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Decision Region Approximation by
Polynomials or Neural Networks

Kim L. Blackmore, Robert C. Williamsornyiember, IEEE and Iven M. Y. MareelsSenior Member, IEEE

Abstract—We give degree of approximation results for decision way of identifying this class priori. It is therefore useful to
regions which are defined by polynomial and neural network know how well particular classes of functions can approxi-
parametrizations. The volume of the misclassified region is used mate decision regions with prescribed general properties. In

to measure the approximation error, and results for the degree ) o . .
of I, approximation of functions are used. For polynomial particular, it is important to know how fast the approximation

parametrizations, we show that the degree of approximation is at €rror decreases as the approximating class becomes more
least 1, whereas for neural network parametrizations we prove complicated—e.g., as the degree of a polynomial or the

the slightly weaker result that the degree of approximation is at number of nodes of a neural network increases.
leastr, wherer can be any number in the open interval(0, 1). The question of approximation of functions has been widely
Index Terms—Classification, decision region, neural networks, studied. The classical Weierstrass Theorem showed that poly-

polynomials, rate of approximation. nomials are universal approximators [3] (in the sense that
they are dense in the space of continuous functions on an
I. INTRODUCTION interval). Many other classes have been shown to be universal

proximators, including those defined by neural networks [4].

egree of approximation results tell the user how complicated

class of approximating functions must be in order to guar-
fitee a certain degree of accuracy of the best approximation.
e classical Jackson Theorem [5] is the first example of this.
Frornik [6], Barron [7], Mhaskar and Michelli [8], [9], Mhaskar
[10], Darkenet al. [11], and Horniket al. [12] give degree of
up(x) = { 1, if z € D @ approximation results for neural networks.

—1, otherwise. The problem of approximating sets, rather than functions,
tBas received some attention in the literature. Approximation
&F (unparametrized) sets and curves has been studied for

attern recognition and computer vision purposes [13]-[15].

represented as zero sets of certain functions, with poinltr's]e approach is quite different from the approach here.

. ) - . N " eoretical work can be grouped according to two basic
contained in the decision region yielding positive values of e L L
approaches—namely, explicit and implicit parametrizations.

the function, and points outside the decision region yieldin L A
. ! . . xplicit parametrization” refers to frameworks where the de-
negative values [2]. In this case, the learning task is to usg

g X X 4 [ i ized. For example, if the decision
examples of correctly classified points to identify a parametgr o b_oundaryls garametnz_e_d i’ .
0e IRe" for which theysel{a:: fa E) > 0}, called ?r/\epc?sitive region is a set inR", the decision boundary might be consid-

domain of f(a, -), matches the true decision region. ere(:‘ thre gr:ap“r:rsflflizunc:log (t)rlz i ’n?rraf cron;blzatrlr?nwofrk
For the purposes of analyzing a learning algorithm, it EUC grapns. plicit parametrization” relers 1o lrameworks

useful to assume that a suitable value of the parameter exi x us_ed |fn this ch)rk) \t/yhere the decistagionis the positive
However, there is no general reason why such an assumpt%)rﬁnam of some function. - o
Most existing work is in terms of explicit parametrizations

is satisfied in practice. Even if there is a class of functiorﬁ 6]. For instance, Korostelev and Tsybakov [17], [18] con

f(-,-) and a parametes such that the positive domain of'’ L - :
F(a,-) matches the true decision region, there is usually I§der theestimation(from sample data) of decision regions.
’ Although they consider nonparametric estimation, it is, in fact,
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ECISION regions arise in machine learning problems

sorting or classification of data [1]. Points contained i
the decision region are positively classified, and points outsia
the decision region are negatively classified. For a decisi
region D C IR", this classification can be described by th

discriminant function

The learning task is to use examples of classified points to
able to correctly classify all possible points.
In neural network learning, decision boundaries are oft
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cerned with the question of when a smooth manifold can IB®r a decision regiol? C X and an approximate decision
approximated by a real algebraic set but does not addresgionY C X, we say thab. approximated well if V(D, )
the degree of approximation question. In work similar to thé small; thus most points iX are correctly classified by.
described in [21], Broglia and Tognoli [22] consider when Typically, one is interested in approximating decision re-
a C* function can be approximated by certain classes gfons that belong to some class of subsetsXofOur results
functions without changing the positive domain. are for decision regions which have boundaries that are a finite
In this paper, we use function approximation results tenion of hypersurfacestr — 1)-dimensional submanifolds of
determine the degree of approximation of decision regions B/".
positive domains of polynomial functions and neural networks. Definition 1: A set M C IR"™ is an n — 1-dimensional
We consider the.; approximation of the discriminant functionsubmanifold oflR™ if for every x € M , there exists an open
yp(z). This implies a bound on thd,; distance between neighborhood/ C IR™ of z and a functionf: U — R"™ such
yp(z) andsgn(f(z)), where f(x) is the approximating poly- that f(UU) C R™ is open,f is a C* diffeomorphism onto its
nomial or neural network function. We use a result frorfmage and either
differential geometry to link this distance with the size of 1) fUNM) = f(U)NR"}, or
the misclassified volume. Since most learning problems canp) fUNM)=fU)N{y c R": y(1) > 0}.

