-Sham equation is analogous to HF equation and can be

solved by a similar SCF procedure.

E[ρ(r)] = EV[ρ(r)] + ET[ρ(r)] + EJ[ρ(r)] + EXC[ρ(r)] (1.40)

The first three terms on the right are the nuclear potential, kinetic and

Coulomb energies that can be calculated in the same way as in HF calculation.

However, the last term, the exchange-correlation energy, is not trivial and is the

most important issue in DFT.

The first Hohenberg-Kohn theorem only states the existence of relationship

between electron density and energy but does not give any further information

on how to extract energy from the density.

There have been countless attempts to obtain the best functional that works

for all chemical systems. It was not until 1990s that reasonably accurate DFT

functionals were developed and became popular among computational chemists.

B3LYP (Becke, three-parameter, Lee-Yang-Parr) [56, 57, 58] is arguably the

most popular DFT functional at present.

EB3LYP
xc = ELDA

xc +a0(EHF
x −ELDA

x )+ax(E
GGA
x −ELDA

x )+ac(E
GGA
c −ELDA

c ) (1.41)

The B3LYP parameters a0 = 0.20, ax = 0.72 and ac = 0.81 were empirically

determined by fitting the DFT energy to reproduce experimental results. LDA

stands for local-density approximation and GGA stands for generalized gradient

approximations.

B3LYP is a hybrid functional because it incorporates exchange energy from

the Hartree-Fock theory with exchange and correlation from other sources. The

hybrid approach was introduced by Becke in 1993 [56] and was found to improve

many molecular properties.

Because of the parameterization and theoretical inadequacy of functionals,

DFT may give erroneous results when used beyond their fitting data sets or

assumptions of the functionals [59, 60].

DFT is also known to be incompetent for the description of intermolecular

interactions, especially dispersion or van der Waals forces. One simple modifi-

cation to solve this problem is to incorporate energy from long-range Coulomb

operator erf(ωr12)/r12 into DFT functionals [61, 62, 63, 64, 65] but there exists

a number of other attempts [66, 67, 68].
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1.3.4 Other methods

Apart of the mainstream methods briefly described above, there are also other

theoretically promising QM methods being developed that are worth mentioning.

• Explicit r12 methods explicitly includes interelectronic distance into trial

wavefunctions. The idea was first suggested by Hylleraas in 1927 [69] and

later revisted by Kutzelnigg and explored by many others [70]. R12 ap-

proach speeds up the basis set convergence because they have correct de-

scription of the Coulomb cusp.

• Intracule functional theory (IFT) [71] is the two-electron analogue of DFT.

It aims to remedy DFT well-known systematic failure by using two-electron

“Fertile Crescent”, a largely unexplored land of quantum chemistry.

• Scaled Schrödinger equation developed by Nakatsuji [72] provides extremely

accurate results beyond chemical accuracy for very small atoms and molecules.

• Reduced density matrix (RDM) idea was proposed by Coulson in 1959

[73]. The calculation was done using a reduced density matrix instead of a

wavefunction.

• Quantum Monte Carlo (QMC) calculations use Monte Carlo method to

simulate quantum systems [74].

For a comprehensive recent review, see “Solving the Schrödinger Equation:

Has Everything Been Tried?” a 2011 book edited by Popelier [75].



Chapter 2

Resolutions of the

Coulomb operator

The idea of resolutions of the Coulomb operator was first conceived in Gilbert’s

1996 Honours thesis supervised by Gill [1]. It was expanded and published in a

series of papers [2, 3, 4, 5, 6, 7]. We summarize some basic concepts of resolutions

of the Coulomb operator (RO) [1, 2, 3] in §2.1, derive an extension to symmetric

kernel functions in §2.2 and discuss related techniques in §2.3.

2.1 Basic theory

In Chapter 1, we have described the non-relativistic electronic Schrödinger equa-

tion for an N -electron system. The Hamiltonian consists of two major parts, the

trivial one-electron terms and the troublesome two-electron terms.[
N∑
i

h(ri) +
N∑
i<j

r−1
ij

]
Ψ = EΨ (2.1)

15



16 CHAPTER 2. RESOLUTIONS OF THE COULOMB OPERATOR

Why are these r−1
ij terms so difficult? A theoretical answer is that the terms

are responsible for the coupling of electron motion and create many body effects.

A practical answer, on the other hand, is simply the difficulty in dealing with four-

center two-electron integrals. The integrals resulting from r−1
ij are at the heart

of virtually all QM methods. Though efficient algorithms for integral evaluation

e.g. Prism [76] exists, the bottlenecks of QM calculations are still manipulation

of these integrals.

A simple way to eliminate the coupling effect that makes the terms difficult

is to write r−1
ij as a sum of products of one-particle functions, in other words,

resolving them. Historically, there have been a number of interests in resolving a

two-particle symmetric function into one-particle functions.

In 1782, the Legendre expansion [77] partially resolves the radial part of r−1
12

into r> and r< (shorthand for min(r1, r2) and max(r1, r2) respectively). The

Legendre polynomial Pl which represents the angular part can also be resolved

into a sum of products of real spherical harmonics Ylm.

r−1
12 =

∞∑
l=0

rl<
rl+1
>

Pl(cos γ)

=
∞∑
l=0

4π

2l + 1

rl<
rl+1
>

l∑
m=−l

Ylm(r1)Ylm(r2) (2.2)

In the early 20th century, the resolution problem was considered by Hilbert

[78], Schmidt [79] and Mercer [80, 81]. In these works, only the convergence rate

of resolutions was discussed for functions on compact domains.

Though Mercer’s theorem or “kernel trick” does not apply to functions on an

unbounded domain, it has been widely used in many computer science applica-

tions particularly machine learning since 1964 [82].

The first chemical interest in resolving two-particle functions was the work

by Gilbert in 1996 [1]. The aim was to achieve linear-scaling Coulomb energy

calculation by resolving the long-range Ewald operator based on the Coulomb

orthonormal polynomials flmn. The original resolution was in the Cartesian form.

erf(ωr12)

r12

≡
∑
lmn

φlmn(r1)φlmn(r2) (2.3)

φlmn(r) =

∫
flmn(r′)

erf(ω|r − r′|)
|r − r′| dr′ (2.4)

flmn(r) =
∑
ijk

ijkClmnr
i
xr
j
yr
k
z (2.5)
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ijkMlmn =

∫ ∫
rixr

j
yr
k
z exp

[
−2
|r|2 + |u|2

β2

]
erf(|r − u|)
|r − u| ulxu

m
y u

n
zdrdu (2.6)

Coefficients ijkClmn of the Coulomb orthogonal polynomials are obtained by in-

version of the Cholesky decomposition of the monomials ijkMlmn [1, 83].

Another related work was by Gill in 1997 [84]. The Ewald operator was

expanded in a Taylor series.

erf(ωr12)

r12

=
2ω√
π

∞∑
n=0

(−ω2)n

n!(2n+ 1)
(r2

1 + r2
2 − 2r1 · r2)n (2.7)

This was not satisfactory because it includes off-diagonal terms r2
1 + r2

2 [3]. Later

in this chapter we discuss how they can be diagonalized.

It was not until 2008 that a rigorous foundation of resolutions of the Coulomb

operator was published [2]. This first paper in the series discusses the resolution of

a two-particle operator T (r12) and provides an example for the Coulomb operator.

The derivation in [2] begins with {fi} which is a complete set of functions

that are orthonormal with respect to an operator T , i.e. T -orthonormal.

〈fi|T |fj〉 = δij (2.8)

T is a symmetric two-body operator that yields φk when it operates on fk.

T [fk(r)] =

∫
fk(r

′)T (|r − r′|)dr′ ≡ φk(r) (2.9)

From these definitions, one can expand arbitrary functions a(r) and b(r) as

〈a| =
∑
i

ci〈fi| =
∑
i

〈a|T |fi〉〈fi| =
∑
i

〈a|φi〉〈fi|, (2.10)

|b〉 =
∑
j

|fj〉cj =
∑
j

|fj〉〈fj|T |b〉 =
∑
j

|fj〉〈φj|b〉. (2.11)

The two-particle integral between the two functions can be factorized into a sum

of one-particle overlap integrals or auxiliary integrals.

〈a|T |b〉 =
∑
ij

〈a|φi〉〈fi|T |fj〉〈φj|b〉

=
∑
ij

〈a|φi〉δij〈φj|b〉 =
∑
k

〈a|φk〉〈φk|b〉 (2.12)

This also shows that the operator T and the kernel function T (r12) may be re-

solved as a sum of products of φk.

T = |φk〉〈φk| (2.13)

T (r12) =
∞∑
k

φ∗k(r1)φk(r2) (2.14)
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As one specific practical example, the paper [2] describes a resolution of the

Coulomb operator based on Hermite polynomials, Hn, which results in φk in a

spherical form.

r−1
12 =

∞∑
n=0

∞∑
l=0

m∑
l=−m

φnlm(r1)φnlm(r2) (2.15)

φnlm(r) = 2
√

2Ylm(r)

∫
(2/π)1/4

2n
√

(2n)!
H2n

(
x√
2

)
exp

(
−x

2

4

)
jl(xr)dx (2.16)

where jl are spherical Bessel functions.

This resolution was truncated and used to compute the Coulomb self-interaction

energy of point charges. It was shown that the resolution technique provides lin-

ear scaling Coulomb energy calculations while classical particle-particle algorithm

scales quadratically with the number of particles. For a large system, this is a

considerable computational saving with a tunable accuracy.

The second paper in the series [3] described a different resolution of r−1
12 based

on Lagurre polynomials, Ln, where the resolution is easier to manipulate.

φnlm(r) = 4Ylm(r)

∫
Ln(2x) exp(−x)jl(xr)dx (2.17)

This resolution was used to calculate Coulomb and exchange energies of Slater

orbitals of hydrogenic ions, the hydrogen molecule and the beryllium atom.

The three works [1, 2, 3] have laid a foundation for RO theory in quantum

chemistry. The Cartesian choice of φk was proven to be numerically unfavorable

[1] and abandoned. Thus, two choices of spherical φk, based on Hermite and La-

guerre polynomials were considered in the two papers [2, 3]. Recurrence relations

are given to construct φk in both cases, but the Laguerre generator one is simpler

and more stable. Thus it is a subject of further investigation in Chapter 3.

We note that our resolutions are also used by other research groups to study

Slater-type orbitals [85, 86, 87]. The cumbersome orbital translation problem can

be circumvented by using RO theory.

Apart from the choice of φk, there are generally three parameters N , L and

Z involved in an RO calculation. The first two are from rectangular truncation

of the resolution of the function T (r12).

T (r12) =
∞∑
n=0

∞∑
l=0

l∑
m=−l

φ∗nlm(r1)φnlm(r2)

≈
N∑
n=0

L∑
l=0

l∑
m=−l

φ∗nlm(r1)φnlm(r2) ≡
K∑
k=1

φ∗k(r1)φk(r2) (2.18)
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〈a|T |b〉 =
∞∑
n=0

∞∑
l=0

l∑
m=−l

〈a|φnlm〉〈φnlm|b〉

≈
N∑
n=0

L∑
l=0

l∑
m=−l

〈a|φnlm〉〈φnlm|b〉 ≡
K∑
k=1

〈a|φk〉〈φk|b〉 (2.19)

We note that K ≡ (N + 1)(L + 1)2 and we choose to relate the index k to the

indices n, l and m through k = n(L+ 1)2 + l(l + 1) +m+ 1.

The compression factor Z also plays a role in RO calculations. The system

can be scaled down by Z before invoking the resolution calculation. The scaling

can change how close the truncated sum is to the integral in (2.19). Of course, if

N , L are infinite, the resolution is exact for all Z. Nonetheless, some resolutions

are insensitive to Z i.e. scaling does not change the convergence rate of the sum

to the integral. (See an example in Chapter 5.) This scaling idea was inspired by

atomic number of hydrogenic ions studied in [3].

The scaling is first introduced in Chapter 3 and also used in Chapter 4. All

relevant input parameters i.e. nuclear coordinates RA, basis set exponents ζi and

the range-separation parameter ω are scaled accordingly before running the cal-

culation and output variables are scaled back by the same factor before reporting.

The following formulae describe the relationship between the scaled system

denoted by primed variables and the original system.

R′A = Z−1RA (2.20)

ζ ′i = Z2ζi (2.21)

ω′ = Zω (2.22)

E ′J = ZEJ (2.23)

E ′T = Z2ET (2.24)

ψ′(r′) = Z3/2ψ(r) (2.25)

ρ′(r′) = Z3ρ(r) (2.26)

Equation (2.23) applies to all Columbic energies including nuclear-nuclear, nuclear-

electron and electron-electron interactions while Equation (2.24) applies to kinetic

energy only.

Alternatively, of course, one could scale the φk(r) to match the density but we

prefer, for aesthetic reasons, not to introduce a Z-dependence into the potentials.
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2.2 Extensions of resolution theory

In this section, we consider some extensions of resolution theory to functions of

the form T (r1, r2, θ12) that is symmetric with respect to the interchange of r1 and

r2. The three parameters of the function are defined by the dot product r1 · r2

= r1r2 cos θ12.

We derive four approaches: substitution, diagonalization, Fourier orthonor-

malization and real orthonormalization. Figure 2.1 summarizes the use of these

methods in various circumstances.

2.2.1 Substitution

If T can be written in terms of sums, differences and/or products of resolved

functions, it is trivial and straightforward to substitute known resolutions into T

and rearrange them to obtain a resolution.

Substitution is the simplest technique but it is not applicable to many cases.

A more general and systematic approach to resolve T involves decoupling and

resolving the angular part of T .

Decoupling and resolving the angular part

We recall a radial-angular decoupling of the Newtonian potential in terms of

Legendre polynomial [77].

r−1
12 =

∞∑
l=0

[
2l + 1

2

∫ 1

−1

Pl(x)(r2
1 + r2

2 − 2r1r2x)−1/2dx

]
Pl(cos θ12) (2.27)

The Legendre polynomial Pl(cos θ12) can then be resolved into a sum products of

real spherical harmonics Ylm.

We generalize this approach to T (r1, r2, θ12).

T (r1, r2, θ12) =
∞∑
l=0

[
2l + 1

2

∫ 1

−1

Pl(x)T (r1, r2, cos−1 x)dx

]
Pl(cos θ12)

=
∞∑
l=0

m∑
m=−l

[
2π

∫ 1

−1

Pl(x)T (r1, r2, cos−1 x)dx

]
Ylm(r1)Ylm(r2)

=
∞∑
l=0

m∑
m=−l

Tl(r1, r2)Ylm(r1)Ylm(r2) (2.28)

The angular part is now decoupled from T and resolved by Ylm. The expansion

is also valid for other D-dimensional spaces provided that Pl and Ylm are replaced
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with the appropriate orthogonal polynomials and harmonic functions [88]. The

next step is to resolve the radial function Tl into a sum of products of Vnl.

Tl(r1, r2) = 2π

∫ 1

−1

Pl(x)T (r1, r2, cos−1 x)dx (2.29)

=
∑
n

Vnl(r1)Vnl(r2) (2.30)

We obtain the resolution of the function T by combining the angular resolution

and the radial resolution.

T (r1, r2, θ12) = φnlm(r1)φnlm(r2) (2.31)

φnlm(r) = Vnl(r)Ylm(r) (2.32)

As opposed to the resolutions in the previous section, Ylm must be a real

spherical harmonic but Vnl may be complex. This choice of Tl =
∑
Vnl(r1)Vnl(r2)

is better than Tl =
∑
V ∗nl(r1)Vnl(r2) used in [2] because if Tl(r, r) < 0 we can

achieve a resolution by the former but not by the later. The Heaviside and the

optimum operator in §2.3 are examples of Tl < 0 that can only be resolved if

Tl =
∑
Vnl(r1)Vnl(r2).

We now present three methods below to obtain Vnl which are the key to the

resolution problem.

2.2.2 Diagonalization

If the radial functions Tl can be written as a finite sum of products of function of

r1 and function of r2,

Tl(r1, r2) =
∑
µν

Cµνχµ(r1)χν(r2) (2.33)

we can write it in a matrix form,

Tl(r1, r2) = χ1Cχ2

= χ1UDU†χ2

= V1IV2 (2.34)

where C is a symmetric matrix of coefficients Cµν , I is the identity matrix and χ1,

χ2 are vectors containing linearly independent functions of r1 and r2 respectively.

It follows from diagonalization of C that we can obtain a row vector V1 and a

column vector V2 which have elements Vnl. The number of non-zero eigenvalues

in D is the number of terms in the resolution of Tl.
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Basis functions fnlm

If Tl cannot be rearranged into the form (2.33), we need to introduce basis func-

tions to resolve it and this usually results in infinite terms in the resolution.

For simple Tl, the most straightforward attempt is to find a series expansion

of Tl in terms of r1 which may be truncated and diagonalized if required. This

naive approach is, however, not applicable to Coulomb operator.

In general, one can resolve Tl by considering a set of complete and T -orthonormal

functions {fnlm} [2] as discussed in §2.1. We have a slightly different definition

here since there is no complex conjugate in the orthonormality condition.∫ ∫
fnlm(r1)T (r1, r2, θ12)fn′l′m′(r2)dr1dr2 = δnn′δll′δmm′ (2.35)

We shall derive orthonormalization methods on Fourier and real space that help

us find fnlm. They are applicable to a wide range of functions. The resolution

function can be derived from fnlm.

φnlm(r) =

∫
T (r1, r2, θ12)fnlm(r)dr (2.36)

2.2.3 Fourier orthonormalization

If T is a function of r12 only, we may start with f̂nlm ≡ Ylm(x)(−ı)lηn(x) where

f̂ and T̂ are Fourier transform of f and T respectively.

〈f ∗nlm
∣∣T ∣∣ fn′l′m′〉 ≡ δnn′δll′δmm′ ≡

∫ ∫
fnlm(r1)T (r12)fn′l′m′(r2)dr1dr2

=
1

(2π)3

∫
T̂ (x)

∫ ∫
fnlm(r1)fn′l′m′(r2)eıx.(r1−r2)dr1dr2dx

= (2π)−3

∫
f̂nlm(−x)f̂n′l′m′(x)T̂ (x)dx

= (2π)−3

∫
Ylm(−x)(−ı)lηn(x)Yl′m′(x)(−ı)l′ηn′(x)T̂ (x)dx

= (2π)−3δll′δmm′

∫ ∞
0

ηn(x) ηn′(x)T̂ (x)x2dx (2.37)

It follows from the orthonormality condition and the choice of fnlm that ηn must

be orthonormal with respect to T̂ (x)x2/(2π)3.∫ ∞
0

ηn(x) ηn′(x)
T̂ (x)x2

(2π)3
dx = δnn′ (2.38)
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We find ηn that satisfies the above condition by using a set of complete and

orthonormal polynomials pn.∫ ∞
0

pn(x) pn′(x)w(x)dx = δnn′ (2.39)

T̂ (x) ≡
∫
T (r12) exp[−ıx · r12]dr12 (2.40)

ηn(x) = pn(x)

√
(2π)3w(x)

T̂ (x)x2
(2.41)

Once ηn is determined, we obtain a resolution of T by the following formulae.

fnlm(r) =
Ylm(r)

2π2

∫ ∞
0

ηn(x)jl(rx)x2dx (2.42)

φnlm(r) = T [fnlm(r)] =

∫
T (r, r′)fnlm(r′)dr′

=
Ylm(r)

2π2

∫ ∞
0

ηn(x)jl(rx)T̂ (x)x2dx

= Ylm(r)

∫ ∞
0

pn(x)jl(rx)

√
2

π
T̂ (x)x2w(x) dx (2.43)

Vnl =

∫ ∞
0

pn(x)jl(rx)

√
2

π
T̂ (x)x2w(x) dx (2.44)

Bessel resolutions

From Rayleigh expansion (plane wave expansion) [89]

e±ıx·r = 4π
∞∑
l=0

l∑
m=−l

(±ı)l jl(xr)Y m∗
l (x)Y m

l (r)

= 4π
∞∑
l=0

l∑
m=−l

(±ı)l jl(xr)Ylm(x)Ylm(r) (2.45)

and Fourier representation of function T

T (r12) =
1

(2π)3

∫
T̂ (x)eıx.(r1−r2)dx

=
2

π

∫
T̂ (x)

∑
lm

∑
l′m′

ıl(−ı)l′ jl(xr1)jl′(xr2)Ylm(x)Ylm(r1)Yl′m′(x)Yl′m′(r2)dx

=
2

π

∫
T̂ (x)

∑
lm

∑
l′m′

ıl(−ı)l′ jl(xr1)jl′(xr2) δll′δmm′Ylm(r1)Yl′m′(r2)x2dx

=
2

π

∑
lm

Ylm(r1)Ylm(r2)

∫ ∞
0

jl(xr1)jl(xr2)T̂ (x)x2dx, (2.46)
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one can derive another expression of Tl.

