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Decision Region Approximation by
Polynomials or Neural Networks

Kim L. Blackmore, Robert C. Williamson,Member, IEEE, and Iven M. Y. Mareels,Senior Member, IEEE

Abstract—We give degree of approximation results for decision
regions which are defined by polynomial and neural network
parametrizations. The volume of the misclassified region is used
to measure the approximation error, and results for the degree
of L1 approximation of functions are used. For polynomial
parametrizations, we show that the degree of approximation is at
least 1, whereas for neural network parametrizations we prove
the slightly weaker result that the degree of approximation is at
least r, where r can be any number in the open interval(0; 1).

Index Terms—Classification, decision region, neural networks,
polynomials, rate of approximation.

I. INTRODUCTION

DECISION regions arise in machine learning problems of
sorting or classification of data [1]. Points contained in

the decision region are positively classified, and points outside
the decision region are negatively classified. For a decision
region , this classification can be described by the
discriminant function

if
otherwise.

(1)

The learning task is to use examples of classified points to be
able to correctly classify all possible points.

In neural network learning, decision boundaries are often
represented as zero sets of certain functions, with points
contained in the decision region yielding positive values of
the function, and points outside the decision region yielding
negative values [2]. In this case, the learning task is to use
examples of correctly classified points to identify a parameter

for which the set , called thepositive
domain of , matches the true decision region.

For the purposes of analyzing a learning algorithm, it is
useful to assume that a suitable value of the parameter exists.
However, there is no general reason why such an assumption
is satisfied in practice. Even if there is a class of functions

and a parameter such that the positive domain of
matches the true decision region, there is usually no
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way of identifying this classa priori. It is therefore useful to
know how well particular classes of functions can approxi-
mate decision regions with prescribed general properties. In
particular, it is important to know how fast the approximation
error decreases as the approximating class becomes more
complicated—e.g., as the degree of a polynomial or the
number of nodes of a neural network increases.

The question of approximation of functions has been widely
studied. The classical Weierstrass Theorem showed that poly-
nomials are universal approximators [3] (in the sense that
they are dense in the space of continuous functions on an
interval). Many other classes have been shown to be universal
approximators, including those defined by neural networks [4].
Degree of approximation results tell the user how complicated
a class of approximating functions must be in order to guar-
antee a certain degree of accuracy of the best approximation.
The classical Jackson Theorem [5] is the first example of this.
Hornik [6], Barron [7], Mhaskar and Michelli [8], [9], Mhaskar
[10], Darkenet al. [11], and Horniket al. [12] give degree of
approximation results for neural networks.

The problem of approximating sets, rather than functions,
has received some attention in the literature. Approximation
of (unparametrized) sets and curves has been studied for
pattern recognition and computer vision purposes [13]–[15].
The approach is quite different from the approach here.
Theoretical work can be grouped according to two basic
approaches—namely, explicit and implicit parametrizations.
“Explicit parametrization” refers to frameworks where the de-
cision boundaryis parametrized. For example, if the decision
region is a set in , the decision boundary might be consid-
ered the graph of a function on , or a combination of
such graphs. “Implicit parametrization” refers to frameworks
(as used in this work) where the decisionregion is the positive
domain of some function.

Most existing work is in terms of explicit parametrizations
[16]. For instance, Korostelev and Tsybakov [17], [18] con-
sider theestimation(from sample data) of decision regions.
Although they consider nonparametric estimation, it is, in fact,
the explicit rather than implicit framework as defined above
(they reduce the problem to estimating functions whose graphs
make up parts of the decision boundary). In a similar vein,
Dudley [19] and Shchebrina [20] have determined the metric
entropy of certain smooth curves.

Regarding the implicit problem, Mhaskar [10] gives a
universal approximation type result for approximation by
positive domains of certain neural network functions. Ivanov
[21] summarizes many problems in algebraic geometry con-
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cerned with the question of when a smooth manifold can be
approximated by a real algebraic set but does not address
the degree of approximation question. In work similar to that
described in [21], Broglia and Tognoli [22] consider when
a function can be approximated by certain classes of
functions without changing the positive domain.

In this paper, we use function approximation results to
determine the degree of approximation of decision regions by
positive domains of polynomial functions and neural networks.
We consider the approximation of the discriminant function

This implies a bound on the distance between
and , where is the approximating poly-

nomial or neural network function. We use a result from
differential geometry to link this distance with the size of
the misclassified volume. Since most learning problems can
be analyzed probabilistically, the volume of the misclassified
region has a natural interpretation as the probability of mis-
classification by the approximate decision region when the data
are drawn from a uniform distribution over the input space.