be analyzed probabilistically, the volume of the misclassifiqqe e y(1) denotes the first component of the vectorThe
region has a natural interpretation as the probability of Migy 5 definition of a submanifold allows only the first case.

classification by the approximate decision region when the dighen both cases are allowed/ is usually called asub-

are drawn from_a unifor_m distribution_over the input space. anifold with boundary We allow both cases because our
The next section of this paper contains a formal statementQf,,sigeration of decision regions confined to a compact do-

the degree of approximation problem for decision regions. |Rain implies that many interesting decision boundaries are
Section Il we define a corridor around the decision boundarlg{Ot true submanifolds.

and give a result concerning its volume, which is used in the pgfinition 2: The piecewise-smooth decision regions in
later sections. Section IV contains the polynomial approxima, c R" are the sets in the collection

tion results. Our main result is Theorem 8, which says that ] o )

the volume of the misclassified region when a decision region P(X) ={D C X: 8D is a finite union of

with smooth boundary is approximated by the positive domain n — l-dimensional submanifolds diR™}

of a polynomial of degreef, goes to zero at least as fas%/vhereaD denotes the boundary db.

—1 “ ” .
asd~. By "smooth boundary” we mean essentially that the Allowing 9D to be aunion of submanifolds rather than a

boundary is a finite union af — 1-dimensional manifolds. In _. .

. . o o : ' sdngle submanifold mean® may have (well-behaved) sharp

Section V, a similar result is given for decision regions define . . o S

by neural networks results and the two results are comparegges' For instance, it = [L, 1]" and the dec_|s_|on region Is
y ? halfspacgz € X: a"x > 0}, then the decision boundary

i e L el trE:%nsists of a union of up t®n polygonal faces. Each of these

the polynomials and neural networks are defined by the SaMme < is am, — -dimensional submanifold (with boundary).

number of parameters, Theorem 11 says that the volume Oﬁt is assumed that the approximating decision regions belon
the misclassified region goes to zero at least as fast &s bp 9 g g

i . to a classC? of subsets ofX which gets progressively larger
wherer can be made as close to (but less thams desired. as d increases. That isC% C C% if dy <dy. Typically,

Thi_s is slightl)_/ weaker than the result for polynomial decisiog is a nondecreasing function of the dimension of the pa-
regions. Section VI concludes the paper. rameter space. If the true decision region fis then for
any particular choice ofl the minimum approximation error

II. THE APPROXIMATION PROBLEM is infEECd V(D,E) Clearly, the minimum approximation

- L error is a nonincreasing function aof. For some choices
We assume that a decision region is a closed subseat a d - S
of C*, the minimum approximation error goes to zero as

" L
compact seiX C IR", called the sample space. Points in th — 00. In such cases, the classg$ are said to be uniform

sample space are classified positively if they are contained_in ; S
T : : : . proximators. The degree of approximation problem for
the decision region, and negatively if they are not. We wish gl : e - .
. S . . niform approximator€£“ involves determining how quickly
determine how well a decision region can be approximated - S
the positive domain of functions belonging to a parametrize € minimum approximation error decreases.
P . . nging P ... ~The Degree of Approximation Probleniet X C IR" be
class of functions, in the sense of minimizing the probabllltg d
. o . I ompact and for eacH >0 let C* be a set of subsets of
of misclassification. If points to be classified are chosesnuch that
uniformly throughout the sample spadg the probability of
misclassification is equal to theolume of the misclassified lim  sup  inf V(D,X)=0.
region i.e., the volume of the symmetric difference of the two d=o0 pep(x) ¥€C
sets. For decision region®,, Dy C X, the volume of the rind the largestz > 0 such that, for all sufficiently large
misclassified region is c
su inf V(D,X) < — 2
DeDE)X) Tecd ( )s dr @
V(Dl,Dg) ;= vol (DlADg) I/ dx.
D1AD; wherec is constant with respect ta.
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The constanf? in (2) is called thedegree of approximation IV. POLYNOMIAL DECISION REGIONS

4 = .
for the classC* of decision regions. Definition 6: P} is the space of polynomials of degree

at mostd in each ofn variables. That isP} is the space
Ill. THE DELTA CORRIDOR of all linear combinations ofz(1)°*z(2)% ---x(n)** with
Let s; < d,s; € Ng. The number of parameters necessary to
identify elements inP} is (d 4+ 1)".
CPy is the class of polynomial decision regions. Each
decision region ilCP} is the positive domain of a polynomial
in P}. Specifically,

B(z,6) :={z e R": ||z — #|| < 6}

the closed-ball with center and radiuss, where||-|| denotes
the 2 norm (Euclidean distance) iRR".