Tl(r1, r2) =
2

π

∫ ∞
0

jl(xr1)jl(xr2)T̂ (x)x2 dx (2.47)

The Vnl formulae in (2.43) can also be derived from the above formulae by

expanding jl(xr1)
√

2
π
T̂ (x)x2 and jl(xr2)

√
2
π
T̂ (x)x2 in terms of pn(x) and inte-

grating over x.

We have investigated the possibility of evaluating (2.47) by a numerical quadra-

ture. After a number of quadrature abscissas and weights were obtained for

T (r12) = 1/r12, we realized that we had obtained an identity rather than a

quadrature. (See Chapter 4 and Chapter 7.)

We also started with this line of thought when we derived a Bessel resolution

for the long-range Ewald operator T (r12) = erf(ωr12)/r12. Initially, we obtained

abscissas and weights and found that they are related to Hermite polynomials.

Thus, the function must have the integral representation (5.6). (See Chapter 5.)

2.2.4 Real orthonormalization

Alternatively, we can begin with fnlm ≡ Ylm(r)hnl(r). Substituting this into

(2.35), we get orthonormalization condition on real space,∫ ∞
0

∫ ∞
0

hnl (r1)hn′l (r2)Tl(r1, r2)r1
2r2

2dr1dr2 = δnn′ (2.48)

We can choose a form for the basis functions and find the hnl that satisfy the

above equation by the the Gram-Schmidt procedure [90]. After the hnl are deter-

mined, one can obtain the Vnl from (2.36) which are simplified to the following

one-dimensional integral.

φnlm(r1) =

∫
T (r1, r2, θ12)fnlm(r2)dr2

=

∫
Ylm(r2)hn(r2)

∑
l′m′

Tl′(r)Yl′m′(r1)Yl′m′(r2)dr2

= Ylm(r1)

∫ ∞
0

Tl(r1, r2)hn(r2)r2
2dr2 (2.49)
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Table 2.1: Examples of r2n
12 resolutions by Substitution and Diagonalization

T Method Resolution K
r2

12 Diagonalization In spherical form, 5

φ0,0,0 = Y0,0(r)
√

2π(1 + r2)

φ1,0,0 = Y0,0(r)
√

2π(1− r2) ı

φ0,1,m = Y1,m(r)
√

8
3
π r ı [3 functions]

In the Cartesian form,

φ0,0,0 = 1√
2
(1 + x2 + y2 + z2)

φ1,0,0 = 1√
2
(1− x2 − y2 − z2) ı

φ0,1,−1 =
√

2x ı

φ0,1,0 =
√

2z ı

φ0,1,1 =
√

2y ı

r4
12 Substitution Given resolution functions of r2

12 as χk, 15

φ1 = χ1χ1, φ2 = χ2χ2, ..., φ5 = χ5χ5,

φ6 =
√

2χ1χ2, φ7 =
√

2χ1χ3, ..., φ15 =
√

2χ4χ5

r4
12 Diagonalization φ0,0,0 = Y0,0(r)

√
2π(r4 + 1) 14

φ1,0,0 = Y0,0(r)
√

2π(r4 − 1) ı

φ2,0,0 = Y0,0(r)
√

40
3
π r2

φ0,1,m = Y1,m(r)
√

8
3
π(r − r3) [3 functions]

φ1,1,m = Y1,m(r)
√

8
3
π(r + r3) ı [3 functions]

φ0,2,m = Y2,m(r)
√

32
15
π r2 [5 functions]

For diagonalization method:

K =
n∑
l=0

(2l + 1)(n− l + 1)

For substitution method:

K =

(
5

1

)(
n− 1

0

)
+

(
5

2

)(
n− 1

1

)
+

(
5

3

)(
n− 1

2

)
+

(
5

4

)(
n− 1

3

)
+

(
5

5

)(
n− 1

4

)



2.3. EXAMPLES OF T (R12) RESOLUTIONS 27

2.3 Examples of T (r12) resolutions

To begin with, we consider a special case where we can use the substitution

method. If T is an even and smooth function of r12, for example erf(ωr12)/r12, T

can be expanded in a Taylor series [84].

T (r12) =
∞∑
n=0

T (2n)r2n
12

(2n)!
(2.50)

To resolve this class of T , we need to resolve all r2n
12 in the equation above.

Table 2.1 shows that the five-term resolution of r2
12= r2

1 +r2
2−2r1 ·r2 consists of

two parts. The l = 0 part is obtained by writing T0 into a two-by-two symmetric

matrix and diagonalizing it. The l = 1 part resolves naturally and does not

require further manipulation. The higher degree terms can be obtained either by

diagonalization or by substituting the resolution of r2
12 into (r2

12)n then expanding

the terms out.

Apart from these special cases, resolutions are generally obtained by angular-

radial decoupling and resolution of the radial functions Tl. The two steps are

demonstrated separately. We consider four long-range Coulomb operators,

Yukawa [91]:

T (r12) =
1− e−ωr12

r12

(2.51)

T̂ (x) =
4π

x2

(
ω2

ω2 + x2

)
(2.52)

Ewald [92, 93]:

T (r12) =
erf(ωr12)

r12

(2.53)

T̂ (x) =
4π

x2
exp

[
−
( x

2ω

)2
]

(2.54)

Heaviside [94]:

T (r12) =
1−H(ωr12)

r12

(2.55)

=

{
1/r12 ωr12 > 1

0 otherwise
(2.56)

T̂ (x) =
4π

x2
cos
(x
ω

)
(2.57)
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Optimum [95]:

T (r12) =
1− U(0,

√
2r)/U(0, 0)

r12

(2.58)

T̂ (x) =
4π

x2

{
1− Γ

(
3

4

)√
π
(x

2

)3/2
[
I1/4

(
x2

2

)
− L1/4

(
x2

2

)]}
(2.59)

U , I and L are parabolic cylinder functions, modified Bessel functions and mod-

ified Struve function respectively.

For simplicity, we use ω = 1 for the first three operators.

2.3.1 Decoupling of the angular and the radial parts

We demonstrate this step by considering r−3
12 , r−1

12 , r12 and the four long-range

operators. They are expanded in Legendre polynomials and the first five Tl are

plotted in Figure 2.2 and 2.3

Logarithmic plots of Tl in Figure 2.2 show that Tl decays more or less expo-

nentially as l increases. All three plots are continuous but the first derivatives of

r−3
12 and r−1

12 are discontinuous at r1 = r2 (x = π/4). The effect of singularity of

T at r12 is responsible for this and it is more pronounced when the exponent in

(r12)n goes down to −3. This suggests that resolutions truncated in the l direc-

tion may perform poorly in the proximity of strong singularities of T but work

fine for the rest of the domain.

In Figure 2.3, Tl of the four functions are plotted. The Tl of the first two

functions, Yukawa and Ewald, look like that of Coulomb operator but there is

no discontinuity of their first derivative at r1 = r2. The later two functions

result in more complicated Tl in the lower plots of the figure. This is because

their Tl are sometimes negative and the plots show |Tl|. The sharp downward

peaks correspond to the points that Tl change their sign. We conclude that their

convergence in the l direction of the long-range Coulomb operators is more or

less the same as Coulomb operators but without the problem around r1 = r2.

2.3.2 Resolution of the radial function Tl

We now investigate resolutions in the n direction by employing the two orthonor-

malization methods to obtain the Vnl. A long-range Yukawa function where ω = 1
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Figure 2.2: Plots of first five Tl for r−3
12 , r−1

12 and r12 for r1 = 1 and r2 = tanx
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Figure 2.3: Logarithmic plots of first five Tl for long-rang Coulomb operators,

Yukawa (upper left), Ewald (upper right), Heaviside (lower left) and optimum

(lower right) for r1 = 1 and r2 = tanx
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is chosen as a representative example.

T (r12) =
1− exp(−r12)

r12

(2.60)

T0(r1, r2) =2π
−e−|r1−r2| − |r1 − r2|+ e−r1−r2 + r1 + r2

r1r2

=


2πe−r1(2er1r2+e−r2−er2)

r1r2
r1 ≥ r2

2πe−r2(2r1er2+e−r1−er1)
r1r2

r1 < r2

(2.61)

T1(r1, r2) =
2π

3r2
1r

2
2

{
r3

1 + r3
2 −

(
r2

1 + r1r2 + r2
2

)
|r1 − r2|

−3
(
(r1 + 1)(r2 + 1)e−r1−r2 − e−|r1−r2|(|r1 − r2| − r1r2 + 1)

)}
=


4π(r32−3e−r1 (r1+1)(r2 cosh(r2)−sinh(r2)))

3r21r
2
2

r1 ≥ r2

4π(r31−3e−r2 (r2+1)(r1 cosh(r1)−sinh(r1)))
3r21r

2
2

r1 < r2

(2.62)

We use the two techniques to obtain the Vnl and plot sums of their products

in Figure 2.4. This figure is analogous to Figure 3 and Figure 4 in [3] but Tl here

do not have a discontinuous first derivative at r1 = r2.

For Fourier orthonormalization method, we choose w(x) = e−x and pn(x) =

Ln(x) (Laguerre polynomials) and obtained the Vnl in an integral form.

Vnl =

∫ ∞
0

Ln(x)jl(rx)

√
8

e−x

1 + x2
dx (2.63)

Thus, we use numerical integration to generate data in Figure 2.4.

For real orthonormalization, we choose the weighted polynomial form.

hnl(r) =
n∑
µ=0

clnµr
µe−r (2.64)

The n = 0 terms,

h0,0(r) = 2

√
2

35π
e−r (2.65)

h0,1(r) = 2

√
2

5π
e−r (2.66)

are determined by normalization.∫ ∞
0

∫ ∞
0

h0,l(r1)Tl(r1, r2)h0,l(r2) r2
1r

2
2dr1dr2 = 1 (2.67)
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The rest of hnl (n =1, 2, 3, . . .) are generated by the Gram-Schmidt procedure.
From these hnl functions, we obtain analytical but complicated Vnl via (2.48).

V0,0 =
2
√

2
35e
−r√π
r

(−8 + 8er − r(5 + r)) (2.68)

V1,0 =
4e−r

√
π

3
√

105r
(−24 + 24er − r(30 + r(18 + 5r))) (2.69)

V2,0 =
2
√

2
231e

−r√π
3r

(−48 + 48er − r(39 + r(15 + r(10 + 7r)))) (2.70)

V3,0 =
4e−r

√
π

15
√

3003r
(−600 + 600er − r(690 + r(390 + 7r(5 + 2r(−5 + 3r))))) (2.71)

V4,0 =
2

15r

√
2

3003
e−r
√
π(−840 + 840er − r(735 + r(315 + 2r(140 + r(105 + r(−63 + 11r))))))

(2.72)

V5,0 =
4

315r

√
2

12155
e−r
√
π(−17640 + 17640er + r(−19530 + r(−10710 + r(945 + r(3780−

11r(504 + r(−140 + 13r))))))) (2.73)

V6,0 =
2

45r

√
2

440895
e−r
√
π(−30240 + 30240er − r(27405 + r(12285 + r(13230 + r(10395+

r(−15246 + 13r(510 + r(−84 + 5r)))))))) (2.74)

V7,0 =
4

2835r

√
2

2261
e−r
√
π(−68040 + 68040er + r(−73710 + r(−39690 + r(10395+

r(20790 + r(−54054 + r(29988 + r(−7335 + 810r − 34r2)))))))) (2.75)

V8,0 =
2

4725r

√
2

1716099
e−r
√
π(−6237000 + 6237000er − r(5769225 + r(2650725+

2r(1663200 + r(1351350 + r(−3513510 + r(2487870 + r(−793980+

17r(7590 + r(−605 + 19r)))))))))) (2.76)

V9,0 =
4

155925
√

15295r
e−r
√
π(−13721400 + 13721400er + r(−14656950+

r(−7796250 + r(3378375− 2r(−2702700 + r(10810800 + r(−9050580+

r(3594195 + r(−766260 + 19r(4730 + r(−286 + 7r))))))))))) (2.77)

V0,1 =2

√
2

15
e−r
√
π

(8er − (2 + r)(4 + r(2 + r)))

r2
(2.78)

V1,1 =4e−r
√
π

(−72 + 72er − r(72 + r(36 + r(14 + 5r))))

3
√

105r2
(2.79)

V2,1 =2

√
2

35
e−r
√
π

(−240 + 240er − r(240 + r(120 + r(35 + r(5 + 7r)))))

9r2
(2.80)

V3,1 =4e−r
√
π

(−600 + 600er − r(600 + r(300 + r(110 + r(35 + 2r(−7 + 3r))))))

45
√

11r2
(2.81)
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V4,1 =
2

9r2

√
2

15015
e−r
√
π(−7560 + 7560er − r(7560 + r(3780 + r(1155+

2r(105 + r(189 + r(−70 + 11r))))))) (2.82)

V5,1 =
4

315r2

√
2

195
e−r
√
π(−17640 + 17640er − r(17640 + r(8820+

r(3150 + r(945 + r(−756 + r(644 + r(−148 + 13r)))))))) (2.83)

V6,1 =
2

135r2

√
2

595
e−r
√
π(−30240 + 30240er − r(30240 + r(15120+

r(4725 + r(945 + r(2079 + r(−1596 + r(582 + r(−87 + 5r))))))))) (2.84)

V7,1 =
4

2835r2

√
2

4845
e−r
√
π(−1020600 + 1020600er − r(1020600 + r(510300 + r(179550+

r(51975 + r(−62370 + r(80010 + r(−35820 + r(7965− 830r + 34r2))))))))) (2.85)

V8,1 =
2

14175r2

√
2

1463
e−r
√
π(−6237000 + 6237000er − r(6237000 + r(3118500+

r(987525 + 2r(103950 + r(270270 + r(−318780 + r(183150+

r(−52470 + r(8030 + r(−616 + 19r))))))))))) (2.86)

V9,1 =
4

31185
√

2415r2
e−r
√
π(−13721400 + 13721400er − r(13721400 + r(6860700+

r(2390850 + r(675675 + 2r(−540540 + r(928620 + r(−615780+

r(219285 + r(−43780 + r(4928 + r(−290 + 7r)))))))))))) (2.87)

For l = 0 (on the left of Figure 2.4), the resolutions converge quickly in the n

direction. The two-, five- and ten-term sums are very close to T0 and are visually

indistinguishable from T0 in the case of Fourier orthonormalization.

For l = 1 (on the right of Figure 2.4), we instead observe a significant deviation

from T1 for the two-term sums. However, the deviation diminishes rapidly as

number of terms in the sums increases. Again, the ten-term sums are are visually

indistinguishable from T0 for the case of Fourier orthonormalization.

In all four plots, the ten-term sums are reasonably good estimates of Tl

and Fourier orthonormalization performs better than real orthonormalization. It

might be worrying that the error grows when l is increased. However, as Tl decays

rapidly with l, the absolute error from higher l is not going to be significant.

Discussion

The Tl-orthonormality condition in the last three methods ensures that no fewer-

term resolution can be obtained by linear combination of terms in the existing

resolution.

We observe that the diagonalization method yields a 14-term resolution for r4
12,
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Figure 2.4: Plots of
∑N

n=0 Vnl(r1)Vnl(r2), N = 1 (dot), N = 4 (dot-dash), N = 9

(dash) and Tl of (1 − exp[−r12])/r12 (gray line, visually indistinguishable from

N = 9 except for the lower right plot) for r1 = 1 and r2 = tanx
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one term smaller than the resolution obtained from the substitution method. The

difference can be much larger for more complicated resolutions. For example, the

diagonalization method yields a 506-term resolution for r20
12 but the substitution(∑5

k=0 φk(r1)φk(r2)
)10

results in a 1,001-term resolution.

The resolutions described here are theoretically interesting, but may run into

numerical difficulties when used in practice. The chief problem is to calculate

auxiliary integrals in a stable and efficient manner. We discussed this issue in

Chapter 6. Other examples of resolutions of Ewald operator erf(ωr12)/r12 can be

found in §5.6.

2.4 Related techniques

The resolutions of the Coulomb operator is conceptually novel to quantum chem-

istry. However, when implemented it results in a factorization of two-elctron

integrals and possibly linear-scaling computational methods. There exists other

techniques in quantum chemistry that can achieve this integral factorization and

linear scaling too. Nonetheless, RO has a number of fundamental advantages.

• RO directly generates three center integrals (µν|φ). There is no matrix

inversion or extra manipulation required.

• RO integrals generation is ready for a parallel computing implementation.

There are several ways to partition the work without compromising the

performance of RO.

• If one desires a higher accuracy, RO methods may require just additional

calculation from extra φnlm rather than running the whole calculation again.

This is generally true if we truncate resolutions that formally have infinite

terms. However, it is not the case for resolutions involving coefficients from

quadratures. (See Chapter 5.)

• RO opens possibilities of new way of solving the Schrödinger equations.

(See Chapter 3 and §8.2.)

• RO naturally benefits from the short-range nature of exchange energy.

(See Chapter 5.)



36 CHAPTER 2. RESOLUTIONS OF THE COULOMB OPERATOR

2.4.1 Density fitting or resolution of the identity

The density fitting (DF) or the resolution of the identity (RI) approximation was

introduced in 1973 by two different groups [96, 97]. The idea was later revisited

in 1993 by Feyereisen and cowokers [98, 99].

In this approach, the AO integrals are written as an inner projection in term

of auxiliary (or fitting) basis set labeled by P and Q.

(µν|T |λσ) ≈
∑
PQ

(µν|T |P )M−1
PQ(Q|T |λσ) (2.88)

All integrals are just standard electron repulsion integrals. The only additional

procedure required in density fiting program is matrix inversion. M−1
PQ denotes

the inverse of Coulomb matrix.

MPQ = (P |T |Q) =

∫
P (r1)T (r12)Q(r2)dr1dr2 (2.89)

The above decomposition of two-electron four center integrals into two- and

three- index integrals is based on an approximate “resolution of the identity”.∑
PQ

|P )M−1
PQ(Q| ≈ I (2.90)

Similar to the resolution of the Coulomb operator and Cholesky decomposi-

tion, density fitting leads to a factorization of two-electron integrals. However,

the method works best if the auxiliary basis is preoptimized. Thus each auxil-

iary basis is biased towards conditions used for its optimization and there is no

continuous way of improving the results if needed.

Aquilante and coworkers recently showed that Cholesky decompostion can be

used to generate unbias auxiliary basis on the fly [100, 101].

Unlike Cholesky decomposition, density fiting methods e.g. RI-MP2, RI-

CIS(D), RI-DFT are currently available in many mainstream quantum chemistry

packages including Gamess [102], Gaussian [103], NWChem [104], Orca [105],

Psi [106], Q-chem [107] and Turbomole [108]. The comparison between the

two techniques can be found in [109, 110].

2.4.2 Cholesky decomposition

Mathematically speaking, Cholesky decomposition (CD) is a decomposition of a

Hermitian, positive-definite matrix into the product of a lower triangular matrix

and its conjugate transpose.

A = LL† (2.91)
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The decomposition was named after its inventor, André-Louis Cholesky, a

french military officer and a mathematician [111].

Cholesky decomposition was first introduced to quantum chemistry by Beebe

and Linderberg in 1977 [112] to help with two-electron integral storage. The

Cholesky decomposition of the AO integrals may be written as

(µν|T |λσ) =

B(B+1)/2∑
k=1

LkµνL
k
λσ

≈
K∑
k=1

LkµνL
k
λσ (2.92)

where B is the number of atomic orbitals. In contrast to RO, the factorization is

formally finite.

When CD is used in quantum chemistry, it slightly differs from its original for-

mulations by mathematicians. First, the decomposition is applied to a symmetric

but not positive-definite two-electron integral matrix. Second, the expansion is

truncated to K terms where K << B(B + 1)/2 so that the the factorization can

give practical benefit.

CD has been studied by a number of research groups and shown to be a

promising technique to reduce computational cost of QM methods [113, 100,

114, 115, 101]. The accuracy of CD can be easily controlled by a single integral

screening parameter. The matrix elements that are smaller than the ratio of this

parameter to maximum diagonal elements are zeroed out. After this prescreening

step, further improvement of the accuracy is not possible [113].

QM methods based on CD are currently available in a few quantum chemistry

packages e.g. Molcas [116] and Dalton [117].