The next section of this paper contains a formal statement of
the degree of approximation problem for decision regions. In
Section III we define a corridor around the decision boundary,
and give a result concerning its volume, which is used in the
later sections. Section IV contains the polynomial approxima-
tion results. Our main result is Theorem 8, which says that
the volume of the misclassified region when a decision region
with smooth boundary is approximated by the positive domain
of a polynomial of degree goes to zero at least as fast
as . By “smooth boundary” we mean essentially that the
boundary is a finite union of -dimensional manifolds. In
Section V, a similar result is given for decision regions defined
by neural networks results and the two results are compared.
When the number of nodes in the network is chosen so that
the polynomials and neural networks are defined by the same
number of parameters, Theorem 11 says that the volume of
the misclassified region goes to zero at least as fast as,
where can be made as close to (but less than)as desired.
This is slightly weaker than the result for polynomial decision
regions. Section VI concludes the paper.

II. THE APPROXIMATION PROBLEM

We assume that a decision region is a closed subsetof a
compact set , called the sample space. Points in the
sample space are classified positively if they are contained in
the decision region, and negatively if they are not. We wish to
determine how well a decision region can be approximated by
the positive domain of functions belonging to a parametrized
class of functions, in the sense of minimizing the probability
of misclassification. If points to be classified are chosen
uniformly throughout the sample space, the probability of
misclassification is equal to thevolume of the misclassified
region, i.e., the volume of the symmetric difference of the two
sets. For decision regions , the volume of the
misclassified region is

For a decision region and an approximate decision
region , we say that approximates well if
is small; thus most points in are correctly classified by

Typically, one is interested in approximating decision re-
gions that belong to some class of subsets ofOur results
are for decision regions which have boundaries that are a finite
union of hypersurfaces— -dimensional submanifolds of

Definition 1: A set is an -dimensional
submanifold of if for every , there exists an open
neighborhood of and a function such
that is open, is a diffeomorphism onto its
image and either

1) , or
2)

Here denotes the first component of the vectorThe
usual definition of a submanifold allows only the first case.
When both cases are allowed, is usually called asub-
manifold with boundary. We allow both cases because our
consideration of decision regions confined to a compact do-
main implies that many interesting decision boundaries are
not true submanifolds.

Definition 2: The piecewise-smooth decision regions in
are the sets in the collection

is a finite union of

-dimensional submanifolds of

where denotes the boundary of
Allowing to be aunion of submanifolds rather than a

single submanifold means may have (well-behaved) sharp
edges. For instance, if and the decision region is
the halfspace , then the decision boundary
consists of a union of up to polygonal faces. Each of these
faces is an -dimensional submanifold (with boundary).

It is assumed that the approximating decision regions belong
to a class of subsets of which gets progressively larger
as increases. That is, if Typically,

is a nondecreasing function of the dimension of the pa-
rameter space. If the true decision region is, then for
any particular choice of the minimum approximation error
is Clearly, the minimum approximation
error is a nonincreasing function of For some choices
of , the minimum approximation error goes to zero as

In such cases, the classes are said to be uniform
approximators. The degree of approximation problem for
uniform approximators involves determining how quickly
the minimum approximation error decreases.

The Degree of Approximation Problem:Let be
compact and for each let be a set of subsets of
such that

Find the largest such that, for all sufficiently large

(2)

where is constant with respect to
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The constant in (2) is called thedegree of approximation
for the class of decision regions.

III. T HE DELTA CORRIDOR

Let

the closed-ball with center and radius , where denotes
the norm (Euclidean distance) in

Definition 3: The corridor around the decision boundary
is the set

For any

The construction in Section IV of the approximating set
bounds the misclassified region by the volume of a

corridor around the decision boundary. Thus in order to
answer the approximation problem, it is necessary to determine
the volume of the decision boundary. This requires some
knowledge of the size and smoothness of For instance, if

is a space-filling curve, then the volume ofany corridor
around will be equal to the volume of , and knowledge
of the size of the corridor offers no advantage. On the other
hand, if is a ball with radius greater than the corridor
size, then the volume is equal to two times the corridor size
multiplied by the surface area of the ball. In order to obtain
a general result for decision regions in , we use the
following definition for the area of a hypersurface [23], [24].

Definition 4: Let , and let the points
be locally referred to parameters , which
are mapped to the Euclidean space with the coordinates

The surface area of is defined as

area

where Thus area is the
volume of the image of in

If , then is a curve in the plane, and area is
the length of The size of area increases rapidly with

, for instance, if then area
Using this definition, the volume of the corridor around a

decision boundary can be bounded as follows:
Lemma 5: Let be compact. For any

there exists such that

area

for all such that
This result is intuitively obvious, since can be locally

approximated by an -dimensional hyperplane, and the
volume of the corridor around a piece of an -dimensional
hyperplane with area is A rigorous proof of
Lemma 5 can be given using a result by Weyl that appears
in [23].