Definition 3: The é corridor around the decision boundarycpn _JECX:3fePy satisfying f(z) >0, ifzxekX
is the set d - flx)y<o, ifzxgx |’
D+ 6 .= U B(z, ). In this section and in Section \¢, € IR denotes a quantity
x€dD which is independent af. Dependence of on other variables

will be indicated by, for instance¢ = ¢(n). If no such

indication is giveng is an absolute constant. The exact value

of ¢ will change without notice, even in a single expression.
The following Theorem is derived from Timan [25, result

The construction in Section IV of the approximating se$ 3.2].

¥ bounds the misclassified region by the volume offa Theorem 7 (Timan)Let X = [-1,1]" andg: X — RR. If

corridor around the decision boundary. Thus in order {9js [ -integrable onX then there exists a constansuch that
answer the approximation problem, it is necessary to determine

the volume of the decision boundary. This requires some, ¢
knowledge of the size and smoothnes®@f. For instance, if f€P;
dD is a space-filling curve, then the volume afy corridor
aroundd D will be equal to the volume oX, and knowledge

of the size of the corridor offers no advantage. On the other
hand, if D is a ball with radius greater than the corridoin the following, Theorem 7 is used to determine the degree
size, then the volume is equal to two times the corridor sizé approximation of decision regions possessing a smooth
multiplied by the surface area of the ball. In order to obtaibhoundary by polynomial decision regions.

a general result for decision regions (X), we use the  Theorem 8:Let X C IR"™ be compact. IfD € D(X) then
following definition for the area of a hypersurface [23], [24]there exists a constamtsuch that

For anyy € R", y < ¢
dD+y={x+y:2€0D}CID+6.

. l9(x) = f ()| dw

<cn sup
llyll<1/(d+1)

/X l9(z) — gl + v) d.

Definition 4: Let 8D C D(X), and let the points, € 8D
be locally referred to parametetg1),---,u(n — 1), which

are mapped to the Euclidean spd&~! with the coordinates

v(1),---,v(n — 1). The surface area @¥D is defined as
areadD) = / det(R) du(1) - -~ du(n — 1)
aD

whereR = [R;;], Ri; = 9v(i)/9u(j). Thus areddD) is the

it V(%) < SACAID)
SeCPy d+1

Proof: From the definition ofV’(D, %)

Jint, V(D) = it /X lyp() — sen(g(a))| dx

volume of the image obD in R™ ™. B flergg /{x:|yp—g(ac)|>l}
If n =2, thendD is acurve in the plane, and ar(@D) i§ Nyp(x) — sgn(g(x))| dz
the length 0fdD. The size of are@) D) increases rapidly with
n, for instance, ifD = [—1,1]" then areddD) = 2"*1n. <2 inf / lyp(z) — g(z)| dz.
Using this definition, the volume of the corridor around a fePy Jx
decision boundary can be bounded as follows:
Lemma 5:Let X C R" be compact. For any € D(X)
there existsA = A(D) > 0 such that

vol (D + 6) < cé areq0D) Hj‘”{’ s /X lyp(x) — yp(z +y)| dz < vol(OD + 6).

Now yp is L;-integrable, so Theorem 3 applies wijh= yp.
From the definition of thes-corridor

for all 6 such thatd < <A. _ Letting § = 1/(d + 1) and combining with Lemma 5 gives
This result is intuitively obvious, sinc8D can be locally ihe result.

approximated by am — 1-dimensional hyperplane, and the
volume of thes corridor around a piece of an— 1-dimensional
hyperplane with area is 26a + O(§2). A rigorous proof of
Lemma 5 can be given using a result by Weyl that appearsDefinition 9: A} is the space of functions defined by single
in [23]. hidden layer feedforward neural networks withinputs, and

V. NEURAL NETWORK DECISION REGIONS
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d nodes in the hidden layer. That i&/7 is the space of all » = (1 +«)™}, so there exists a choice pf ¢ such that
linear combinations

D D
. n arej(f ) bple—t < en arcelf(a )' @)
S0+ (B + ) P
i=1 The result follows. [ ]