2.4.3 Tensor product approximation

In a series of papers, [118, 119, 120, 121, 122, 123] Hackbusch and co-workers have

designed schemes for constructing tensor factorizations of many-electron objects

(including the Coulomb operator) and such techniques have recently yielded im-

pressive results in Hartree-Fock [124] and correlated [123] calculations on a variety

of small molecules.

The tensor product approximation leads to a factorization of two-electron

integral similar to Equations (2.89) and (2.90).
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2.4.4 Linear scaling approaches

Linear scaling computational method [125] is a method whose computational cost

increases linearly with molecular size, M .

Formally, there areO(M4) two-electron integrals in a molecule, but the asymp-

totic scaling of the number of these integrals reduces to O(M2) for large molecules

[126]. To accomplish O(M) scaling, one has to avoid the naive O(M2) pairwise

summation over electron-eletron interactions. Several clever techniques are avail-

able to achieve this goal and we summarize them below.

Coulomb energy

The fast multipole methods (FMM) [127] do not treat individual pairwise inter-

actions between point charges but collect them into charge distributions and use

a boxing scheme to circumvent the quadratic step of Coulomb matrix calcula-

tion. The extended FMM algorithm for continuous charge distribution is called

continuous fast multipole methods (CFMM) [128].

The KWIK algorithm [129] partitions Coulomb energy into short- and long-

range parts. The short-range one is treated analytically while the other is com-

puted by Fourier summation. This later developed into CASE [93] and CAP(m)

[130] methods

It was shown in [2] that the RO technique provides linear-scaling Coulomb

energy calculation for point charges. The same algorithm is also used for Gaussian

charge distribution in Chapter 3 and Chapter 4.

Exchange energy

The ONX [131] and the LinK [132] methods are linear scaling algorithms for

exchange energy. They exploit locality nature of non-metalic system to achieve

O(M) scaling.

Correlation energy

It is also possible to devise a linear-scaling correlated method. In 2002, the linear

scaling MP2 method was accomplished by combining local approximation with

density fitting [133].



Chapter 3

Reduced-rank

Schrödinger equations

In this chapter, we consider a modified Schrödinger equation wherein the electron-

electron repulsion terms r−1
ij are approximated by truncated one-particle resolu-

tions. Numerical results for the He atom and H2 molecule at the Hartree-Fock,

second-order Møller-Plesset, and configuration interaction levels show that the so-

lutions of the resulting reduced-rank Schrödinger equations converge rapidly and

that even low-rank approximations can yield energies with chemical accuracy.

3.1 Introduction

The chief difficulty in applying quantum mechanics to problems in chemical

physics is that the Coulomb operators r−1
ij ≡ |ri − rj|−1 which pervade the rel-

39
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evant Hamiltonians, couple the motions of the particles. It is this coupling that

lies at the heart of the Coulomb problem [134], the exchange problem [135] and,

in particular, the notorious electron correlation problem [136].

Although ongoing research efforts have produced a range of methods to ad-

dress this fundamental difficulty, including separating the Coulomb operator into

its short- and long-range components [92, 137, 129, 95, 138], treatment of the

short-range component by specialized techniques [130, 139, 94] and the long-

range component by multipole expansion [127, 140, 141], complete neglect of the

long-range component [130, 93, 61], and treatment of the operator in Fourier

space [129, 142, 143], none of these has yet yielded a comprehensive solution to

the correlation problem.

In [2], Varganov et al. introduced a resolution

r−1
ij =

∞∑
nlm

φnlm(ri)φnlm(rj) ≡
∞∑
k

φk(ri)φk(rj) (3.1)

of the two-particle Coulomb operator into one-particle potentials

φnlm(r) = Ylm(r)Vnl(r) (3.2)

where the radial potentials are given by

Vnl(r) = 2
√

2

∫ ∞
0

hn(x) jl(xr) dx (3.3)

and where Ylm is a spherical harmonic, jl is a spherical Bessel function and the

hn(x) are a set of functions that are complete and orthonormal on [0,∞).

This “resolution of the Coulomb operator” (RO) is analogous to the famil-

iar “resolution of the identity” (RI) [97, 144, 99, 109] and allows us to expand

Coulomb matrix elements into auxiliary integrals, i.e.

〈a|r−1
12 |b〉 =

∞∑
nlm

〈a|φnlm〉〈φnlm|b〉 ≡
∞∑
k

〈a|φk〉〈φk|b〉 (3.4)

If the resolution is truncated after K < ∞ terms, the resulting rank-K approxi-

mation

r−1
ij ≈

N∑
n=0

L∑
l=0

l∑
m=−l

φnlm(ri)φnlm(rj) ≡
K∑
k=1

φk(ri)φk(rj) (3.5)

which we will call the (N ,L) resolution, yields integral approximations

〈a|r−1
12 |b〉 ≈

N∑
n=0

L∑
l=0

l∑
m=−l

〈a|φnlm〉〈φnlm|b〉 ≡
K∑
k

〈a|φk〉〈φk|b〉 (3.6)
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that are reminiscent of the Cholesky decompositions [112, 100, 109, 101] and

Kronecker approximations [118, 119] currently being developed.

Of the myriad ways to resolve the Coulomb operator, only two have been

previously explored. In [2], Varganov et al. chose the generating functions hn

to be even-order Hermite functions weighted by a Gaussian but observed that

calculation of the resulting Vnl(r) is unwieldy when N or L are large. In [3], Gill

and Gilbert chose

hn(x) =
√

2Ln(2x) exp(−x) (3.7)

where Ln is a Laguerre polynomial [8] and this yields a resolution with potentials

such as

φ0,0,0(r) =
2√
π

[
tan−1 r

r

]
(3.8)

φ1,0,0(r) =
2√
π

[
tan−1 r

r
− 2

1 + r2

]
(3.9)

φn,0,0(r) =
2√
π

(−1)n

r
={Bz(n+ 1,−n)} (3.10)

where = is the imaginary part, Bz is the incomplete Beta function and z =

(1+r ı)/2. These are better behaved numerically and were also adopted in recent

work by Hoggan [85, 86, 87].

In [3], Gill and Gilbert studied the rate of convergence of the Coulomb self-

interaction energy of the hydrogenic ions (H, He+, Li2+, Be3+ and B4+) with

respect to K and found that the behaviour deteriorates as the nuclear charge

increases. This arises because the physical size of the potentials φk(r) becomes

increasingly poorly matched to the electron densities ρ(r), which shrink towards

the nuclei as the nuclear charge increases. The problem can be solved simply by

compressing the density (or orbitals) by a well-chosen scale factor Z, applying the

Coulomb resolution, and then re-scaling the resulting energy by the same factor.

In this chapter, we explore the consequences of replacing the electron-electron

terms in the molecular Schrödinger equation by their rank-K approximations

(3.5). We discuss results for He and H2 at the Hartree-Fock (HF), second-order

Møller-Plesset (MP2) and configuration interaction (CI) levels.



42 CHAPTER 3. REDUCED-RANK SCHRÖDINGER EQUATIONS

3.2 Reduced-rank Schrödinger equations

The non-relativistic electronic Schrödinger equation for an N -electron system is[
N∑
i

h(ri) +
N∑
i<j

r−1
ij

]
Ψ = EΨ (3.11)

where h is the one-electron operator describing an electron’s kinetic energy and its

interaction with an external field, such as the nuclei. Replacing the problematic

electron repulsion terms by the rank-K approximation (3.5) yields the reduced-

rank Schrödinger equation (RRSE)

[
N∑
i

h(ri) +
1

2

K∑
k

∣∣∣ N∑
i

φk(ri)
∣∣∣2 − 1

2

K∑
k

N∑
i

|φk(ri)|2
]

Ψ = EΨ (3.12)

and, of course, as K →∞, we recover the original Schrödinger equation (3.11).

At first glance, the RRSE may appear more complicated than the original

Schrödinger equation, but this is not so. The third term in (3.12) consists of

one-electron contributions and therefore presents no difficulty. The second term

is more challenging but still offers a considerable simplification over the original

equation.

In [3], Gill and Gilbert showed that the Laguerre resolution yields surprisingly

rapid convergence of Coulomb and exchange energies and it is therefore interesting

to see how well the solutions of (3.12) mimic those of (3.11) as K increases.

At points where two electrons coincide, i.e. ri = rj, the Hamiltonian in (3.11)

is singular and this leads to cusps in the exact wavefunction [145]. In contrast,

for finite K, the Hamiltonian in (3.12) is non-singular at such points and the

exact solutions of the RRSE therefore lack such cusps. We therefore expect that

the approximate solutions of RRSE will converge more rapidly with respect to

the size of the one-electron basis than those of the original Schrödinger equation

[146, 147].

In this investigation, we will confine our attention to the special case of two-

electron systems, for which the RRSE reduces to[
h(r1) + h(r2) +

K∑
k

φk(r1)φk(r2)

]
Ψ = EΨ (3.13)

We anticipate that the general conclusions that emerge from this study will also

apply to larger systems and preliminary studies on Be and LiH confirm this.
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3.3 Reduced-rank quantum chemistry models

3.3.1 Hartree-Fock theory

In conventional Hartree-Fock (HF) theory for a two-electron singlet, the Fock

operator is

F = h+ J (3.14)

where J is the full Coulomb operator. If, however, we develop a reduced-rank

Hartree-Fock (RRHF) theory based on the RRSE (3.13), the associated Fock

operator becomes

F
K

= h+ J
K

(3.15)

and, in a finite basis of size B, the resulting Fock matrix elements [11] are given

by

FKµν = 〈µ|h|ν〉+
K∑
k

〈µν|φk〉〈φk|ρ〉 (3.16)

where

〈φk|ρ〉 =
∑
µν

Pµν〈µν|φk〉 (3.17)

and Pµν is a density matrix element. This shows that an RRHF calculation is

analogous to a conventional HF one, except that O(B4) two-electron integrals

(µν|λσ) are replaced by O(B2K) auxiliary integrals 〈µν|φk〉. This is reminiscent

of the RI and Cholesky schemes but, of course, there is no RRHF metric matrix

to invert.

To obtain an initial guess for the self-consistent field (SCF) algorithm, we

diagonalize the core Hamiltonian matrix and, to transform the Fock matrix into

an orthonormal basis, we use symmetric orthonormalization. We terminate the

SCF iterations when the RMS change in the density matrix falls below 10−4 [11].

Our algorithm for calculating the auxiliary integrals is discussed in §3.4 below.

We define EN ,LHF as the ground-state restricted HF energy from the (N ,L)

resolution, and it is convenient to quantify its error by

∆N ,LHF = − log10

(
EHF − EN ,LHF

)
(3.18)

There are several ways to introduce the resolution into post-HF calculations.

Henceforth, we use the (N ,L) resolution to generate the orbitals and orbital en-

ergies and then employ the same resolution when computing any required molec-

ular orbital (MO) integrals. In this way, we are employing the same reduced-rank

Hamiltonian throughout.
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3.3.2 Perturbation theory

The second-order Møller-Plesset (MP2) correlation energy [11] is given by

EMP2 =
1

4

∑
abrs

|〈ab||rs〉|2
εa + εb − εr − εs

(3.19)

where a, b are occupied and r, s are virtual spin orbitals. In a closed-shell two-

electron system, this reduces to a sum over virtual spatial orbitals

EMP2 =
∑
rs

2(1r|1s)(11|rs)− (1r|1s)2

2ε1 − εr − εs
(3.20)

and thus the reduced-rank second-order Møller-Plesset (RRMP2) energy and its

error are

EN ,LMP2 =
∑
rs

2
[∑K

k 〈1r|φk〉〈φk|1s〉
] [∑K

k 〈11|φk〉〈φk|rs〉
]
−
[∑K

k 〈1r|φk〉〈φk|1s〉
]2

2ε1 − εr − εs
(3.21)

∆N ,LMP2 = − log10

(
EN ,LMP2 − EMP2

)
(3.22)

3.3.3 Configuration interaction

The full configuration interaction (FCI) correlation energy EFCI is the lowest

eigenvalue of the blocked full CI matrix [11]

H =

〈Ψ0|H − EHF|Ψ0〉 0 〈D|H|Ψ0〉
0 〈S|H − EHF|S〉 〈D|H|S〉

〈Ψ0|H|D〉 〈S|H|D〉 〈D|H − EHF|D〉

 (3.23)

where the Hamiltonian H is defined in (3.11) and Ψ0, S and D are the ground-

state, singly-substituted, and (spin-adapted) doubly-substituted determinants,

respectively. The largest block is 〈D|H|D〉 and, when r, s, t and u are all distinct,

the CI matrix element is

〈Ψrs
11|H|Ψtu

11〉 = (rt|su) + (ru|ts) (3.24)

Using the (N ,L) resolution, this becomes

〈Ψrs
11|H|Ψtu

11〉N ,L =
K∑
k

[(rt|φk)(φk|su) + (ru|φk)(φk|ts)] (3.25)

and, with each matrix element approximated likewise, the lowest eigenvalue be-

comes EN ,LFCI . It is convenient to quantify its error by the signed quantity

∆N ,LFCI = − sgn(EN ,LFCI − EFCI) log10

∣∣∣EN ,LFCI − EFCI

∣∣∣ (3.26)
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3.4 Auxiliary integrals

The calculation of auxiliary integrals 〈µν|φnlm〉 is central to the application of

RO theory to any quantum chemical method. The RO can be used with any

type of basis function, and Hoggan has demonstrated [85, 87] that it works well

with Slater-type functions, but we will employ Cartesian Gaussians in the present

work.

Boys differentiation [29] can be used to derive formulae for integrals of higher

angular momentum and we can therefore focus on the fundamental auxiliary

integrals of the form

〈ss|φnlm〉 =

∫
e−ζA|r−A|

2

e−ζB |r−B|
2

φnlm(r)dr (3.27)

Using the Gaussian product rule [11], this becomes

〈ss|φnlm〉 = GAB

∫
e−γ

2|r−R|2φnlm(r)dr (3.28)

where γ2 = ζA + ζB and

R = (ζAA+ ζBB)/γ2 (3.29)

GAB = exp(−ζAζB|A−B|2/γ2) (3.30)

Invoking Parseval’s theorem and choosing the Laguerre generator (3.7) then yields

〈ss|φnlm〉 = (2π/γ2)3/2GABYlm(R)

∫ ∞
0

hn(x)jl(Rx)e−x
2/4γ2 dx

= 4(π/γ2)3/2GABYlm(R)Anl(R, γ) (3.31)

The spherical harmonics Ylm(R) can be computed efficiently using Libbrecht’s

method [148] but the accurate and efficient evaluation of the radial integrals

Anl(R, γ) =

∫ ∞
0

Ln(2x) jl(Rx) exp

[
−x− x2

4γ2

]
dx (3.32)

for n = 0, 1, . . . ,N and l = 0, 1, . . . ,L is non-trivial. We show in §3.7 that they

can be computed recursively from Hermite functions and one special function. A

special treatment for integrals of higher angular momentum in the R = 0 case is

also discussed in §3.7.1.
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Table 3.1: Basis sets and energies of He and H2 (RH–H = 1.40)

He H2

Present basis [10s3p2d] [6s3p]

Size (B) 31 30

αs 0.058 195 9 0.037 866 7

βs 2.755 780 9 3.367 625 8

αp 0.177 133 8 0.062 978 7

βp 3.208 762 4 3.217 837 4

αd 0.345 853 7

βd 3.519 611 2

EHF −2.861 647 460 −1.133 287 175

EMP2 −0.035 127 427 −0.030 496 094

EFCI −0.040 734 987 −0.038 527 089

Infinite basis

EHF −2.861 679 996a −1.133 629 572d

EMP2 −0.037 40b −0.034 27e

EFCI −0.042 044 381c −0.040 845 20f

aRef. [150]; bRef. [151] Slightly different values are also reported in Refs [152, 153];
cRefs [150, 154]; dRef. [155]; eRH–H = 1.40108 Ref. [153]; fRefs [155, 156]

3.5 Numerical results

3.5.1 Basis sets

For the purposes of this preliminary study, we have used even-tempered (ET)

Gaussian basis sets [149] with exponents ζkl = αlβ
k
l , where k = 1, 2, . . . The

parameters αl and βl, along with the HF, MP2 and FCI energies that they yield

for the He atom and H2 molecule, are listed in Table 3.1. The energies are close

to their respective complete basis set limits.

3.5.2 He atom and H2 molecule

Table 3.2 shows that EN ,LHF , EN ,LMP2 and EN ,LFCI converge more or less exponentially

with N but that the scaling factor Z strongly influences the convergence rate.

At Z = 1, microhartree accuracy is achieved at N = 10 for all three methods

and we have adopted Z = 1 henceforth.
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Table 3.2: Log energy errors for He atom for various N and Z with L =∞

∆N ,LHF

1/Z 1/2 1 2 3 4 5 10

N
0 0.2 0.7 1.9 1.5 1.0 0.8 0.4

2 1.3 2.8 2.5 2.2 2.2 2.2 1.1

4 2.2 4.0 4.0 2.8 2.4 2.3 1.9

6 2.9 4.8 4.7 3.7 2.9 2.5 2.3

8 3.5 5.4 5.0 4.7 3.6 3.0 2.3

10 4.0 6.0 5.7 4.8 4.4 3.5 2.3

12 4.5 6.5 6.7 5.0 4.8 4.2 2.5

∆N ,LMP2 ∆N ,LFCI

1/Z 1/2 1 2 3 4 5 10 1/2 1 2 3 4 5 10

N
0 1.5 1.5 1.5 1.6 1.7 1.8 1.7 1.4 1.4 1.5 1.6 1.7 1.7 1.6

2 1.6 2.5 2.8 2.4 2.1 2.0 1.8 1.6 2.7 2.9 2.4 2.1 1.9 1.8

4 2.2 3.7 3.4 3.0 2.7 2.5 1.9 2.3 4.0 3.5 3.0 2.8 2.5 1.9

6 2.8 4.6 4.1 3.4 3.0 2.9 2.1 2.9 4.8 4.3 3.4 3.1 2.9 2.1

8 3.4 5.3 4.7 3.9 3.4 3.1 2.4 3.6 5.5 5.0 4.0 3.4 3.2 2.4

10 4.0 5.8 5.2 4.3 3.7 3.3 2.6 4.2 6.0 5.4 4.5 3.8 3.4 2.7

12 4.5 6.2 5.6 4.7 4.0 3.6 2.8 4.6 6.4 5.8 5.0 4.2 3.7 2.9

Table 3.3: Log energy errors for He atom for various N and L with Z = 1

∆N ,LHF ∆N ,LMP2 ∆N ,LFCI

L 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

N
0 0.7 . . . . 1.5 1.5 1.5 . . 1.4 1.4 +1.4 +1.4 1.4

2 2.8 . . . . 1.6 2.3 2.5 . . 1.6 2.5 +2.7 +2.7 2.7

4 4.0 . . . . 1.7 2.5 3.7 . . 1.6 2.9 –3.8 +4.1 4.0

6 4.8 . . . . 1.7 2.5 4.6 . . 1.6 2.9 –3.6 –5.3 4.8

8 5.4 . . . . 1.7 2.5 5.3 . . 1.6 2.9 –3.6 –4.8 5.5

10 6.0 . . . . 1.7 2.5 5.8 . . 1.6 2.9 –3.6 –4.7 6.0

12 6.5 . . . . 1.7 2.5 6.2 . . 1.6 2.9 –3.6 –4.7 6.4
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Table 3.4: Log energy errors for H2 for various N and L with Z = 1

∆N ,LHF

L 0 2 4 6 8 10 12

N
0 1.4 1.5 1.5 1.5 1.5 1.5 1.5

2 2.4 3.5 3.6 3.6 3.6 3.6 3.6

4 2.4 3.9 4.4 4.4 4.4 4.4 4.4

6 2.4 4.1 5.0 5.2 5.2 5.2 5.2

8 2.4 4.1 5.3 6.1 6.5 6.6 6.7

10 2.4 4.1 5.3 6.2 6.7 6.9 7.0

12 2.4 4.1 5.3 6.2 6.8 7.3 7.5

∆N ,LMP2 ∆N ,LFCI

L 0 2 4 6 8 10 12 0 2 4 6 8 10 12

N
0 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.4 1.5 1.5 1.5 1.5 1.5 1.5

2 1.6 2.5 2.7 2.7 2.7 2.7 2.7 1.5 2.7 2.8 2.8 2.8 2.8 2.8

4 1.6 2.8 3.7 3.8 3.8 3.8 3.8 1.5 3.1 4.1 4.2 4.2 4.2 4.2

6 1.6 2.9 4.1 4.5 4.5 4.5 4.5 1.5 3.1 4.6 4.9 4.9 4.9 4.9

8 1.6 2.9 4.2 5.0 5.2 5.2 5.2 1.5 3.1 4.8 5.6 5.8 5.8 5.8

10 1.6 2.9 4.2 5.3 5.7 5.8 5.9 1.5 3.1 4.8 5.9 6.4 6.7 6.9

12 1.6 2.9 4.3 5.4 6.0 6.2 6.4 1.5 3.1 4.8 5.9 6.5 6.9 7.2

Table 3.5: Minimum N and L required to achieve ∆ = 3, 6 accuracy (Z = 1)

∆N ,LHF = 3 ∆N ,LMP2 = 3 ∆N ,LFCI = 3

B2 N L K N L K N L K
He 961 4 0 5 4 2 45 4 4 125

H2 900 2 2 27 4 4 125 4 2 45

∆N ,LHF = 6 ∆N ,LMP2 = 6 ∆N ,LFCI = 6

B2 N L K N L K N L K
He 961 10 0 11 12 2 117 10 4 275

H2 900 8 6 441 12 8 1053 10 8 891
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Table 3.3 explores the convergence of EN ,LHF , EN ,LMP2 and EN ,LFCI with respect to

N and L, using dots to indicate that higher L provide no further improvement.