IV. POLYNOMIAL DECISION REGIONS

Definition 6: is the space of polynomials of degree
at most in each of variables. That is, is the space
of all linear combinations of with

The number of parameters necessary to
identify elements in is

is the class of polynomial decision regions. Each
decision region in is the positive domain of a polynomial
in Specifically,

satisfying if
if

In this section and in Section V, denotes a quantity
which is independent of Dependence of on other variables
will be indicated by, for instance, If no such
indication is given, is an absolute constant. The exact value
of will change without notice, even in a single expression.

The following Theorem is derived from Timan [25, result
5.3.2].

Theorem 7 (Timan):Let and If
is -integrable on then there exists a constantsuch that

In the following, Theorem 7 is used to determine the degree
of approximation of decision regions possessing a smooth
boundary by polynomial decision regions.

Theorem 8: Let be compact. If then
there exists a constantsuch that

area

Proof: From the definition of

Now is -integrable, so Theorem 3 applies with
From the definition of the -corridor

Letting and combining with Lemma 5 gives
the result.

V. NEURAL NETWORK DECISION REGIONS

Definition 9: is the space of functions defined by single
hidden layer feedforward neural networks withinputs, and
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nodes in the hidden layer. That is, is the space of all
linear combinations

where and In
order to identify elements in one must specify
real numbers.

is the class of neural network decision regions. Each
decision region in is the positive domain of a function
in Specifically

satisfying if
if

Theorem 10 is derived from [9, Corollary 5.2], since the degree
of approximation by polynomials is the same as the degree of
approximation by trigonometric polynomials in this case.

Theorem 10 (Mhaskar and Micchelli):Let be
compact and There exists a function

such that if is integrable on then for any ,
there exists a constantsuch that

Moreover, there exists such that for
sufficiently large and

Thus the degree of approximation by neural net functions
is related to the degree of approximation by polynomial
functions. The upper bound in Theorem 10 is a monotonic
decreasing function if both and are increasing.

Next we use the technique in Section IV to obtain a degree
of approximation result for neural network decision regions.
In order to get a fair comparison with the polynomial decision
regions, we consider degree of approximation by , since
the number of parameters necessary to specify elements in
either or is approximately

Theorem 11:Let be compact. If then
for any there exist constants such that

area

for all
Proof: Assume From Theorem 10,

the minimum misclassified region satisfies

area
(3)

Now choose and such that the upper bound in (3) decreases
to zero as quickly as possible asand increase. Let ,
so that . For any is decreasing
for sufficiently large How large must be depends on

Now for any there exists such that

, so there exists a choice of such that

area area
(4)

The result follows.
Comparing Theorem 11 with Theorem 8, it can be seen

that the bound on the degree of approximation is stronger
for polynomial decision regions than neural network decision
regions. This is a consequence of the function approximation
results that are used, and in the absence of lower bounds
on the rate of function approximation for neural networks,
it is possible that a stronger upper bound may be found
in the future. Moreover, lower bounds on the degree of
approximation for decision regions are needed in order to
determine whether polynomial decision regions or neural
network decision regions are better approximators of decision
regions.

VI. CONCLUDING REMARKS

We have given degree of approximation results for implicit
decision region approximation which are similar to Jackson’s
Theorem for polynomial function approximation. The approxi-
mating decision regions are defined by the positive domains of
polynomial functions or feedforward neural networks. These
results support our intuition that classes of functions which are
good function approximators tend to be good implicit decision
region approximators.

Many open problems remain—the most pressing being
“What conditions give better degree of approximation?” In
function approximation, higher order smoothness of the ap-
proximated function gives a better degree of approximation.
For instance, in Theorem 7 if theth derivative is Lipschitz-
continuous, then the degree of approximation is at least
We would expect that there exist restrictions on the decision
region to be approximated, , which will guarantee a better
degree of approximation than our results suggest. Moreover,
we would expect that there would be a series of successively
tighter restrictions on which would guarantee successively
better degree of approximation results.

However, it is not clear what the right conditions are.
Bounding the curvature of the boundary of will not affect
the degree of approximation using our argument, since all
information about the decision boundary other than its area
affects only higher order terms in the approximation bound, not
the degree of approximation obtained in Theorem 8. Perhaps
the number of connected components inis the condition
we need. Or perhaps the curvature properties of the decision
boundary are important, but a tighter method of bounding

than the volume of the corridor size is needed.
Maybe a completely different proof technique is needed to
get higher degree of approximation results.
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