Comparing Theorem 11 with Theorem 8, it can be seen
. . . . that the bound on the degree of approximation is stronger
order to identify elements ij', one must specify +d(n+2) for polynomial decision reg?ons than F:Ezural network decisi?)n
real numbers. n ) regions. This is a consequence of the function approximation

CN{ is the class of neural network decision regions. Eaqlis s that are used, and in the absence of lower bounds
decision region irCA/; is the positive domain of a function o, the rate of function approximation for neural networks,
in N}, Specifically it is possible that a stronger upper bound may be found
} in the future. Moreover, lower bounds on the degree of

wherez,3; € R", a;,6 € R, and¢(z) = (1+e )7t In

ECX:If e NG satisfying f(2) 20, !f TEX approximation for decision regions are needed in order to
flz)<0, if z¢X d . . gy )

etermine whether polynomial decision regions or neural
Theorem 10 is derived from [9, Corollary 5.2], since the degré&twork decision regions are better approximators of decision
of approximation by polynomials is the same as the degree§810NS.
approximation by trigonometric polynomials in this case.

Theorem 10 (Mhaskar and Micchellitet X < IR" be VI. CONCLUDING REMARKS

compact and: X — IR. There exists a functiod: N x N — We have given degree of approximation results for implicit
N such that ifg is L, integrable onX then for anyp, ¢ € N, decision region approximation which are similar to Jackson’s

C./\/"::{

there exists a constamtsuch that Theorem for polynomial function approximation. The approxi-
mating decision regions are defined by the positive domains of
f@i\}g / lg(z)— f(x)| dx polynomial functions or feedforward neural networks. These
d(p,q) v X

results support our intuition that classes of functions which are
SC< uf / |g(a:)—f(a:)|da:+p"e_cq>/ ()] de good function approximators tend to be good implicit decision
ferPr Jx x region approximators.
Many open problems remain—the most pressing being
Moreover, there exists >0 such thatd(p,q) < c¢p™¢® for “what conditions give better degree of approximation?” In
sufficiently largep and g. function approximation, higher order smoothness of the ap-
Thus the degree of approximation by neural net functioggoximated function gives a better degree of approximation.
is related to the degree of approximation by polynomidor instance, in Theorem 7 if theth derivative is Lipschitz-
functions. The upper bound in Theorem 10 is a monotong@ntinuous, then the degree of approximation is at Ipast.
decreasing function if botp andg are increasing. We would expect that there exist restrictions on the decision
Next we use the technique in Section IV to obtain a degreegion to be approximatedy, which will guarantee a better
of approximation result for neural network decision regionglegree of approximation than our results suggest. Moreover,
In order to get a fair comparison with the polynomial decisiowe would expect that there would be a series of successively
regions, we consider degree of approximationCy., since tighter restrictions oD which would guarantee successively
the number of parameters necessary to specify elementsb#iter degree of approximation results.
eitherCP} or CN}. is approximatelyc(n)d™. However, it is not clear what the right conditions are.
Theorem 11:Let X C IR"™ be compact. IfD € D(X) then Bounding the curvature of the boundary Bf will not affect
for anyr € (0, 1) there exist constants ¢(n,r) such that the degree of approximation using our argument, since all
information about the decision boundary other than its area
inf  V(D,%) < ¢ area@D) affects only higher order terms in the approximation bound, not
ZeCN G d’ the degree of approximation obtained in Theorem 8. Perhaps
the number of connected componentsiinis the condition
we need. Or perhaps the curvature properties of the decision
boundary are important, but a tighter method of bounding
V(D, ¥) than the volume of the corridor size is needed.

for all d > ¢(n,r).
Proof: Assumed” = cp"q? > d(p, q). From Theorem 10,
the minimum misclassified region satisfies

Maybe a completely different proof technique is needed to
inf < ot <o "D | n—a) (3) get higher d f imati It
111 11 cl ——————— c .
ol SvedPl S | D get higher degree of approximation results.
Now choosey andg such that the upper bound in (3) decreases ACKNOWLEDGMENT
to zero as quickly as possible asndq increase. Lety = p*, The authors wish to thank the reviewers and associate

so thatd = p' . For anya > 0, p*e~?" <p~! is decreasing editor of this journal for their comments, and P. Bartlett for
for sufficiently largep. How large p must be depends onhelpful discussions motivating this research. In particular, H.
«a. Now for any r € (0,1) there existsae>0 such that Mhaskar pointed out in reviews that the use Inf-function
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approximation results would give a much simpler derivation
and a tighter bound than thé., technique we originally [12]

proposed.
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