Because the occupied orbital is spherical and the basis contains only s, p and d

functions, the φnlm with l > 0, l > 2 and l > 4 contribute nothing to the HF,

MP2 and CI energies, respectively.

The MP2 correlation energies converge smoothly towards their limiting values

as N and L increase but the FCI results are more interesting. At L = 0, only

radial correlation energy is recovered from the basis set and, for example, E12,0
FCI =

−0.017344 is comparable to the value −0.017349 of Goldman [157]. At L = 2

and L = 3, some of the EN ,LFCI energies are lower than the limiting value because

the contributions from the d functions are treated incompletely. For example, at

L = 2, (sd|sd) integrals are treated but (dd|dd) are not. We conclude from this

that, in practical calculations, one should ensure that L ≥ 2L, where L is the

maximum angular momentum in the orbital basis set. This is consistent with

comparable recommendations for RI [158] and Cholesky calculations [159].

The results in Table 3.4 for the H2 molecule were obtained with the nuclei

at (0, 0,±0.70). Convergence is similar to that for the He atom and, although

N = L = ∞ is required to achieve formal convergence, the (12,10) resolution

consistently yields microhartree accuracy.

3.5.3 Cost and accuracy

The obvious advantage of the RO, like the RI and Cholesky schemes, is that

the O(B4) four-centre (µν|λσ) integrals are replaced by the O(B2K) three-centre

〈µν|φnlm〉 integrals. If K < O(B2) in large systems, this is clearly beneficial and

Table 3.5 summarizes the data in Tables 3.3 and 3.4 by listing minimum N and

L required to obtain milli- and microhartree accuracy for He and H2. Even in

these tiny systems, K is competitive with B2.

The convergence with N and L is impressive. The demand on L stems from

the fact that the orbital basis functions have angular momentum and are not

concentric with the φnlm. However, in the cases studied here, it was easy to

saturate the L dimension.

In [3], Gill and Gilbert showed that the reduced-rank Coulomb and exchange

energies in a fixed system are sums of squares and thus converge monotonically

with respect to K. Here, the convergence withN is more or less monotonic for the

same reason. In larger systems, monotonicity may be lost because of differential

Coulomb and exchange effects.
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3.6 Concluding remarks

We have introduced a systematic hierarchy of approximations to the Schrödinger

equation (SE) in which the two-electron Coulomb operator is replaced by trun-

cated one-electron expansions.

The resulting rank-reduced Schrödinger equation (RRSE) is a mathematically

simpler object than the SE but reduced-rank HF, MP2 and FCI calculations on

the He atom and H2 molecule reveal that the solutions of the RRSE converge

rapidly towards the corresponding solutions of the SE.

In principle, we expect that any computational methods that involve r−1
ij

operator in Coulomb and exchange energy part will benefit from RO technique.

In particular, DFT methods which are widely used currently may receive more

benefits from our technique than the methods studied in this chapter as there is

only easier Coulomb part to be approximated by RO. Though RO technique is

fundamentally different from RI and Cholesky schemes, further studies including

timing experiments and the comparison of convergence rate with respect to the

rank of RRSE (K) and size of auxiliary basis in other schemes should also be

done in the future work.
In conclusion, these preliminary investigations suggest that the RRSE may

offer a potent new route to accurate calculations.

Construction of radial integrals

Substituting the explicit formula [8] for the Laguerre polynomials

Ln(2x) =

n∑
k=0

(−1)k
(
n

k

)
(2x)k

k!
(3.33)

into (3.32) allows us to write the set of radial integrals as the binomial transform [160, 161]

Anl =

n∑
k=0

(−1)k
(
n

k

)
Mkl (3.34)

of the set of monomial integrals

Mkl(R, γ) =

∫ ∞
0

(2x)k

k!
jl(Rx) exp

[
−x− x2

4γ2

]
dx (3.35)

Our algorithm first forms Mkl boundary values, then binomially transforms these into Anl

boundary values, and finally uses a recurrence relation (RR) to build the remaining Anl.

Substituting Gegenbauer’s integral representation [8] of jl(Rx) into (3.35) and integrating

over x yields

Mkl(R, γ) =
(4γ)k

ıl+1R

∫ Z

Z∗
H−(k+1)(u)Pl

(
γ − u
γR ı

)
du (3.36)
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Figure 3.1: A recursive pathway to generate the Mkl and Anl integrals.

where Z = γ(1+R ı), H−k is a Hermite function and Pl is a Legendre polynomial. From (3.36),

it is easy to derive the outermost boundary values (the unfilled circles in Figure 3.1)

M−1,l = δl,0/2 (3.37)

Mk,0 = − (4γ)k

kR
={H−k(Z)} (3.38)

The Mk,0 with k > 0 can be generated stably and efficiently by backward recursion, and the

k = 0 case

M0,0 =
2

R
=
{∫ Z

0

H−1(u) du

}
(3.39)

can be computed, for small |Z|, using the Taylor series

M0,0 = −
√
π

R
=


∞∑
j=1

(−Z)j

j Γ( j+1
2 )

 (3.40)

and, for large |Z|, using the asymptotic expansion

M0,0 ∼
1

R
=

lnZ −
∞∑
j=1

Γ(j + 1
2 )

2j
√
π

(−Z−2)j

 (3.41)

Using the standard Hermite and Legendre RRs, one can derive from (3.36) the 5-term RR

k + 1

4γ2
Mk+1,l =

R

2l + 1
[lMk,l−1 − (l + 1)Mk,l+1] + 2Mk−1,l −Mk,l (3.42)

and this is used to form the Mk,1 (the vertical dotted circles in Figure 3.1). The standard Bessel

RR immediately yields from (3.35) the 3-term RR

Mk,l =
R

2

k + 1

2l + 1
(Mk+1,l+1 +Mk+1,l−1) (3.43)
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and this, alternating with (3.42), is used to form the M1,l (the filled circles) and the M0,l (the

horizontal dotted circles). We now have two rows and two columns of Mkl values and these are

binomially transformed via (3.34) into the corresponding rows and columns of Anl values (the

unfilled squares). Finally, multiplying the standard Laguerre RR by the Bessel RR, one finds

from (3.32) the 7-term RR

2(2l + 1)

R
An,l = (2n+ 1)(An,l+1 +An,l−1)

− n(An−1,l+1 +An−1,l−1)− (n+ 1)(An+1,l+1 +An+1,l−1) (3.44)

which is used to generate all the remaining Anl (the filled squares in Figure 3.1).

Higher integrals in the R=0 case

In cases where R = 0, the Gaussian product is concentric with φk(r) and the resulting unnor-

malized auxiliary integrals are

〈µν|φnlm〉 =

∫
xaybzc exp(−γ2r2)φnlm(r) dr (3.45)

As in (3.31), Parseval’s Theorem allows this to be recast as

〈µν|φnlm〉 = 4(π/γ2)3/2ylm(a, b, c)Fa+b+cnl (γ) (3.46)

where

ylm(a, b, c) =

∫ π

0

∫ 2π

0

sin1+a+b θ cosc θ cosa ϕ sinb ϕ Ylm(θ, ϕ) dϕ dθ (3.47)

is the angular part and Fl
′

nl(γ), the binomial transform of F l
′

kl(γ), is the radial part of the

integration.

L l = 0 l = 1 l = 2 l = 3 l = 4

0 (ss) f0k
1 (sp) f1k
2 (pp, sd) 3

2γ2 f
0
k − f2k f2k

3 (pd) 5
2γ2 f

1
k − f3k f3k

4 (dd) 15
(2γ2)2 f

0
k − 10

2γ2 f
2
k + f4k

7
2γ2 f

2
k − f4k f4k

As shown above, the F l
′

kl(γ) are linear combinations of

f ik(γ) ≡ (4γ)k+1

8π

(
− 1

2γ

)i ∂iH−(k+1)(γ)

∂γi
=

(4γ)k+1

8π

(
1

γ

)i
(k + 1)iH−(k+i+1)(γ) (3.48)

where l ≤ i ≤ l′ = a+ b+ c and (k + 1)i = (k + 1)(k + 2)...(k + i).

Because of the high symmetry of the system, most of the integrals (3.45) vanish. The excep-

tions are those in which the Gaussian product and the RO potential span the same irreducible

representations of the spherical group. As a result, as mentioned in §3.5.2, L is saturated at

2L, leaving only N to be improved.



Chapter 4

The Bessel quasi-resolution of

the Coulomb operator

In this chapter, we show that the Coulomb operator can be resolved as r−1
12 =∑

nlm φnlm(r1)φnlm(r2) where φnlm(r) is proportional to the product of a spherical

Bessel function and a spherical harmonic, provided that r1 + r2 < 2π.

The resolution reduces Coulomb matrix elements to Cholesky-like sums of

products of auxiliary integrals. We find that these sums converge rapidly for

four prototypical electron densities. To demonstrate its viability in large-scale

quantum chemical calculations, we also use a truncated resolution to calculate

the Coulomb energy of the nano-diamond crystallite C84H64.

4.1 Introduction

The apparently innocuous Coulomb operator

r−1
12 ≡ |r1 − r2|−1 (4.1)

53
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lies at the heart of many of challenging problems in contemporary quantum chem-

istry and many ingenious schemes have been devised [130, 129, 93, 162, 163, 127,

128, 143, 112, 113, 100, 109, 99, 164, 119, 165, 166] to treat it efficiently and ac-

curately. In most cases, the full complexity of the operator is avoided by partially

decoupling it [130, 129, 93], employing multipole expansions [162, 163, 127, 128],

Fourier transforms [143], Cholesky decomposition [112, 113, 100, 109], density

fitting [99, 164, 119], or other such methods [165, 166].

Our contributions [2, 3, 4] employ Coulomb resolutions

r−1
12 =

∞∑
n=0

∞∑
l=0

l∑
m=−l

φnlm(r1)φnlm(r2) (4.2)

where the one-particle functions

φnlm(r) = Vnl(r)Ylm(r) (4.3)

involve a radial function Vnl(r) and a real spherical harmonic Ylm. Such resolu-

tions reduce Coulomb matrix elements to sums of auxiliary integrals

〈a|r−1
12 |b〉 =

∑
nlm

〈a|φnlm〉〈φnlm|b〉 (4.4)

and thus formally resemble Cholesky schemes [112, 113, 100, 109]. However, our

approach forms the “Cholesky triangle” directly, without computing the matrix

elements.

To construct a Coulomb resolution, one combines the Legendre expansion and

the Addition Theorem [9] to obtain the well-known [9] angular resolution

r−1
12 =

∑
lm

4π

2l + 1

rl<
rl+1
>

Ylm(r1)Ylm(r2) (4.5)

where r< and r> are the smaller and larger of r1 and r2.

To achieve a radial resolution

4π

2l + 1

rl<
rl+1
>

=
∑
n

Vnl(r1)Vnl(r2) (4.6)

one possibility [2, 3, 4] is to choose

Vnl(r) = 2
√

2

∫ ∞
0

hn(x)jl(xr)dx (4.7)
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where the jl are spherical Bessel functions and the hn are any functions that

form a complete and orthonormal set on [0,∞). Varganov et al. chose Hermite

functions

hn(x) =
(2/π)1/4

2n
√

(2n)!
H2n(x/

√
2) exp(−x2/4) (4.8)

in [2], but Gill and Gilbert adopted Laguerre functions

hn(x) =
√

2Ln(2x) exp(−x) (4.9)

in later studies [3, 4]. This approach to the radial resolution is theoretically

attractive but, unfortunately, the radial functions Vnl that emerge from such

“natural” choices for the hn are often computationally expensive [2, 3, 4] and this

has led us to explore alternative schemes.

4.2 Bessel quasi-resolution

In the present Chapter, we offer a route based on the Bessel identity (4.11).

Originally, we derived the identity from fitting quadrature abscissas and weights∗

but it can be proven mathematically. (See Chapter 5 and Chapter 7.)

∫ ∞
0

jl(nx)jl(ny)dn $
δl,0
2

+
∞∑
n=1

jl(nx)jl(ny) (4.11)

where l = 0, 1, 2, . . . and |x| + |y| < 2π. We use the symbol $ to remind us of

this domain restriction.

If we begin with the integral representation [167] of the left-hand side of (4.6)

4π

2l + 1

rl<
rl+1
>

= 8

∫ ∞
0

jl(xr1)jl(xr2)dx (4.12)

and apply (4.11), we obtain the radial quasi-resolution

4π

2l + 1

rl<
rl+1
>

$ 8

[
δl,0
2

+
∞∑
n=1

jl(nr1) jl(nr2)

]
(4.13)

∗See (2.47) and the discussion that follows. We also obtained an equivalent identity.∫ ∞
0

jl(nx)jl(ny)dn $
∞∑
n=0

jl

((
n+

1

2

)
x

)
jl

((
n+

1

2

)
y

)
(4.10)
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and thence the spherical Bessel quasi-resolution

r−1
12 $

∑
nlm

φnlm(r1)φnlm(r2) (4.14)

where the one-particle functions are

φnlm(r) = 2
√

2− δn,0 jl(nr)Ylm(r) (4.15)

This is the key result of this chapter. As the prefix ‘quasi’ and the symbol $

emphasize, it is valid only for r1 + r2 < 2π.

The quasi-resolution, unlike our previous resolutions [2, 3, 4], requires only the

calculation of spherical Bessel functions [168] and spherical harmonics [169, 170]

which is efficient and stable even for large n, l and m.

Replacing r−1
12 by the quasi-resolution directly yields the Cholesky-like decom-

position

〈a|r−1
12 |b〉 $

∑
nlm

〈a|φnlm〉〈φnlm|b〉 (4.16)

but without the need to compute the 〈a|r−1
12 |b〉 integrals. The auxiliary integrals

〈a|φnlm〉 = 2
√

2− δn,0
∫
a(r) jl(nr)Ylm(r) dr (4.17)

are easily found if the Fourier transform of a(r) is known. For example, if a(r)

is the Gaussian

a(r) = (ζA/π)3/2 exp(−ζA|r −R|2) (4.18)

we have

〈a|φnlm〉 = exp

(
− n2

4ζA

)
φnlm(R) (4.19)

If a(r) is sufficiently smooth then, by Darboux’s Principle [171], the 〈a|φnlm〉
will decay quickly for large n, l,m, leading to rapid convergence of the sum in

(4.16). We see from (4.19), for example, that small ζA yield fast decay with n,

and small R yield fast decay with l.

One elementary use of the quasi-resolution is to find the Coulomb self-interaction

energy

E =
1

2
〈ρ|r−1

12 |ρ〉 (4.20)

of a given charge density ρ(r). If the density ρ(r) ≡ ρ(r) is a normalized, origin-

centered radial function, one finds

Ẽ =
1

2

∑
nlm

〈ρ|φnlm〉〈φnlm|ρ〉 =
1

2π
+

1

π

∑
n

∆Ẽ(n) (4.21)
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Table 4.1: Coulomb energies E, components ∆Ẽ(n) and domain-violation errorsa

EDVE of four radial charge densitiesb ρ(r)

Uniform densityc Exponential density

R3 × ρ(r) 3/(4π)H(R− r) exp(−r/R)/(8π)

Non-analyticity Discontinuity at r = R Cusp at r = 0

R× E 3/5 5/32

∆Ẽ(n) 9j2
1(nR)/(nR)2 (1 + n2R2)−4

Convergence O[(nR)−4] O[(nR)−8]

R× EDVE 6(1− θ)3H(1− θ)/θ4 1
6
(θ + 1)3 exp(−2θ)

Rational density Gaussian density

R3 × ρ(r) (1 + (r/R)2)−2/π2 exp(−r2/R2)/π3/2

Non-analyticity Poles at r = ±iR No singularities

R× E 1/(2π) 1/
√

2π

∆Ẽ(n) exp(−2nR) exp(−n2R2/2)

Convergence O[exp(−2nR)] O[exp(−n2R2/2)]

R× EDVE 1/(6θ)
√

2/π exp(−2θ2)

aθ = π/R
bR is a parameter that characterizes the radial extent of the density.
cH is the Heaviside step function
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and results for four such densities are given in Table 4.1. These densities consist

of a uniform ball (which is discontinuous on its boundary), an exponential (which

has a cusp at a point), a rational function (which has poles in the complex plane),

and a Gaussian (which is entire).

Consistent with Darboux’s Principle [171], the results in the penultimate row

of Table 4.1 confirm that the convergence of the resolution (4.21) is algebraic

if ρ(r) has a singularity in real space, exponential if it has a singularity in the

complex plane, and super-exponential if ρ(r) is entire.

The key weakness of the quasi-resolution is the domain restriction r1+r2 < 2π.

If the quasi-resolution is applied to a density that extends beyond r = π, it

introduces a Domain-Violation Error (DVE)

EDVE = Ẽ − E (4.22)

and the final row of Table 4.1 illustrates this. The message is clear: in practical

applications, one should scale the system so that the DVE is acceptably small.

4.3 Numerical results

We begin our numerical assessment by truncating the radial resolution (4.13)

after N terms. The truncated sums are useful approximations to the left-hand

side and Figure 4.1 illustrates this for l = 0, 1, 2 with r1 = 1 and N = 10. It

confirms that the approximations are satisfactory when r1 + r2 < 2π but erratic

outside that domain. We note however that, even there, the errors are bounded.

Truncating the quasi-resolution (4.14) at n = N and l = L yields well-defined

approximations to both the operator and its matrix elements. For example, the

approximation

ẼN ,L =
1

2

N∑
n=0

L∑
l=0

l∑
m=−l

〈ρ|φnlm〉〈φnlm|ρ〉 (4.23)

has the Truncation Error

ETE = ẼN ,L − Ẽ (4.24)

Is such a truncation useful in practice? To explore this question, we have used

(4.23) to calculate the Coulomb self-interaction energy of the electrons in the

octahedral nano-diamond C84H64 crystallite [172]. This molecule has a diamond-

like structure with Td symmetry and, for the sake of simplicity, we have used C–C
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l =0

l =1

l =2

r1 r2+ = 2Π

1 2 4 ¥
r2

Figure 4.1: The left-hand side (solid) and right-hand side (dashed) of (4.13) for

l = 0, 1, 2 when r1 = 1 and the sum is truncated after n = 10. Plots are scaled

so that the left-hand sides coincide at r2 = 1.

and C–H lengths of 154 and 109 pm, respectively. The electron density

ρ(r) =
148∑
A=1

ρA(r) (4.25)

is the sum of the Stewart atomic densities [173, 174, 175]

ρA(r) =

DA∑
i=1

ci(ζi/π)3/2 exp(−ζi|r −RA|2) (4.26)

generated from the UHF/6-311G densities of isolated 3P carbon and 2S hy-

drogen atoms. The Stewart parameters are given in Table 4.2 and yield E =

20511.5578014 a.u.

We have written a C program to compute (4.23) and we use the relative error

ε ≡
∣∣∣∣∣ẼN ,L − EE

∣∣∣∣∣ =

∣∣∣∣EDVE + ETE

E

∣∣∣∣ (4.27)

to measure the accuracy of the approximation (4.23) for different (N ,L).

The molecule’s center of mass is placed at the origin but most of its nuclei still

lie outside the allowed domain (i.e. |RA| > π). We therefore compress the entire
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Table 4.2: Stewart parameters for atoms

Hydrogen Carbon

ci ζi ci ζi

0.29449 0.21 1.71581 0.29

0.63550 0.88 2.54666 0.82

0.05859 3.73 –0.18334 2.31

0.01253 15.90 0.26810 6.50

–0.00111 67.73 1.09048 18.31

0.45570 51.55

0.09106 145.16

0.01337 408.75

0.00195 1150.99

0.00016 3241.06

0.00005 9126.48

system by a scale factor Z, perform the Coulomb calculation, and then unscale

the resulting energy. The relationship between scaled and unscaled systems is

described by the following equations.

R′A = Z−1RA (4.28)

ζ ′i = Z2ζi (4.29)

ρ′(r′) = Z3ρ(r) (4.30)

E ′ = ZE (4.31)

A scaled system described by R′A, ζ ′i and ρ′(r′) is mathematically equivalent to

the unscaled one. Thus, in theory, this scheme is exact and works for any kind

of energies or molecular properties. However, when we use scaling in conjunction

with truncated resolution, the compression increases the exponents ζ ′i. As a result,

the auxiliary integrals (4.19) decay more slowly, reducing the rate of convergence

of (4.23) and increasing the truncation error (4.24).

Figure 4.2 reveals that there is a DVE-dominated region (Z . 4) and a TE-

dominated region (Z & 5). The results show that the truncation error grows

slowly as Z is increased but that the domain-violation error grows rapidly as Z
is decreased.

It is therefore important to scale the system to fit in the domain but moderate
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Figure 4.2: Relative error, (4.27), of ẼN ,L for 3 ≤ Z ≤ 15.

over-compression does not magnify the error by very much. For N = 500,L =

1000, the lowest errors arise near Z = 4.8 but any Z from 4.5 to 12 leads to

ε < 10−6.

4.4 Concluding remarks

In summary, we have derived a quasi-resolution of the Coulomb operator that

allows it to be expressed in terms of products of one-particle functions. Unlike

earlier resolutions, the quasi-resolution is based on simple mathematical functions

and is well suited for computational purposes. Our numerical study indicates

that the quasi-resolution is useful for computing the Coulomb energy, which is

an important bottleneck in DFT calculations.

However, the potential scope of the quasi-resolution is much wider than this

and there are significant possibilities for applications to other operators and to

exchange and correlation energies. (See later chapters.)
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Chapter 5

Bessel Resolutions of the

long-range Coulomb operators

We show that the long-range Ewald operator can be resolved as erf(ωr12)/r12 =∑
k φ
∗
k(r1)φk(r2) where φk is proportional to the product of a spherical Bessel

function and a spherical harmonic. We demonstrate the use of this new reso-

lution by calculating the long-range Coulomb energy of the nano-diamond crys-

tallite C84H64 and the long-range exchange energy of the graphene C96H24. The

resolution appears particularly effective for long-range exchange calculations.
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5.1 Introduction

We have recently published a series of papers [2, 3, 4, 5, 7] concerned with re-

solving the Coulomb operator

r−1
12 ≡ |r1 − r2|−1 =

∞∑
k=1

|φk〉〈φk| (5.1)

into one-particle functions, where |φk〉 and 〈φk| are functions of r1 and r2, re-

spectively. Such resolutions factorize a Coulomb integral into a sum of products

of auxiliary integrals

〈a|r−1
12 |b〉 =

∞∑
k=1

〈a|φk〉〈φk|b〉 (5.2)

and thereby offer the computational benefits of Cholesky decomposition [112,

113, 100, 109] and density fitting [99, 164, 119], but without the need to solve

Cholesky or fitting equations.

In Chapter 4 and Chapter 7, we have shown that the one-particle functions

can take the form

φk(r) ≡ φnlm(r) = 2
√

2− δn,0 jl(nr)Y m
l (r) (5.3)

where jl is a spherical Bessel function and Y m
l is a complex spherical harmonic.

Although this resolution is valid only for r1 + r2 < 2π, we have shown that this

weakness can be overcome by a suitable pre-scaling of the system under study.

There is considerable contemporary interest [137, 129, 173, 95, 84, 138, 143,

176, 177, 178, 179, 62, 180, 181, 182, 183, 184, 63, 185, 186, 64, 65, 187] in

partitioning the Coulomb operator as

r−1
12 ≡ S(r12) + L(r12) (5.4)

where S is a singular short-range operator and L is a smooth long-range operator,

and then treating the short-range and long-range subproblems separately. Ewald

introduced this to chemistry to compute Madelung constants [92] but it can be

traced, in the mathematics literature, to Riemann [188].

The partition strategy is now employed in many quantum chemical methods.

It is particularly prominent in hybrid methodologies, wherein wavefunction-based

and density-based approaches are carefully combined to exploit their respective

strengths. This has led, for example, to the popular HSE [176, 177, 178, 179],

CAM-B3LYP [62], LC-ωPBE [184], LCgau-BOP [186] and ωB97XD [65] methods.
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Figure 5.1: Quadrature error RN (ωr12) in (5.7) for N = 1 (leftmost), 3, 5, 7 and

9 (rightmost)

The short-range operator S can be treated efficiently by the use of boxing

schemes [163, 162, 127, 128, 139, 177] that exploit spatial locality. However, the

long-range operator L is more computationally difficult and it is natural to ask

whether a resolution analogous to (5.1) can be constructed for it.

It turns out that there are many ways to resolve such operators and we will

consider several. Our approaches are general but, in this chapter, we focus on

the long-range Ewald operator

L(r12) =
erf(ωr12)

r12

(5.5)

The partition parameter ω can take any positive value (the limit ω →∞ recovers

the Coulomb operator) but, in practice, often lies between 0.1 and 1. We use

atomic units throughout.

5.2 Resolutions of the Ewald operator

We have investigated five approaches for resolving the Ewald operator: orthonor-

mal expansion, Taylor expansion, Gaussian expansion, Bessel expansion and Her-
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mite quadrature. The first four are outlined in the §5.6 but we describe the fifth

and most promising here.

If we apply 2(N + 1)-point Gauss-Hermite quadrature [9, 189] to the integral

representation

L(r12) =
2ω

π

∫ ∞
−∞

j0(2βωr12) exp(−β2) dβ (5.6)

we obtain the spherical Bessel expansion∗

L(r12) =
4ω

π

[
N∑
n=0

bnj0(2βnωr12) +RN (ωr12)

]
(5.7)

where the βn and bn are the (positive) Hermite roots and weights.

How accurate are these Bessel expansions? The quadrature error RN (ωr12)

for N = 1, 3, 5, 7, 9 is shown in Figure 5.1. It is initially tiny, indicating that the

expansions are accurate for small ωr12, but eventually breaks away from the axis

when the expansion becomes unsatisfactory. (We note, however, that the error

is bounded for all ωr12.) It is encouraging to observe that the breakaway point

moves rapidly to the right as N is increased, suggesting that even modest values

of N yield Bessel expansions that are useful over large domains of ωr12.

In principle, allN terms in (5.7) must be included. However, because |j0(z)| ≤
1 and the Hermite weights bn decay extremely rapidly, it is possible to truncate

(5.7) at n = N ′ � N with negligible loss of accuracy. The minimum N and N ′
that guarantee that the quadrature error is below ε over the domain 0 ≤ ωr12 ≤ R

are shown in Table 5.1. This Table reveals that, in a molecule where max(r12) ≈
30 (for example taxol C47H51NO14), an accuracy of 10−10 requires only N ′ = 50

terms for ω = 1 or only N ′ = 21 terms for ω = 1/3.

To resolve the j0 functions in (5.7), we start with the spherical Bessel addition

theorem [9]

j0(λr12) =
∞∑
l=0

(2l + 1)jl(λr1)jl(λr2)Pl(cos θ12) (5.8)

and apply the Legendre addition theorem [9] to find

j0(λr12) = 4π
∞∑
l=0

l∑
m=−l

jl(λr1)jl(λr2)Y m
l
∗(r1)Y m

l (r2) (5.9)

∗For the history of this discovery, see (2.47) and the discussion that follows.
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Table 5.1: N and N ′ such that RN (ωr12) < ε for 0 ≤ ωr12 ≤ R.

R = 10 R = 20 R = 30 R = 40 R = 50

− log10 ε N N ′ N N ′ N N ′ N N ′ N N ′
2 30 7 107 12 234 18 409 24 633 29

3 34 9 116 16 247 24 427 31 657 38

4 37 11 121 20 256 28 440 37 673 46

5 39 13 126 23 263 33 449 42 686 52

6 41 15 131 26 269 36 458 47 696 58

7 43 16 134 28 275 40 466 52 706 64

8 45 18 138 31 280 43 472 56 714 69

9 47 19 141 33 285 47 479 60 722 74

10 49 21 144 35 290 50 485 64 730 79

11 50 22 147 37 294 53 490 68 737 83

12 52 23 150 40 298 56 496 72 743 88

Substituting (5.9) into (5.7) then yields our key result — the Ewald resolution

LN ,L(r12) =
N∑
n=0

L∑
l=0

l∑
m=−l

|φnlm〉〈φnlm| (5.10a)

φnlm(r) = 4
√
bnω jl(2βnωr)Y

m
l (r) (5.10b)

In contrast to the previous Chapter, we note that the above resolution is

insensitive to scaling. This is because we also need to scale ω′ = Zω and the

scaling factor Z cancels out when we use the resolution. (See §2.1.)

5.3 Computational considerations

It is essential to be able to determine a priori the minimum values of N and N ′
that will guarantee that (5.7) is accurate to within ε over the domain of important

ωr12 values in one’s system. By examining the values of N in Table 5.1, we have

devised the simple quadratic estimate

N ≈ R2/4 +
(√
− log10 ε− 1

)
R + 2 (5.11)
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and it is then easy to show from the asymptotic behavior of the Hermite roots

and weights that

N ′ ≈ 2

π

√
−(N + 1) ln ε− 1 (5.12)

To use the Ewald resolution (5.10) to find long-range energies, we need the

auxiliary integrals

〈ab|φnlm〉 =

∫
a(r)b(r)φnlm(r) dr (5.13)

where we will assume that a and b are Gaussian basis functions centered at A

and B, respectively. Because the Gaussian product rule allows a(r)b(r) to be

expanded as a finite linear combination [190] of Gaussians with a centroid P on

the line between A and B, the problem reduces to finding two-center integrals

of the form

〈Gn′l′m′|φnlm〉 =

∫
rn
′
exp(−ζr2)Y m′∗

l′ (r)φnlm(r + P ) dr (5.14)

These can be solved in closed form and we will discuss an efficient algorithm for

Gaussians of arbitrary angular momentum in Chapter 6. However, in a basis that

contains only s and p functions, the only necessary formulae are

〈G000|φnlm〉 = cnC
lm00
l jlY

m
l (5.15a)

〈G200|φnlm〉 = cnC
lm00
l

[
3/(2ζ)− x2

n

]
jlY

m
l (5.15b)

〈G11m′ |φnlm〉 = cnxn

[
C lm1m′

l−1 jl−1Y
m−m′
l−1 − C lm1m′

l+1 jl+1Y
m−m′
l+1

]
(5.15c)

〈G22m′ |φnlm〉 = cnx
2
n

[
C lm2m′

l−2 jl−2Y
m−m′
l−2 − C lm2m′

l jlY
m−m′
l + C lm2m′

l+2 jl+2Y
m−m′
l+2

]
(5.15d)

where xn ≡ βnω/ζ, jl ≡ jl(2βnωP ), Y m
l ≡ Y m

l (P )

cn = 4
√
bnω (π/ζ)3/2 exp(−ζx2

n) (5.16)

C lml′m′

` = (−1)m
′

√
(2l + 1)(2l′ + 1)

4π(2`+ 1)
C l,l′,`

0,0,0C
l,l′,`
m,m′,m−m′ (5.17)

and the final two factors in (5.17) are Clebsch-Gordan coefficients. We note that

C lm00
l = Y 0

0 = 1/
√

4π and, thus, (5.15a) is analogous to (4.19) in the previous

chapter.

We have implemented the Ewald resolution in a standalone C program which

precomputes the required Hermite roots and weights [189], along with the Clebsch-

Gordan coefficients. The jl and Y m
l are calculated recursively, as in the previous
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Table 5.2: (N ,L) pairs required in long-range Coulomb and exchange calculations

Long-range Coulomb energy Long-range exchange energy

of the nano-diamond C84H64 of the graphene C96H24

ω = 0.1 ω = 0.5 ω = 1.0 ω = 0.1 ω = 0.5 ω = 1.0

ε = 10−3 (2 , 0) (29 , 13) (113 , 24) (0 , 4) (1 , 27) (4 , 45)

ε = 10−6 (4 , 4) (48 , 23) (180 , 50) (1 , 9) (3 , 44) (7 , 85)

ε = 10−9 (6 , 8) (64 , 36) (240 , 68) (2 , 13) (5 , 58) (11 , 99)

chapter. We use the relative error

ε =

∣∣∣∣EN ,L − EE

∣∣∣∣ (5.18)

to measure the accuracy of the approximate energies afforded by (5.10).

5.4 Numerical results

The long-range Coulomb energy of a density ρ(r) is

EJ =
1

2
〈ρ|L(r12)|ρ〉 (5.19)

and applying the Ewald resolution (5.10) to this yields the approximation

EN ,LJ =
1

2

N∑
n=0

L∑
l=0

l∑
m=−l

〈ρ|φnlm〉2 (5.20)

We have applied (5.20) to the electron density in the nano-diamond C84H64 which

is described in Chapter 4. The (N ,L) pairs that yield various relative errors ε

for various attenuation parameters ω are shown in the middle columns of Table

5.2.

The long-range exchange energy is

EK = −1

2

∑
ij

〈ψiψj|L(r12)|ψiψj〉 (5.21)

and applying the Ewald resolution (5.10) to this yields the approximation

EN ,LK = −1

2

N∑
n=0

L∑
l=0

l∑
m=−l

occ∑
ij

〈ψiψj|φnlm〉2 (5.22)



70 CHAPTER 5. BESSEL RESOLUTION OF THE EWALD OPERATOR

Diamond has a large bandgap and its exchange interactions decay rapidly with

distance. We therefore chose to apply (5.22) to the more interesting π-system of

the C96H24 graphene [191], placing a unit-exponent pπ Gaussian on each C atom,

and using its Hückel orbitals [192]. The (N ,L) pairs that yield various relative

errors ε for various ω are shown in the final columns of Table 5.2.

Because the Ewald operator (5.5) is smooth, the (N ,L) pairs required for the

long-range Coulomb energies are much smaller than for the total Coulomb ener-

gies [5]. Moreover, we find that long-range exchange energies require surprisingly

small N values, reflecting that, even in the highly delocalized graphene system,

the exchange interaction decays fairly quickly with distance [193, 191, 194].

5.5 Concluding remarks

There are a number of ways to resolve the long-range Coulomb (Ewald) operator

into products of one-particle functions. Our favorite resolution (5.10) employs

a spherical Bessel expansion of the Ewald operator and thereby generalizes our

earlier quasi-resolution of the Coulomb operator. Numerical results indicate that

this Ewald resolution converges rapidly and may be useful in a range of quantum

chemical contexts. It looks particularly promising for the efficient calculation

of long-range exchange energies. We will discuss the efficient evaluation of the

auxiliary integrals (5.14) and present timing comparisons in Chapter 6.

We note finally that the Bessel expansion method is easy to extend to the

erfgau operator [130, 195, 64]

L(1)(r12) =
erf(ωr12)

r12

− 2ω√
π

exp

(
−ω

2r2
12

3

)
(5.23)

Applying Gauss-Hermite quadrature as for the Ewald operator yields

2ω√
π

exp

(
−ω

2r2
12

3

)
=

4ω

π

∫ ∞
−∞

β2j0

(
2√
3
βωr12

)
exp(−β2) dβ

≈ 8ω

π

N∑
n=0

bnβ
2
nj0

(
2√
3
βnωr12

)
(5.24)

where the βn and bn have the same meanings as in (5.7).
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5.6 Other resolutions of the Ewald operator

Orthonormal expansion

One way to resolve L(r12) is to find functions fk that are complete and Ewald-

orthonormal, i.e.

〈fk|L(r12)|fk′〉 = δk,k′ (5.25)

If these fk are known, one can show [2] that

φk(r1) =

∫
L(r12)fk(r2) dr2 (5.26)

If fk is chosen to be a product of Y m
l and a radial function, one eventually obtains

φk(r) =
√

2/π Y m
l (r)

∫ ∞
0

pn(x)jl(rx)L̂1/2(x)x dx

= 2
√

2 Y m
l (r)

∫ ∞
0

pn(x)jl(rx) exp

(
− x2

8ω2

)
dx (5.27)

where L̂ is the Fourier transform of L and the pn are any functions that form a

complete and orthonormal set on [0,∞). Unfortunately, this approach is thwarted

by the difficulty of selecting pn that yield tractable integrals.

Taylor expansion

The Taylor expansion of the Ewald operator

L(r12) =
2ω√
π

∞∑
n=0

(−ω2r2
12)n

n!(2n+ 1)
(5.28)

converges for all r12. Because (r2
12)n expands naturally [84] into a finite sum for

any n, it is easy to construct a resolution from (5.28). However, when truncated

after n = N the series (5.28) behaves as (−r2
12)N and is therefore worthless at

large r12.

Gaussian expansion

If we apply 2(N + 1)-point Gauss-Legendre quadrature [9] to the Ewald integral

representation

L(r12) =
ω√
π

∫ 1

−1

exp(−ω2γ2r2
12) dγ (5.29)
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we obtain the Gaussian expansion [130]

L(r12) ≈ 2ω√
π

N∑
n=0

gn exp(−ω2γ2
nr

2
12) (5.30)

where the γn and gn are the (positive) Legendre roots and weights. The function

exp(−λr2
12) can be partially resolved, using the exponential and Legendre addition

theorems [9] to find

exp(−λr2
12)

exp(−λr2
1 − λr2

2)
=
∞∑
l=0

(2l + 1)il(λr1r2)Pl(cos θ12)

= 4π
∞∑
l=0

l∑
m=−l

il(λr1r2)Y m
l
∗(r1)Y m

l (r2) (5.31)

where il is a modified spherical Bessel function. However, this does not mirror

the form of (5.1) because we cannot resolve il(λr1r2).

Bessel expansion

The Fourier-Bessel expansion [9, 196]

L(r12) =
2

π

∞∑
n=0

j0(nr12)

∫ π

0

L(x)j0(nx)n2x2dx

=
2

π

∞∑
n=1

[
(−1)n+1 erf(ωπ) + exp

(
− n2

4ω2

)
<
{

erf
(
ωπ +

n

2ω
ı
)}]

j0(nr12)

= L(π) +
2

π

∞∑
n=1

exp

(
− n2

4ω2

)
<
{

erf
(
ωπ +

n

2ω
ı
)}

j0(nr12) (5.32)

converges rapidly but, unfortunately, it is valid only on the finite domain 0 ≤
r12 ≤ π. As a consequence, it yields what we have previously termed a “quasi-

resolution” in Chapter 4 and, to use it in practice, one would need to scale the

system to fit within this domain.



Chapter 6

The evaluation of

auxiliary integrals

We discuss the evaluation of RO auxiliary integrals by explicit formulae in this

chapter. In contrast to previous chapters, we shows a general technique which

is applicable to general φnlm(r) of the form Vnl(r)Ylm(r). Unlike Boys differen-

tiation, our formulae are based on Fourier transforms and linearization of the

products of two spherical harmonics. We apply this new approach to the Bessel

resolution of the long-range Ewald operator and demonstrate that our RO calcu-

lation is competitive to the conventional long-range exchange energy calculation

in a standard quantum chemical program.

6.1 Resolution of two-body operators

We have previously discussed the resolutions of two-body operators T (r12) into a

sum of products of one-body resolution function φnlm(r). The function may take

myriad of forms but our favorite resolutions are made of a spherical harmonics

Ylm and a radial function Vnl.

T (r12) =
∑
nlm

Ylm(r1)Vnl(r1)Ylm(r2)Vnl(r2) (6.1)

The resolution reduces a two-particle integral 〈a|T |b〉 to a sum of auxiliary

73
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integrals,

〈a|T |b〉 =
∑
k

(∫
a∗(r)φk(r)dr

)(∫
b(r)φk(r)dr

)
, (6.2)

and offer computational benefits similar to Cholesky decomposition [112, 113,

100, 109] and density fitting [99, 164, 119].

Efficient evaluation of the overlap integral between a φk(r) and a basis function

is a prerequisite to implementation of resolution technique in quantum chemistry.

In this chapter, we derive the integral evaluation scheme, apply it to the long-

range Ewald operator and Gaussian basis functions and devise an RO program

to calculate long-range exchange energy.

6.2 Auxiliary integrals

We first define a basis function gn′l′m′ and a resolution function φnlm.

gn′l′m′(r) ≡ Yl′m′(r)Rn′l′(ζ, r) (6.3)

φnlm(r) ≡ Ylm(r)Vnl(r) (6.4)

We can derive their Fourier transforms ĝn′l′m′ and φ̂nlm which are products of a

spherical harmonic and a radial function.

ĝn′l′m′(x) = Yl′m′(x)Gn′l′(x) (6.5)

φ̂nlm(x) = Ylm(x)Φnl(x) (6.6)

The radial functions Gn′l′ , Φnl are integrals of a spherical Bessel function jl and

the radial part of the function in real space.

Gn′l′(x) = 4π(−ı)l′
∫ ∞

0

jl′(xr)r
2Rn′l′(ζ, r)dr (6.7)

Φnl(x) = 4π(−ı)l
∫ ∞

0

jl(xr)r
2Vnl(r)dr (6.8)

We can express the auxiliary integral as a sum of products of a spherical

harmonic and the function Hn′l′nl
l′′ . The coefficients C lml′m′

l′′m′′ arise from linearization
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of the product of two spherical harmonics. (see §6.7.)

〈gn′l′m′(r − P )|φnlm〉 =

∫
gn′l′m′(r − P )φnlm(r)dr

=
1

(2π)3

∫ ∫
ĝn′l′m′(x) exp[ıx · (r − P )]φnlm(r)drdx

=
1

(2π)3

∫
ĝn′l′m′(x) exp[−ıx · P ]φ̂nlm(x)dx

=
1

(2π)3

∫
Yl′m′(x)Ylm(x)Gn′l′(x)Φnl(x) exp[−ıx · P ]dx

=
1

(2π)3

∫ ∑
l′′m′′

C lml′m′

l′′m′′ Yl′′m′′(x)Gn′l′(x)Φnl(x) exp[−ıx · P ]dx

=
∑
l′′m′′

C lml′m′

l′′m′′ Yl′′m′′(P )Hn′l′nl
l′′ (P ) (6.9)

Thus, the key of this scheme is the evaluation of the function Hn′l′nl
l′′ which is

an integral of Gn′l′ , Φnl and jl′′ .

Hn′l′nl
l′′ (P ) =

1

2π2

∫ ∞
0

Gn′l′(x)Φnl(x)jl′′(Px)x2dx (6.10)

This is, in principle, applicable to any basis function and resolution of the forms

(6.3) and (6.4). We, however, give one specific example in the following section.

6.3 Bessel resolution and Gaussian function

We apply the scheme described in the previous section to the resolution of long-

range Ewald operator (Chapter 5) and a Gaussian basis function.

L(r12) ≡ erf(ωr12)

r12

=
∑
nlm

φnlm(r1)φnlm(r2) (6.11)

φnlm = Ylm(r)4
√
bnω jl(2βnωr) (6.12)

gn′l′m′(r) = Yl′m′(r)rn
′
exp(−ζr2) (6.13)

We obtain analytical expressions of Gn′l′ , Φnl and Hn′l′nl
l′′ .

Gn′l′(x) =
(
− ı

2

)l′
π

3
2xl

′
ζ−

1
2

(3+n′+l′)Γ

(
1

2
(3 + n′ + l′)

)
×

1F̃1

(
1
2
(3 + n′ + l′)

3
2

+ l′
;−x

2

4ζ

)
(6.14)

Φnl(x) = 8π2(−ı)l
√
bnω

δ(x− 2βnω)

x2
(6.15)

Hn′l′nl
l′′ (P ) = 4(−ı)l

√
bnωGn′l′(2βnω)jl′′(2βnωP ) (6.16)
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The regularized hypergeometric function in Gn′l′(x) reduces to a product of a

Gaussian and a polynomial in x for all n′ and l′ that we are interested.

G0,0(x) =
e−

x2

4ζ π3/2

ζ3/2
(6.17)

G1,1(x) = − ı e
−x

2

4ζ π3/2x

2ζ5/2
(6.18)

G2,2(x) = −e
−x

2

4ζ π3/2x2

4ζ7/2
(6.19)

G2,0(x) =
e−

x2

4ζ π3/2 (6ζ − x2)

4ζ7/2
(6.20)

As a result, the special functions required for the evaluation of the integral

(6.9) are only Ylm and jl whose computation has been discussed in Chapter 4.

6.4 Computational considerations

Since the results in Chapter 5 indicate that the resolution is most promising for

long-range exchange energy

EK = −1

2

occ∑
ij

〈ψiψj |L(r12)|ψiψj〉, (6.21)

it is our target for further study. Applying resolution to above equation yields

the (N ,L) approximation

EN ,LK = −1

2

N∑
n=0

L∑
l=0

l∑
m=−l

occ∑
ij

〈ψiψj|φnlm〉 (6.22)

Pseudocode to compute the long-range exchange energy are described below.

———————————————————————————————————

1. Form a list of significant Gaussian shell-pairs

2. Calculate initial jl and Ylm

3. EN ,LK =0

4. Loop over l

4.1 Calculate jl and Ylm
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4.2 Loop over n and m

4.2.1 Loop over the shell-pair list

4.2.1.1 Form primitive auxiliaries using HRR,

the Gaussian overlap distribution and (6.9)

4.2.1.2 Multiply the primitives by relevant contraction coefficients

and add them to the contracted AO auxiliaries

4.2.3 Convert AO to MO using DGEMM [197]

4.2.4 Loop over i and j

4.2.4.1 EN ,LK ← EN ,LK − 1
2
〈ψiψj|φnlm〉

———————————————————————————————————

For maximum efficiency, we set a cut-off THRESH=10−10 and screen out

insignificant quantities at step 1 and step 4.2.1. At step 1, Gaussian products

that their prefactors are smaller than THRESH are not included into the list of

shell-pairs. At step 4.2.1, if a Gaussian prefactor times 4
√
bnω is smaller than

THRESH, the program will skip that shell-pair and go on to the next one.

The most expensive step of this algorithm is 4.2.3 whose formal cost isO(B2KN)

where B is the number of basis functions, K is the number of terms in the trun-

cated Bessel resolution and N is the number of electrons. This looks like a quartic

bottleneck but, in practice, it can be done relatively fast because it is handled by

DGEMM and because of the screening criteria described above.

For small and moderate size molecules, the actual bottleneck is instead step

4.2.1.1 whose formal cost is O(B2K) but involves multi-step calculation.

At step 4.2.1.1, we use the horizontal recurrence relation (HRR) of Head-

Gordon and Pople [198] to transfer angular momentum from the second center

to the first center of the auxiliary integrals. This process is depicted below.
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〈ss|φ〉

〈ps|φ〉
↘

〈ds|φ〉 → 〈pp|φ〉
↘

〈fs|φ〉 → 〈dp|φ〉
↘ ↘

〈gs|φ〉 → 〈fp|φ〉 → 〈dd|φ〉
↘ ↘

〈hs|φ〉 → 〈gp|φ〉 → 〈fd|φ〉
↘ ↘ ↘

〈is|φ〉 → 〈hp|φ〉 → 〈gd|φ〉 → 〈ff |φ〉

The actual computation is described by

〈a(b+ 1i)|φk〉 = 〈(a+ 1i)b|φk〉+ (Ai +Bi)〈ab|φk〉 (6.23)

where a is (ax, ay, az), a set of three integers, the sum of which is the angular

momentum of the Gaussian, 1i = (δix, δiy, δiz) and i is one of x, y, z.

By using the Gaussian overlap distribution and Gaussian prodcut rule [199],

we can express the three-center integrals 〈ss|φ〉, 〈ps|φ〉, 〈ds|φ〉, 〈fs|φ〉, 〈gs|φ〉,
〈hs|φ〉, 〈is|φ〉 in terms of a linear combination of two-center integrals 〈s|φ〉, 〈p|φ〉,
〈d|φ〉, 〈f |φ〉, 〈g|φ〉, 〈h|φ〉, 〈i|φ〉. For instance, we obtain 〈ps|φ〉 from 〈s|φ〉 and

〈p|φ〉 by using (6.25).

e−ζA|r−RA|2e−ζB |r−RB |2 = GAB e
−ζp|r−RP |2 (6.24)

(x− Ax)e−ζA|r−RA|2e−ζA|r−RB |2 = (x− Px + Px − Ax)GAB e
−ζp|r−RP |2

= GAB (x− Px) e−ζp|r−RP |2+

GAB (Px − Ax)e−ζp|r−RP |2 (6.25)

GAB = e
− ζAζB
ζA+ζB

|RA−RB |2 (6.26)

P =
ζARA + ζBRB

ζA + ζB
(6.27)

These two center integrals 〈s|φ〉, 〈p|φ〉, 〈d|φ〉, . . . are constructed by linearly

combining 〈gn′l′m′(r−P )|φnlm〉 in (6.9). The relationship between spherical and
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Cartesian basis functions are shown in the following formulae.

x = −
√

4π

3
Y1,1 r (6.28)

y =

√
4π

3
Y1,−1 r (6.29)

z = −
√

4π

3
Y1,0 r (6.30)

x2 =

(√
4π

15
Y2,2 −

√
4π

45
Y2,0 +

√
4π

9
Y0,0

)
r2 (6.31)

y2 =

(
−
√

4π

15
Y2,2 −

√
4π

45
Y2,0 +

√
4π

9
Y0,0

)
r2 (6.32)

z2 =

(√
16π

15
Y2,2 +

√
4π

9
Y0,0

)
r2 (6.33)

xy =

√
4π

15
Y2,−2 r

2 (6.34)

xz = −
√

4π

15
Y2,1 r

2 (6.35)

yz = −
√

4π

15
Y2,−1 r

2 (6.36)

r =
√
x2 + y2 + z2 (6.37)

Ylm ≡ Ylm

(
cos−1 z

r
, tan−1 y

x

)
(6.38)

We now have a completed description of the RO integral algorithm. It is

implemented in a C program for long-range exchange energy calculation. We re-

port N ,L and RO calculation time where − log10

∣∣∣EN ,LK /EK − 1
∣∣∣ ≥ 6. Fockbuild

times (traditional algorithm) from Q-Chem package [107] are also reported for

comparison. The calculation is based on the HF wavefunction/ω = 0.1 and is run

on a 2.66 GHz machine with 2 GB DDR2 memory. Center of mass of molecules

are placed at the origin.

6.5 Numerical results

In this section, we report two sets of numerical results. The first is an accuracy

test for three groups of molecules and the second is a scaling test of exchange

energy calculation algorithm.
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6.5.1 Accuracy test

In previous chapters, our systems are either small molecules/big basis sets or

large molecules/toy densities. Only four molecules He, H2, C84H64 and C96H24

were considered so far. It is therefore desirable that the test set is expanded to a

variety of molecules and conducted using a chemically sensible basis sets.

For an accuracy test, we choose 6-311G basis and three sets of molecules.

Geometries of these molecules are provided in the Appendix A.

1. Ten selected molecules made of highly electronegative atoms: These

represents a system with elements from the right of the periodic table which

are known to be difficult for HFPT [200].

2. Lithium metal clusters: These represent a system with elements from

the left of periodic table and a system with relatively large exchange energy.

3. Alanine polypeptides: These represent a typical biomolecule. They were

used to test the scaling of calculation time for RI-TRIM [201]. The long-

chain linear molecules and globular molecules are referred to as 1D and 3D

respectively.

The results are shown in Table 6.1. RO significantly reduces calculation time

for all molecules in the study. The most promising case is Li48 where RO long-

range exchange energy calculation is nearly 25 times faster than conventional

calculation.

The overall N and L requirement is fairly small but we may make some

further analysis on them. In the n direction, we see that the lithium metallic

clusters require N = 4–5, while insulators require only N = 1–2. Because N is

a parameter that controls the quality of the radial resolution, this confirms the

fact that the exchange interaction is very short-ranged [193, 191, 194] even in our

metallic lithium clusters. In the l direction, we find that L grows weakly with

the size of the molecule and a long-chain 1D molecule requires larger L than a

compact 3D globular molecule of the same size.

6.5.2 Scaling test

How does the RO long-range exchange algorithm scale with respect to the size of

the molecule and with respect to the size of the basis set? We conduct a simple

study on alanine polypeptides to answer this question.
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Table 6.1: N , L and runtime of RO program

Calculation time/s

N L RO-Exchange Q-Chem Fockbuild

S2O 2 3 0.05 0.14

SO3 1 3 0.04 0.17

SiF4 1 3 0.05 0.23

P4 2 3 0.12 0.31

PF5 1 4 0.10 0.36

SOCl2 2 4 0.18 0.47

POCl3 2 4 0.23 0.86

C2F6 1 4 0.14 1.44

SF6 1 4 0.13 1.81

PCl5 2 4 0.38 4.53

Li14 4 6 2.15 16.43

Li22 4 7 6.84 83.99

Li48 5 10 65.69 1619.22

1D-tetrapeptide 1 10 5.06 43.43

1D-octapeptide 1 19 49.63 186.15

1D-hexadecapeptide 1 17 174.85 1019.83

3D-tetrapeptide 1 10 5.95 63.37

3D-octapeptide 1 15 26.94 359.62

3D-hexadecapeptide 1 15 103.99 1831.32
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summary

Page 1

Molecule N L Calculation time/s

2 10 5.06

2 19 49.63

2 17 174.85

2 10 5.95

2 12 26.94

2 12 103.99

Li14 5 6 2.15

Li22 5 7 6.84

Li48 6 10 65.69

C2F6 2 4 0.14

SiF4 2 3 0.05

P4 3 3 0.12

PF5 2 4 0.10

S2O 3 3 0.05

SO3 2 3 0.04

SF6 2 4 0.13

P Cl5 3 4 0.38

SOCl2 3 4 0.18

POCl3 3 4 0.23

1D/Resolution1D/Q-CHEM 3D/Resolution 3D/Q-CHEM

4 5.063 43.43 5.953 63.37

8 49.632 186.15 26.938 359.62

16 174.848 1019.83 103.992 1831.32

1D/Resolution1D/Q-CHEM 3D/Resolution 3D/Q-CHEM

4 0.704407927 1.637789829 0.7747358826 1.8018837071

8 1.695761776 2.269863041 1.4303653486 2.5558438367

16 2.242660669 3.008527783 2.0169999307 3.2627642384

1D tetrapetide

1D octapeptide

1D hexadecapeptide

3D tetrapetide

3D octapeptide

3D hexadecapeptide

4 8 16
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Figure 6.1: Plot of log CPU time vs system size

summary

Page 2

Molecule NB NBB 1D/Resolution 1D/Q-CHEM

1D_4 734 190 7.939 113.43

1D_4 902 458 12.933 260.75

1D_4 1110 626 18.903 509.62

3D/Resolution 3D/Q-CHEM

3D_4 734 190 9.441 152.35

3D_4 902 458 15.169 362.41

3D_4 1110 626 22.098 740.02

log10 log10 log10

2.86569606 0.8997658019 2.0547279321

2.955206538 1.1116992776 2.4162243171

3.045322979 1.2765307343 2.7072464635

2.86569606 0.9750179976 2.1828424586

2.955206538 1.1809569513 2.5592001727

3.045322979 1.3443529692 2.8692434573

Molecule NB NBB RO FB

1D_8 1454 570 67.159 465.67

1D_8 1782 898 116.382 1111.53

1D_8 2190 1226 178.992 2200.68

3D_8 1454 570 37.898 813.2

3D_8 1782 898 64.339 2064.01
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Figure 6.2: Plot of log CPU time vs basis set size
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The runtimes of alanine polypeptides from Table 6.1 are plotted in Figure

6.1. Both the conventional and resolution exchange energy calculation scales

approximately quadratically with respect to the addition of monomer units. This

is because the number of significant shell-pairs at large molecule limit scales

linearly with the size of the molecule [126, 125]. With this analysis, the cost

of conventional calculation reduces from O(B4) to O(B2) and the cost of RO

calculation reduces from O(B2KN) to O(BKN).

To study the scaling behavior when the quality of basis set is improved, we use

only s and p functions of correlation consistent basis. # indicates that the basis

has been truncated. The 1D/3D alaninetetrapetides and cc-pVDZ#, cc-pVTZ#

and cc-pVQZ# basis set are used in the calculation and the result is shown in

Figure 6.2.

This figure indicates that RO calculation scales quadratically with number

of primitive functions while conventional calculation scales quartically. This is

because the screening strategy does not work and the number of significant shell-

pairs does not reduce down to O(B). We can regard KN as a constant in this

case and the quadratic and quartic scalings are obvious from the formal cost.

6.6 Concluding remarks

In this chapter, we show a general approach to calculate RO auxiliary integrals

and use it for long-range exchange energy calculation. It is the first time that

we time RO calculation against standard quantum chemistry package. Though

the implementation is preliminary and not well-optimized, RO shows a strong

computational advantage of up to 25 times faster than conventional calculation.

Unlike other technique, RO calculation runtime wins over conventional calculation

even for a small molecule containing only a few atoms.

However, the calculation here contains up to p function only and in order to

proceed to higher angular momentum basis function efficiently, one might consider

deriving a recurrence approach to calculate the auxiliary integrals.

Linearization of the product of two spherical harmonics

In this section, we define Y ml ≡ Y ml (r), Ylm ≡ Ylm(r) and Cl,l
′,`

0,0,0, Cl,l
′,`

m,m′,m+m′ are standard

Clebsch-Gordan coefficient notation.
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For complex spherical harmonic, the linearization is well-known [202].

Y ml Y m
′

l′ =

√
(2l + 1)(2l′ + 1)

4π

l+l′∑
`=max(|l−l′|,|m+m′|)

Cl,l
′,`

0,0,0C
l,l′,`
m,m′,m+m′√
2`+ 1

Y m+m′

` (6.39)

For real spherical harmonic, we obtain

YlmYl′m′ = pm,m′
l+l′∑

`=max(|l−l′|,|m+m′|)

Cl,m,l
′,m′

` Y`,am,m′ (m+m)+

(−1)m
′
qm,m′

l+l′∑
`=max(|l−l′|,|m−m′|)

Cl,m,l
′,−m′

` Y`,bm,m′ (m−m′) (6.40)

where

am,m′ = sgn(m) sgn(m′) sgn(m+m′) (6.41)

bm,m′ = sgn(m) sgn(m′) sgn(m−m′) (6.42)

Cl,m,l
′,m′

` =

√
(2l + 1)(2l′ + 1)

4π(2`+ 1)
Cl,l

′,`
0,0,0C

l,l′,`
m,m′,m+m′ (6.43)

pm,m′ =
rmrm′

2
s [am,m′(m+m′)]


−1 m < 0 and m′ < 0

0 sgn(m) sgn(m′) < 0 and m+m′ = 0

1 otherwise





(−1)m+m′ am,m′ < 0 and sgn(m) sgn(m′) > 0

−(−1)m+m′ am,m′ < 0 and sgn(m) sgn(m′) < 0

1 otherwise

 (6.44)

qm,m′ =
rmrm′

2
s [bm,m′(m−m′)]


−1 m ≥ 0 and m′ < 0

0 sgn(m) sgn(m′) < 0 and m−m′ = 0

1 otherwise





(−1)m−m
′

bm,m′ < 0 and sgn(m) sgn(m′) > 0

−(−1)m−m
′

bm,m′ < 0 and sgn(m) sgn(m′) < 0

1 otherwise

 (6.45)

rm =


√

2 m > 0

1 m = 0

−(−1)m
√

2 m < 0

(6.46)

s(m) = 1/rm (6.47)

sgn(x) =

{
1 x ≥ 0

−1 otherwise
. (6.48)



Chapter 7

A remarkable identity

involving Bessel functions

We consider a new identity involving integrals and sums of Bessel functions.

The identity provides a new way to evaluate integrals of products of two Bessel

functions. The identity is remarkably simple and powerful since the summand

and integrand are of exactly the same form and the sum converges to the integral

relatively fast for most cases. A proof and numerical examples of the identity are

discussed.

85
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7.1 Introduction

The Newtonian kernel

T (r, r′) =
1

|r − r′| , r, r′ ∈ R3, (7.1)

is ubiquitous in mathematical physics and is essential to an understanding of both

gravitation and electrostatics [203]. It is central in classical mechanics [204] but

plays an equally important role in quantum mechanics [205] where it mediates

the dominant two-particle interaction in electronic Schrödinger equations of atoms

and molecules.

Although the Newtonian kernel has many beautiful mathematical properties,

the fact that it is both singular and long-ranged is awkward and expensive from

a computational point of view [206] and this has led to a great deal of research

into effective methods for its treatment. Of the many schemes that have been

developed, Ewald partitioning [92], multipole methods [127] and Fourier trans-

form techniques [207] are particularly popular and have enabled the simulation

of large-scale particulate and continuous systems, even on relatively inexpensive

computers.

A recent alternative [1, 2, 3, 4] to these conventional techniques is to resolve

(7.1), a non-separable kernel, into a sum of products of one-body functions

T (r, r′) =
∞∑
l=0

l∑
m=−l

Ylm(r)Ylm(r′)Tl(r, r
′) =

∞∑
n,l=0

l∑
m=−l

φnlm(r)φnlm(r′) (7.2)

where Ylm(r) is a real spherical harmonic [9, 14.30.2] of the angular part of three

dimensional vector r,

Tl(r, r
′) = 4π

∞∫
0

Jl+1/2(tr)Jl+1/2(tr′)

t
√
rr′

dt, (7.3)

Jl (z) is a Bessel function of the first kind, and r = |r|. The resolution (7.2) is

computationally useful because it decouples the coordinates r and r′ and allows

the two-body interaction integral

E[ρa, ρb] =

∫∫
ρa(r)T (r, r′)ρb(r

′)drdr′, (7.4)

between densities ρa(r) and ρb(r) to be recast as

E[ρa, ρb] =
∞∑
n=0

∞∑
l=0

l∑
m=−l

AnlmBnlm, (7.5)
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where Anlm is a one-body integral of the product of ρa(r) and φnlm(r). If the

one-body integrals can be evaluated efficiently and the sum converges rapidly,

(7.5) may offer a more efficient route to E[ρa, ρb] than (7.4).

The key question is how best to obtain the Tl resolution

Tl(r, r
′) =

∞∑
n=0

Vnl(r)Vnl(r
′). (7.6)

Previous attempts [1, 2, 3, 4] yielded complicated Vnl whose practical utility

is questionable but, recently, we have discovered the remarkable identity (See

Chapter 4.) ∫ ∞
0

Jν(at)Jν(bt)

t
dt =

∞∑
n=0

κn
Jν(an)Jν(bn)

n
(7.7)

where κn is defined by

κn =

{
1
2
, n = 0

1, n ≥ 1
. (7.8)

a, b ∈ [0, π], ν = 1
2
, 3

2
, 5

2
, . . . and we take the appropriate limit for the n = 0 term

in the sum (7.7). This yields the functions

φnlm(r) =

√
4πκn
rn

Jl+1/2(rn)Ylm(r), (7.9)

and these provide a resolution which is valid provided that r < π. We note that

φnlm vanish for n = 0 unless l = 0.

If we write (7.7) as an integral from −∞ to ∞,∫ ∞
−∞

Jν(at)Jν(bt)

t
dt =

∞∑
n=−∞

Jν(an)Jν(bn)

n
, (7.10)

the summand and integrand are of exactly the same form. There has been a

number of studies in this kind of sum-integral equality by various groups, for

example, Krishnan & Bhatia in 1940s [208, 209, 210, 211] and Boas, Pollard &

Shisha in 1970s [212, 213, 214].

These discoveries were inspired by a practice to “approximate” an intractable

sum that arises in physics by an integral. They realized that the “approximation”

was in fact exact for a number of cases.

In this chapter, however, our goal is the opposite. We originally aimed to

use the sum to approximate the integral and later found that it was exact. Our

identity (7.7) is also considerably different from theirs but we may regard their

[214, (1)] when c = 0 as a special case of our (7.7) when ν = 1/2.

The aim of this chapter is to prove an extended version of the identity (7.7)

and demonstrate its viability in approximating the integral of Bessel functions.
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7.2 Preliminaries

The Bessel function of the first kind Jν (z) is defined by [196, 3.1 (8)]

Jν (z) =
∞∑
n=0

(−1)n

Γ (ν + n+ 1)n!

(z
2

)ν+2n

. (7.11)

It follows from (7.11) that

Jν (z)
(z

2

)−ν
(7.12)

is an entire function of z and we have

lim
z→0

Jν (z)
(z

2

)−ν
=

1

Γ (ν + 1)
. (7.13)

Gauss’ hypergeometric function is defined by [215, 2.1.2]

2F1

(
a, b

c
; z

)
=
∞∑
k=0

(a)k (b)k
(c)k

zk

k!
, (7.14)

where (u)k is the Pochhammer symbol (or rising factorial), given by

(u)k = u (u+ 1) · · · (u+ k − 1) . (7.15)

The series (7.14) converges absolutely for |z| < 1 [215, 2.1.1]. If Re (c− a− b) >
0, we have [215, 2.2.2]

2F1

(
a, b

c
; 1

)
=

Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b) . (7.16)

Many special functions can be defined in terms of the hypergeometric function.

In particular, the Gegenbauer (or ultraspherical) polynomials C
(λ)
n (x) are defined

by [216, 9.8.19]

C(λ)
n (x) =

(2λ)n
n!

2F1

(
−n, n+ 2λ

λ+ 1
2

;
1− x

2

)
, (7.17)

with n ∈ N0 and

N0 = {0, 1, . . .} . (7.18)

In this chapter, we will use the following Lemmas.

Lemma 7.2.1. For k ∈ N0, we have

C
(µ−2k)
2k (x) =

(k + 1− µ)k
k!

(
1− x2

) 1
2
−µ+2k×

2F1

(
1
2

+ k, 1
2
− µ+ k

1
2

;x2

)
, |x| < 1. (7.19)
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Proof. Using the formula [215, 3.1.12]

2F1

(
2a, 2b

a+ b+ 1
2

;
x+ 1

2

)
=

Γ
(
a+ b+ 1

2

)
Γ
(

1
2

)
Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

) 2F1

(
a, b

1
2

;x2

)

− xΓ
(
a+ b+ 1

2

)
Γ
(
−1

2

)
Γ (a) Γ (b)

2F1

(
a+ 1

2
, b+ 1

2
3
2

;x2

)
(7.20)

in (7.17), we obtain

C
(µ−2k)
2k (x) =

22µ−2k−1Γ
(
µ− 2k + 1

2

)
Γ (µ− k)

Γ
(

1
2
− k
)

Γ (2µ− 4k) (2k)!
2F1

(
−k, µ− k

1
2

;x2

)
, (7.21)

since 1
Γ(−k)

= 0 for k = 0, 1, . . . .

Applying Euler’s transformation [215, 2.2.7]

2F1

(
a, b

c
;x

)
= (1− x)c−a−b 2F1

(
c− a, c− b

c
;x

)
(7.22)

to (7.21), we get

C
(µ−2k)
2k (x) =

22µ−2k−1Γ
(
µ− 2k + 1

2

)
Γ (µ− k)

Γ
(

1
2
− k
)

Γ (2µ− 4k) (2k)!
×

(
1− x2

) 1
2
−µ+2k

2F1

(
1
2

+ k, 1
2
− µ+ k

1
2

;x2

)
, (7.23)

and (7.19) follows since

22µ−2k−1Γ
(
µ− 2k + 1

2

)
Γ (µ− k)

Γ
(

1
2
− k
)

Γ (2µ− 4k) (2k)!
=

(k + 1− µ)k
k!

. (7.24)

Lemma 7.2.2. Let the function h(x; a) be defined by

h(x; a) =

 Aµk (a)
(

1− x2

a2

)µ−2k− 1
2
C

(µ−2k)
2k (x

a
) 0 ≤ x < a

0 a ≤ x ≤ π
, (7.25)

where 0 < a < π,

Aµk(a) =
(−1)k (2k)!Γ (µ− 2k) 22µ−2k−1

a2k+1Γ (2µ− 2k)
, (7.26)



90 CHAPTER 7. A REMARKABLE BESSEL IDENTITY

Re (µ) > 2k − 1
2

and k ∈ N0.

Then, h(x; a) can be represented by the Fourier cosine series

h(x; a) =
∞∑
n=0

κn
Jµ (na)(

1
2
an
)µn2k cos (nx) , (7.27)

where κn was defined in 7.8.

Proof. For Re(σ) > −1
2
, α > 0 and k ∈ N0, we have [196, 3.32]

1∫
0

(
1− t2

)σ− 1
2 C

(σ)
2k (t) cos (αt) dt =

π (−1)k Γ (2k + 2σ)

(2k)!Γ (σ) (2α)σ
Jσ+2k (α) . (7.28)

Replacing σ = µ− 2k and α = na in (7.28), we obtain

Jµ (na)n2k(
1
2
an
)µ = 2a

1∫
0

Aµk(a)
(
1− t2

)µ−2k− 1
2 C

(µ−2k)
2k (t) cos (nat) dt (7.29)

or

Jµ (na)(
1
2
an
)µn2k =

2

π

a∫
0

h(x; a) cos (nx) dx, (7.30)

and the result follows.

7.3 Main results

The discontinuous integral

I (a, b) =

∞∫
0

Jµ (at) Jν (bt)

tλ
dt, (7.31)

was investigated by Weber [217], Sonine [218] and Schafheitlin [219]. They proved

that [196, 13.4 (2)]

I (a, b) =
aλ−ν−1bνΓ

(
ν+µ−λ+1

2

)
2λΓ (ν + 1) Γ

(
λ+µ−ν+1

2

) 2F1

(
ν+µ−λ+1

2
, ν−µ−λ+1

2

ν + 1
;

(
b

a

)2
)
, (7.32)

for

Re(µ+ ν + 1) > Re (λ) > −1 (7.33)
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and 0 < b < a. The corresponding expression for the case when 0 < a < b, is

obtained from (7.32) by interchanging a, b and also µ, ν. When a = b, we have

[196, 13.41 (2)]

I (a, a) =

aλ−1Γ

(
ν + µ− λ+ 1

2

)
Γ (λ)

2λΓ

(
λ+ µ− ν + 1

2

)
Γ

(
λ+ ν − µ+ 1

2

)
Γ

(
ν + µ+ λ+ 1

2

) , (7.34)

provided that Re(µ + ν + 1) > Re (λ) > 0. This result also follows from Gauss’

summation formula (7.16) and (7.32).

Theorem 7.3.1. If 0 < b < a < π, Re (µ) > 2k − 1
2
, Re (ν) > −1

2
, k ∈ N0, and

Sk (a, b) =
∞∑
n=0

κn
Jµ (an)(

1
2
an
)µ Jν (bn)(

1
2
bn
)ν (an

2

)2k

, (7.35)

then,

Sk (a, b) =
Γ
(
k + 1

2

)
aΓ (ν + 1) Γ

(
µ− k + 1

2

) 2F1

(
1
2

+ k, 1
2
− µ+ k

ν + 1
;

(
b

a

)2
)
. (7.36)

Proof. Multiplying (7.27) by Aν0 (b) 2
π

(
1− x2

b2

)ν− 1
2

and integrating from 0 to b,

we get

Sk (a, b) =
2

π
Aν0 (b)Aµk (a)

b∫
0

(
1− x2

b2

)ν− 1
2
(

1− x2

a2

)µ−2k− 1
2

C
(µ−2k)
2k (

x

a
)dx,

(7.37)

where we have used the integral representation (7.30). Setting x = bt and b = ωa

in (7.37), we obtain

Sk (a, b) =
2b

π
Aν0 (b)Aµk (a)

1∫
0

(
1− t2

)ν− 1
2
(
1− ω2t2

)µ−2k− 1
2 C

(µ−2k)
2k (ωt)dt. (7.38)

Thus, we can re-write (7.38) as

Sk (a, b) =
2b

π
Aν0 (b)Aµk (a)

22µ−2k−1Γ
(
µ− 2k + 1

2

)
Γ (µ− k)

Γ
(

1
2
− k
)

Γ (2µ− 4k) (2k)!

×
1∫

0

(
1− t2

)ν− 1
2

2F1

(
1
2

+ k, 1
2
− µ+ k

1
2

;ω2t2

)
dt, (7.39)
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or, using (7.26) and changing variables in the integral,

Sk (a, b) =
(−1)k 22k

√
π

a2k+1Γ
(
µ− k + 1

2

)
Γ
(
ν + 1

2

)
Γ
(

1
2
− k
)

×
1∫

0

s−
1
2 (1− s)ν− 1

2
2F1

(
1
2

+ k, 1
2
− µ+ k

1
2

;ω2s

)
ds. (7.40)

Recalling the formula [215, Th. 2.2.4]

2F1

(
a, b

c
;x

)
=

Γ (c)

Γ (d) Γ (c− d)

1∫
0

td−1 (1− t)c−d−1
2F1

(
a, b

d
;xt

)
dt, (7.41)

valid for Re (c) > Re(d) > 0, x ∈ C \ [1,∞) , we conclude that

Sk (a, b) =
(−1)k 22k

√
π

a2k+1Γ
(
µ− k + 1

2

)
Γ
(
ν + 1

2

)
Γ
(

1
2
− k
)

×
√
πΓ
(
ν + 1

2

)
Γ (ν + 1)

2F1

(
1
2

+ k, 1
2
− µ+ k

ν + 1
;ω2

)
. (7.42)

But since [215, 1.2.1]

Γ

(
k +

1

2

)
Γ

(
1

2
− k
)

= (−1)k π, k = 0, 1, . . . , (7.43)

the result follows.

The special case of Theorem 7.3.1 in which k = 0, was derived by Cooke in

[220], as part of his work on Schlömilch series.

Corollary 7.3.2. If 0 < b < a < π, Re (µ) > 2k − 1
2
,Re (ν) > −1

2
, k ∈ N0, then

∞∫
0

Jµ (at) Jν (bt)

tµ+ν−2k
dt =

∞∑
n=0

κn
Jµ (an) Jν (bn)

nµ+ν−2k
. (7.44)

Proof. The result follows immediately from (7.32) and (7.36), after taking λ =

µ+ ν − 2k. Note that since for all k ∈ N0

Re(µ+ ν + 1) = Re (2k + 1 + λ) > Re (1 + λ) > Re (λ) (7.45)

and

Re (λ) = Re (µ+ ν − 2k) > −1, (7.46)

the conditions (7.33) are satisfied.
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Figure 7.1: 1
5

[
min(a,b)
max(a,b)
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Corollary 7.3.3. If 0 < a, b < π, and ν − 1
2
∈ N0, then

∞∑
n=0

κn
Jν (an) Jν (bn)

n
=

∞∫
0

Jν (at) Jν (bt)

t
dt =

{
1
2ν

(
a
b

)ν
, a ≤ b

1
2ν

(
b
a

)ν
, a ≥ b

. (7.47)

Proof. The result is a consequence of Corollary 7.3.2 and a special case of the

integral (7.32) (see [196, 13.42 (1)]).

Table 7.1: RN (a, b) for a = π/2 and various b and N
b

N π/4 2π/4 3π/4 4π/4 5π/4 6π/4

1 3.15E-02 1.81E-01 3.15E-02 -2.37E-02 -4.12E-02 -3.09E-2

10 -3.10E-03 2.02E-02 -2.40E-03 1.45E-04 1.74E-03 -1.16E-2

100 -1.79E-06 2.03E-03 -4.81E-07 -1.39E-07 7.46E-07 -1.17E-3

1000 1.81E-09 2.03E-04 4.86E-10 -1.37E-10 -7.46E-10 -1.17E-4

10000 1.81E-12 2.03E-05 4.86E-13 -1.37E-13 -7.46E-13 -1.17E-5
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Figure 7.2: Truncation error R20(a, b) for a, b ∈ [−2π, 2π]
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7.4 Numerical results

In previous sections, we have proven the equality of integrals and sums of Bessel

functions. However, before the identity is used in practice, we need to consider

its convergence behavior.

Firstly, the Weierstrass M-test shows that the series converges uniformly

as long as µ + ν − 2k > 1 and µ, ν > 0 because the numerator is bounded

|Jµ (at) Jν (bt) | ≤ 1 [196, 13.42 (10)].

To explore the rate of convergence of the sum in Corollary 7.3.3, we choose

ν = 5/2. The exact value of the integral is

∞∫
0

J5/2(at)J5/2(bt)

t
dt =

1

5

√
|a|
a

√
|b|
b

[
min(|a|, |b|)
max(|a|, |b|)

]5/2

(7.48)

and truncation of the infinite series yields the finite sum

MN (a, b) =
N∑
n=1

J5/2 (an) J5/2 (bn)

n
(7.49)

and a truncation error

RN (a, b) =
1

5

[
min(|a|, |b|)
max(|a|, |b|)

]5/2

−
√
|a|
a

√
|b|
b
MN (a, b). (7.50)

The integral in (7.48) and sum in (7.49) are illustrated in Figure 7.1 and their

difference (7.50) is shown in Figure 7.2 and Table 7.1.

The excellent agreement region in Figure 7.1, an apparently flat plateau in

Figure 7.2, and the decaying error from the 2nd to the 7th column of Table 7.1

strongly suggest that Corollary 7.3.3 is true over the larger domain |a|+ |b| < 2π

for ν = 5/2. Additional numerical experiments not shown here suggest that it

is true for all ν. Furthermore, we believe that this larger domain conjecture also

applies to Corollary 7.3.2 but we have not yet managed to find a proof for this.

If a and b are in the domain where the integral equals the infinite sum, the

difference (7.50) is only due to truncation and can be recast as

RN (a, b) =

√
|a|
a

√
|b|
b

∞∑
n=N+1

J5/2 (an) J5/2 (bn)

n
(7.51)

Table 7.1 reveals that the rate of convergence of the Bessel sum is strongly

dependent on the value of a and b. For b = 2π/4 and b = 6π/4, the truncation

error appears to decay as 1/N but, for the other values of b, it appears to decay
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as 1/N 3. Because a, b are multiples of π/4, these two convergence behaviors can

be explained analytically by substituting the first sine or cosine term from the

expansion [196, 7.21 (1)] into (7.51). We have examined at other values of a, b in

the |a| + |b| < 2π domain and found empirically that the decay rate is between

1/N and 1/N 3.

7.5 Concluding remarks

We provide a rigorous proof that the identity (7.7) is valid on the square domain

a, b ∈ (0, π). A numerical study indicates that the rate of convergence of the sum

in the identity is sensitive to the values of a and b and further work to quantify

this would be helpful. Generalization of the identity is possible and should be

explored in the future work.



Chapter 8

Summary and future directions

Niels Henrik David Bohr (1885–1962)

The Nobel Prize in Physics 1922 was awarded to Niels Bohr

“for his services in the investigation of the structure of atoms

and of the radiation emanating from them” [12].

“Those who are not shocked when they first come across

quantum mechanics cannot possibly have understood it.”

— Bohr [221]

8.1 Summary

In Chapter 1, we look back into the history of quantum mechanics and review

attempts to solve the Schrödinger equation since its birth in 1926. Despite the

enormous effort of scientists and mathematicians over 85 years and the exponen-

tially growing computing power, ab initio QM calculations are still very expensive

and limited to moderate-size molecules.

97
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“Why Schrödinger equations are so difficult?”, we raise this question in the

second chapter. We find that r−1
ij are chiefly responsible for the complexity of

the equations. One approach to avoid this problem is to resolve r−1
ij into a sum

of φk(ri) and φk(rj). This chapter reviews three existing works on the resolu-

tions and touches on two related techniques, Cholesky decomposition and den-

sity fitting. We also derive an extension to the resolution theory and devise four

strategies to resolve a symmetric function T (r1, r2, θ12).

In the third chapter, we replace r−1
ij in the Schrödinger equations by the

truncated Laguerre resolution and obtain reduced-rank Schrödinger equations

(RRSE). The RRSEs are mathematically simpler objects than the original equa-

tions yet their solutions are chemically meaningful. This is confirmed by HF,

MP2 and FCI calculations on He and H2 using even-tempered basis sets.

Though the resolution of Coulomb operator is a theoretically powerful tool

for quantum chemistry, it cannot reach its full potential unless auxiliary integrals

can be generated efficiently. We endeavored to devise an efficient algorithm for

auxiliary integrals arising from Laguerre but to no avail. We later abandoned it

and looked for alternatives. The works in §2.2 and §2.3 were derived during the

quest for a better resolution of the Coulomb operator.

Chapter 4 describes the most important discovery in this thesis. We tried to

construct a quadrature or a sum that approximates Tl which is represented by

an integral (2.46). Instead, we found an exact formula that relates the integral

to the sum and led to the Bessel resolution of Coulomb operator. The resolution

function φk are just a product of a spherical harmonic and a spherical Bessel

function. Auxiliary integrals 〈a|φk〉 for spherical density a centered at R are

simply a product of φk(R), a resolution function evaluated at R and â(λ), a

Fourier transform of a evaluated at λ.

The Bessel resolution of Coulomb operator is, however, a “quasi-resolution”

which means that it is valid only within a certain domain. We need to scale our

system of interest to fit within the validity domain r1 +r2 < 2π to obtain the best

performance. The Coulomb energy calculation on a large nanodiamond molecule

C84H64 shows that the domain restriction can be easily circumvented and that

the auxiliary integral difficulty has been solved.

Because of the success of the resolution of Coulomb operator, we extend it to

the long-range Ewald operator in the fifth chapter. The resolution functions and

the auxiliary integrals are basically in the same form as Bessel resolution of the

Coulomb operator. Having said that, the Bessel resolution of the Ewald operator

is not a quasi-resolution and converges much faster than the Coulomb one.
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We tested it for both Coulomb energy of nanodiamond C84H64 and exchange

energy of graphene C96H24 and found that the resolution is exceptionally promis-

ing for long-range exchange energy calculation. This is because our resolution is

capable of exploiting the short-sightedness of exchange interation.

In Chapter 6, we discuss the building up of angular momentum on the basis

function. Unlike the Boys approach in Chapter 3, we derive explicit formulae by

using Fourier transform and Clebsch-Gordan coefficients. The theory is applicable

to any resolution of the form Vnl(r)Ylm(r).

We use the explicit formulae to calculate long-range exchange energy. Correlation-

consistent and 6-311G basis set and three representative groups of molecules are

considered. This is a few steps further from the previous work. (In Chapter 3,

we use uncontracted basis sets containing p and d functions, but only on He and

H2. In Chapter 4 and Chapter 5, the two molecules investigated are fairly large

containing over a hundred of atoms but only toy densities are used.)

The implementation of resolution in Chapter 6, though being preliminary and

not well-optimized, wins over a traditional long-range exchange energy calculation

in a standard quantum chemical program.

The seventh chapter revisits the identity involving Bessel integrals and sums.

The similarity of the summand and the integrand is a remarkable mathematical

discovery. We generalize the identity statement and provide a proof for it.

8.2 Future directions

The resolutions of Coulomb operator is a simple yet powerful idea in quantum

chemistry. This dissertation has extended the theory of resolution and created

new efficient practical resolutions of the Coulomb operator and the long-range

Ewald operator. There are three major directions for future research that will

build upon the work in this thesis.

1. Implementation: The resolutions discussed in Chapter 4 and Chapter 5

are ready for an implementation in any quantum chemical methods. In

principle, the resolutions of Coulomb operator can at least perform the

same task as Cholesky decomposition and density fitting that are widely

used in quantum chemistry. However, the resolution have several advan-

tages over other techniques as discussed in §2.4. This research direction,

parallel computing implementation, in particular, will be explored in the

near future.
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2. Theoretical development: This thesis mainly deals with resolutions of

the Coulomb operator and its long-range analogues. However, we provide

a general discussion on the resolution theory in Chapter 2. It opens a

significant possibility for future study. For example, the resolutions of r12

may benefit explicit r12 methods.

3. RRSE: It is also possible to explore the use of the resolutions of Coulomb

operator beyond the two-electron integral factorization picture. We stated

in Chapter 3 that RRSEs are mathematically simpler than SEs but still

solved them numerically using traditional methods, HF, MP2 and FCI.

It is worth looking at the possibility of solving RRSEs analytically or even

numerically via other means. This is a more challenging and more rewarding

research question that may remain open for a long period of time.



Appendix A

Computational notes on

special functions

Three-term recurrence relations

A three-term recurrence relation of the form

yn+1 + anyn + bnyn−1 = 0 (A.1)

where an, bn are given sequence of real or complex numbers, bn 6= 0 and n =

1, 2, 3, . . . generally has two linearly independent solutions. [222] The calculation

of one of the solutions by the recurrence relation is usually numerically stable in

one direction but not the other. In his 1952 book [223], Miller suggested that the

Bessel functions are calculated by using the recurrence relation in the backward

direction. It is now known as “Miller’s backward recurrence algorithm” [222] or

simply “backward recurrence algorithm” [224]. The idea, however, can be traced

back to Lord Rayleigh’s 1910 paper. [225] The behavior of the recurrence relation

of this form has been studied by Gautschi [222], Olver [226, 224] and many other

groups [227, 228]

Hermite functions, Bessel functions and associated Legendre polynomials (ALPs)

discussed below obey three-term recurrence relations.

• Hermite functions H−n, n = 1, 2, 3, . . . are closely related to the complex

error functions and the Faddeeva function w(z) = e−z
2
erfc(−ız). We have

obtained an algorithm for H−n by modifying the algorithm for the Faddeeva

function by Poppe, Wijers and Gautschi. [229, 230]

• The Argonne’s Bessel function code written by Sookne and distributed

through R project [168] is used for calculating spherical Bessel functions.
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A simple algorithm by Thompson [231] cited by Varganov et. al. [2] does

not work for our purpose.

• A spherical harmonic is product of an ALP Pm
l , a sine or cosine function and

a normalization factor. Since 1960 numerous algorithms for calculating the

ALPs or the modified ALPs have been developed. [232, 233, 234, 235, 169,

170, 148, 236, 237, 238, 239, 240, 241] However, Equation (4.23) requires

that the ALPs are calculated from high to low degree. Thus, the generation

of ALPs using m-only recursion in [169, 242, 170] is modified and used in

Chapter 4. There is no such requirement in other chapters and the algorithm

for the modified ALPs in Numerical Recipe 3rd edition [243] is the preferred

method.

The error function of complex argument

There are several methods for the computation of the error function of complex

argument. [244, 245] Strand algorithm [245] is modified and used for (5.32).



Appendix B

Molecular geometries

Nuclear orientations in this appendix are reported in angstroms.

Molecules in Chapter 4 and Chapter 5

Nanodiamond C84H64 Graphene C96H24

Nanodiamond C84H64

C 0.000000 0.000000 5.334716

C -0.889119 0.889119 4.445597

C -1.778239 0.000000 3.556478

C -0.889119 -0.889119 2.667358

C 0.000000 -1.778239 3.556478

C 0.889119 -0.889119 4.445597

C -1.778239 -1.778239 1.778239

C -0.889119 -2.667358 0.889119
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C 0.000000 -1.778239 0.000000

C 0.889119 -0.889119 0.889119

C 0.000000 0.000000 1.778239

C -0.889119 0.889119 0.889119

C 0.000000 1.778239 0.000000

C 0.889119 0.889119 -0.889119

C 1.778239 0.000000 0.000000

C -0.889119 -0.889119 -0.889119

C 0.000000 0.000000 -1.778239

C 0.889119 -2.667358 -0.889119

C 1.778239 -1.778239 -1.778239

C 2.667358 -0.889119 -0.889119

C 3.556478 -1.778239 0.000000

C 2.667358 -2.667358 0.889119

C 1.778239 -1.778239 1.778239

C 0.889119 0.889119 2.667358

C 1.778239 1.778239 1.778239

C 2.667358 0.889119 0.889119

C 2.667358 -0.889119 2.667358

C 3.556478 0.000000 1.778239

C -1.778239 0.000000 0.000000

C 1.778239 -3.556478 0.000000

C 0.889119 -2.667358 2.667358

C 0.000000 -3.556478 1.778239

C 1.778239 0.000000 3.556478

C 0.889119 2.667358 0.889119

C 0.889119 -0.889119 -2.667358

C 3.556478 0.000000 -1.778239

C 2.667358 0.889119 -2.667358

C 1.778239 1.778239 -1.778239

C 3.556478 1.778239 0.000000

C 2.667358 2.667358 -0.889119

C 4.445597 -0.889119 0.889119

C 4.445597 0.889119 -0.889119

C -0.889119 0.889119 -2.667358

C -1.778239 1.778239 -1.778239

C -0.889119 2.667358 -0.889119

C 0.889119 2.667358 -2.667358

C 0.000000 3.556478 -1.778239

C 1.778239 3.556478 0.000000

C 0.000000 1.778239 -3.556478

C 1.778239 0.000000 -3.556478

C -2.667358 -0.889119 0.889119

C 0.000000 -3.556478 -1.778239

C -0.889119 -2.667358 -2.667358
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C -1.778239 -1.778239 -1.778239

C -1.778239 -3.556478 0.000000

C -2.667358 -2.667358 -0.889119

C -0.889119 -4.445597 -0.889119

C 0.889119 -4.445597 0.889119

C -3.556478 -1.778239 0.000000

C -2.667358 0.889119 -0.889119

C -2.667358 -0.889119 -2.667358

C -3.556478 0.000000 -1.778239

C -1.778239 0.000000 -3.556478

C 0.000000 -1.778239 -3.556478

C -2.667358 0.889119 2.667358

C -1.778239 1.778239 1.778239

C 0.000000 1.778239 3.556478

C -0.889119 2.667358 2.667358

C -3.556478 0.000000 1.778239

C -3.556478 1.778239 0.000000

C -2.667358 2.667358 0.889119

C -4.445597 0.889119 0.889119

C -4.445597 -0.889119 -0.889119

C 0.000000 3.556478 1.778239

C -1.778239 3.556478 0.000000

C 0.889119 4.445597 -0.889119

C -0.889119 4.445597 0.889119

C 0.889119 0.889119 -4.445597

C -0.889119 -0.889119 -4.445597

C -5.334716 0.000000 0.000000

C 0.000000 5.334716 0.000000

C 0.000000 0.000000 -5.334716

C 0.000000 -5.334716 0.000000

C 5.334716 0.000000 0.000000

H -3.296670 -3.296670 -1.518431

H 2.407551 -2.407551 -2.407551

H -2.407551 2.407551 -2.407551

H -2.407551 -2.407551 2.407551

H 2.407551 2.407551 2.407551

H -2.407551 0.629312 -4.185789

H 0.629312 -2.407551 -4.185789

H -0.629312 2.407551 -4.185789

H 2.407551 -0.629312 -4.185789

H -4.185789 2.407551 -0.629312

H -4.185789 -0.629312 2.407551

H -4.185789 0.629312 -2.407551

H -4.185789 -2.407551 0.629312

H -2.407551 -0.629312 4.185789

H 0.629312 2.407551 4.185789

H -0.629312 -2.407551 4.185789

H 2.407551 0.629312 4.185789
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H 0.629312 4.185789 2.407551

H 2.407551 4.185789 0.629312

H -2.407551 4.185789 -0.629312

H -0.629312 4.185789 -2.407551

H -2.407551 -4.185789 0.629312

H -0.629312 -4.185789 2.407551

H 2.407551 -4.185789 -0.629312

H 0.629312 -4.185789 -2.407551

H 4.185789 -2.407551 -0.629312

H 4.185789 0.629312 2.407551

H 4.185789 -0.629312 -2.407551

H 4.185789 2.407551 0.629312

H 5.074909 1.518431 -1.518431

H 5.074909 -1.518431 1.518431

H -5.074909 -1.518431 -1.518431

H -5.074909 1.518431 1.518431

H 1.518431 1.518431 -5.074909

H -1.518431 -1.518431 -5.074909

H 1.518431 -1.518431 5.074909

H -1.518431 1.518431 5.074909

H -1.518431 -5.074909 -1.518431

H 1.518431 -5.074909 1.518431

H -1.518431 5.074909 1.518431

H 1.518431 5.074909 -1.518431

H 0.629312 0.629312 5.964028

H -0.629312 -0.629312 5.964028

H 0.629312 -0.629312 -5.964028

H -0.629312 0.629312 -5.964028

H 0.629312 -5.964028 -0.629312

H -0.629312 -5.964028 0.629312

H 0.629312 5.964028 0.629312

H -0.629312 5.964028 -0.629312

H -5.964028 -0.629312 0.629312

H -5.964028 0.629312 -0.629312

H 5.964028 -0.629312 -0.629312

H 5.964028 0.629312 0.629312

H 3.296670 1.518431 -3.296670

H 3.296670 3.296670 -1.518431

H 1.518431 3.296670 -3.296670

H 1.518431 -3.296670 3.296670

H 3.296670 -1.518431 3.296670

H 3.296670 -3.296670 1.518431

H -3.296670 3.296670 1.518431

H -1.518431 3.296670 3.296670

H -3.296670 1.518431 3.296670

H -1.518431 -3.296670 -3.296670

H -3.296670 -1.518431 -3.296670
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Graphene C96H24

Since this graphene is a planar molecule, only x and y coordinates are given.

C 0.000000 0.000000

C 0.000000 1.400000

C 1.212436 2.100000

C 2.424871 1.400000

C 2.424871 0.000000

C 1.212436 -0.700000

C 3.637307 2.100000

C 4.849742 1.400000

C 4.849742 0.000000

C 3.637307 -0.700000

C 6.062178 2.100000

C 7.274613 1.400000

C 7.274613 0.000000

C 6.062178 -0.700000

C 8.487049 -0.700000

C 9.699485 0.000000

C 9.699485 1.400000

C 8.487049 2.100000

C 6.062178 -2.100000

C 4.849742 -2.800000

C 3.637307 -2.100000

C 1.212436 -2.100000

C 2.424871 -2.800000

C 4.849742 -4.200000

C 3.637307 -4.900000

C 2.424871 -4.200000

C 3.637307 -6.300000

C 2.424871 -7.000000

C 1.212436 -6.300000

C 1.212436 -4.900000

C 4.849742 -7.000000

C 4.849742 -8.400000

C 3.637307 -9.100000

C 2.424871 -8.400000

C 1.212436 -9.100000

C 1.212436 -10.500000

C 2.424871 -11.200000

C 3.637307 -10.500000

C 6.062178 -9.100000

C 6.062178 -10.500000

C 4.849742 -11.200000
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C 0.000000 -8.400000

C 0.000000 -7.000000

C -1.212436 -6.300000

C -1.212436 -4.900000

C 0.000000 -4.200000

C 0.000000 -2.800000

C 2.424871 -12.600000

C 3.637307 -13.300000

C 4.849742 -12.600000

C 7.274613 -11.200000

C 7.274613 -12.600000

C 6.062178 -13.300000

C 8.487049 -10.500000

C 9.699485 -11.200000

C 9.699485 -12.600000

C 8.487049 -13.300000

C 0.000000 -11.200000

C 0.000000 -12.600000

C 1.212436 -13.300000

C -1.212436 -9.100000

C -1.212436 -10.500000

C -2.424871 -7.000000

C -2.424871 -8.400000

C -2.424871 -4.200000

C -3.637307 -4.900000

C -3.637307 -6.300000

C -1.212436 -2.100000

C -2.424871 -2.800000

C -1.212436 -0.700000

C 8.487049 -9.100000

C 9.699485 -8.400000

C 10.911920 -9.100000

C 10.911920 -10.500000

C 12.124356 -8.400000

C 12.124356 -7.000000

C 10.911920 -6.300000

C 9.699485 -7.000000

C 8.487049 -6.300000

C 8.487049 -4.900000

C 9.699485 -4.200000

C 10.911920 -4.900000

C 9.699485 -2.800000

C 8.487049 -2.100000

C 7.274613 -2.800000

C 7.274613 -4.200000

C 6.062178 -4.900000

C 6.062178 -6.300000
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C 7.274613 -7.000000

C 10.911920 -2.100000

C 12.124356 -2.800000

C 12.124356 -4.200000

C 13.336791 -4.900000

C 13.336791 -6.300000

C 7.274613 -8.400000

C 10.911920 -0.700000

H -4.581274 -6.845000

H -3.368839 -8.945000

H -2.156403 -11.045000

H -0.943968 -13.145000

H -4.581274 -4.355000

H -3.368839 -2.255000

H -2.156403 -0.155000

H -0.943968 1.945000

H 1.212436 3.190000

H 3.637307 3.190000

H 6.062178 3.190000

H 10.643452 1.945000

H 11.855888 -0.155000

H 13.068323 -2.255000

H 14.280759 -4.355000

H 14.280759 -6.845000

H 13.068323 -8.945000

H 11.855888 -11.045000

H 10.643452 -13.145000

H 8.487049 -14.390000

H 6.062178 -14.390000

H 3.637307 -14.390000

H 1.212436 -14.390000

H 8.487049 3.190000

Molecules in Chapter 6

Ten selected molecules & Alanine polypetides

The geometries of ten selected molecules are obtained by private communication with

Deng, one of the authors of [200]. Alanine polypeptides’ geometries are available online

in a supplementary information section of [201].

Lithium clusters

These clusters are body-centered cubic with a metallic radii of 1.496 [246].
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Li14

Li -1.727432 -1.727432 -3.454864

Li -1.727432 -1.727432 0.000000

Li -1.727432 -1.727432 3.454864

Li -1.727432 1.727432 -3.454864

Li -1.727432 1.727432 0.000000

Li -1.727432 1.727432 3.454864

Li 1.727432 -1.727432 -3.454864

Li 1.727432 -1.727432 0.000000

Li 1.727432 -1.727432 3.454864

Li 1.727432 1.727432 -3.454864

Li 1.727432 1.727432 0.000000

Li 1.727432 1.727432 3.454864

Li 0.000000 0.000000 -1.727432

Li 0.000000 0.000000 1.727432

Li22

Li -3.454864 -3.454864 -1.727432

Li -3.454864 -3.454864 1.727432

Li -3.454864 0.000000 -1.727432

Li -3.454864 0.000000 1.727432

Li -3.454864 3.454864 -1.727432

Li -3.454864 3.454864 1.727432

Li 0.000000 -3.454864 -1.727432

Li 0.000000 -3.454864 1.727432

Li 0.000000 0.000000 -1.727432

Li 0.000000 0.000000 1.727432

Li 0.000000 3.454864 -1.727432

Li 0.000000 3.454864 1.727432

Li 3.454864 -3.454864 -1.727432

Li 3.454864 -3.454864 1.727432

Li 3.454864 0.000000 -1.727432

Li 3.454864 0.000000 1.727432

Li 3.454864 3.454864 -1.727432

Li 3.454864 3.454864 1.727432

Li -1.727432 -1.727432 0.000000

Li -1.727432 1.727432 0.000000

Li 1.727432 -1.727432 0.000000

Li 1.727432 1.727432 0.000000

Li48

Li -3.454864 -3.454864 -5.182296

Li -3.454864 -3.454864 -1.727432
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Li -3.454864 -3.454864 1.727432

Li -3.454864 -3.454864 5.182296

Li -3.454864 0.000000 -5.182296

Li -3.454864 0.000000 -1.727432

Li -3.454864 0.000000 1.727432

Li -3.454864 0.000000 5.182296

Li -3.454864 3.454864 -5.182296

Li -3.454864 3.454864 -1.727432

Li -3.454864 3.454864 1.727432

Li -3.454864 3.454864 5.182296

Li 0.000000 -3.454864 -5.182296

Li 0.000000 -3.454864 -1.727432

Li 0.000000 -3.454864 1.727432

Li 0.000000 -3.454864 5.182296

Li 0.000000 0.000000 -5.182296

Li 0.000000 0.000000 -1.727432

Li 0.000000 0.000000 1.727432

Li 0.000000 0.000000 5.182296

Li 0.000000 3.454864 -5.182296

Li 0.000000 3.454864 -1.727432

Li 0.000000 3.454864 1.727432

Li 0.000000 3.454864 5.182296

Li 3.454864 -3.454864 -5.182296

Li 3.454864 -3.454864 -1.727432

Li 3.454864 -3.454864 1.727432

Li 3.454864 -3.454864 5.182296

Li 3.454864 0.000000 -5.182296

Li 3.454864 0.000000 -1.727432

Li 3.454864 0.000000 1.727432

Li 3.454864 0.000000 5.182296

Li 3.454864 3.454864 -5.182296

Li 3.454864 3.454864 -1.727432

Li 3.454864 3.454864 1.727432

Li 3.454864 3.454864 5.182296

Li -1.727432 -1.727432 -3.454864

Li -1.727432 -1.727432 0.000000

Li -1.727432 -1.727432 3.454864

Li -1.727432 1.727432 -3.454864

Li -1.727432 1.727432 0.000000

Li -1.727432 1.727432 3.454864

Li 1.727432 -1.727432 -3.454864

Li 1.727432 -1.727432 0.000000

Li 1.727432 -1.727432 3.454864

Li 1.727432 1.727432 -3.454864

Li 1.727432 1.727432 0.000000

Li 1.727432 1.727432 3.454864
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