Micro-Computed Tomography
Studies of Biomaterials and Bone

Anthony Jones

A thesis submitted for the degree of
Doctor of Philosophy at
The Australian National University

September 2008
© Anthony Jones

Typeset in Palatino by \TeX{} and \LaTeX{} 2\textepsilon{}.
Except where otherwise indicated, this thesis is my own original work.

Anthony Jones
9 September 2008
Publications Arising From Thesis

- Sakellariou A, Senden TJ, Sawkins TJ, Knackstedt MA, Turner ML, Jones AC, Saadatfar M, Roberts RJ, Limaye A, Arns CH, Sheppard AP, Sok RM, An x-

Acknowledgements

I would like to thank my supervisor, Professor Mark Knackstedt for all the qualities he has displayed as a great supervisor: a sharp intellect, good humour, and belief he has shown towards a student who has much to learn. I am grateful to A/Prof. Tim Senden; for his compassion and encouragement, and his knowledge of chemistry, physics, and experimental techniques that has always provided a sound source of advice. Dr Christoph Arns has been a great academic mentor and teacher. His computational ability and critical thinking have influenced me greatly. I am indebted to Dr Adrian Sheppard for his computational genius and for providing world-class software tools. Thank you to Arthur Sakellariou for computational advice and for his driving on the road to Geelong. Thank you to Rob Sok, Holger Averdunk, Paul Veldkamp, and Ajay Limaye for providing computational tools that were instrumental to this work.

Thank you to Professors Bruce Milthorpe and Dietmar Hutmacher for providing the specimens used in part one of this thesis, for the many fruitful discussions, and their biological and medical insight. I am also appreciative the chance to visit the National University of Singapore and the hospitality extended to me when visiting Professor Hutmacher’s lab.

Thank you to two of the most passionate people I have had chance to work with: Professor Ego Seeman and Dr Roger Zebaze, who provided the hip specimens used in the second part of this thesis. I learned a great deal from your passion, lateral thinking, and critical approach to research.

I would also like to gratefully thank Dr Mahyar Madadi for his mentorship and his collaboration on Chapter 5. Without his selfless teaching and enthusiasm for problem solving this chapter would not have been possible.

The general environment of Applied Maths has provided a rich and cooperative environment in which to learn and pursue ideas. Thank you too all the staff of Applied Maths, past and present, that have provided friendship and advice, in particular Tim Sawkins, Jan James and Margo Davies. Thank you to all my friends and colleagues for making Applied Maths an enjoyable place to work: Abid, Mick, Shaun, Munish, Mohammad, Toen, Christine, Drew and Sharon.

Lastly, I would like to thank my family, whose unconditional love and support I can always count on.
Abstract

This thesis is presented in two parts; the first part is a study of the structure and properties of bioceramic scaffolds used for orthopaedic tissue engineering and how these factors may influence bone regeneration. The second part of this thesis is a study of the effects of bone microarchitecture on the mechanical properties of the human proximal femur.

Strategies for orthopaedic tissue engineering involve the use of a porous ceramic or polymer scaffold to serve as a template for bone regeneration. However, the design and engineering of these scaffolds is ad hoc. The effect of porosity, pore size, shape, interconnectivity, transport and mechanical properties on bone ingrowth is not well understood and remains a significant challenge to successful bone regeneration.

We use a 3D micro-CT imaging and analysis approach to generate measures of local and non local pore size, pore interconnectivity, transport and mechanical properties directly from images of explanted hydroxyapatite constructs from a sheep model.

We develop a method to accurately phase separate pore, bone and scaffold phases using a three-phase segmentation algorithm. We also observe a strong correlation with bone ingrowth and measures of non local pore size which account for pore accessibility. This study demonstrates the utility of micro-CT and quantitative 3D analysis to analyse tissue engineered implants.

Osteoporosis and bone fracture at the hip are increasingly common with an aging population. Current methods to diagnose and treat osteoporosis are ambiguous about the role of bone microstructure in bone fragility.

A micro-CT and 3D imaging approach on 13 proximal femora is implemented. We derive corrections to the standard Hip Structural Analysis assumptions of square and circular cross section at the femoral neck. A finite element method (FEM) is used to estimate the full anisotropic elastic stiffness tensor and correlations are noted with age, and structural parameters (such as topology and porosity). The strength of hips has been inferred via modulus-porosity relationships undertaken on trabeculae from within the femoral head and neck. We show that the modulus-porosity relationships at the whole hip scale differ significantly (by 100-200%) from relationships derived on trabecular subsets. Therefore, empirical relationships of modulus-porosity for trabeculae do not match data at the whole hip scale; a different empirical scaling and better fit is derived. Decreases in Young’s and shear moduli were observed with age while
increases of moduli were noted with mean coordination number. We also note a resolution dependency with estimation of elastic properties and recommend a voxel size less than 25\(\mu\text{m}\) for quantitative mechanical studies.
Glossary

Anisotropic diffusion
An edge-preserving smoothing filter for tomographic images. 17

Autologous
An implant into a patient in which the graft tissue is derived from the same individual. 1, 10

Bioactive
A material that interacts with surrounding tissue when implanted, e.g. synthetic hydroxyapatite, and Bioglass. 1, 57

Biocompatible
The capacity to be well tolerated by the body without any adverse reactions. 2

Bioinert
A material that does not react or release any ions upon contact with biological tissues. 1

Bioresorbable
A material exhibiting breakdown and dissolution within the body. 11

BMC
Bone mineral content. Measured from x-ray absorbance on a DEXA scan. 70

Capillary radius
A measure of pore size based upon the equivalent pore radius of an invading non-wetting fluid into the pore space. Also called the accessible pore radius. 20, 49

Coarse graining
Replacing a high resolution image with a lower resolution image by averaging or smoothing. 140

Conjugate gradient
A numerical technique for the solution of linear systems. 44, 108
Glossary

Coordination number
The number of neighbours connected to a particular node of a network. 22, 43, 104

DEXA
dual energy x-ray absorptiometry. 69, 70, 78, 83, 87

Endocortical
Relating to the surface between the cortex and the medullary. 66

FDM
Fused deposition modelling. 12, 38

FEM
Finite element method. 44, 92

FH
Femoral head. 88

Fiducial
An envelope that encloses the object of interest. 19, 103

FN
Femoral neck. 63

FNAL
Femoral neck axis length. Measured from the most lateral point on the greater trochanter to the most medial point on the femoral head. 69

HAp
Hydroxyapatite. 12

Histology
The study of microscopic structure of biological tissues. 11

HSA
Hip structural analysis. A standard technique for extracting strength-related parameters from 2D x-ray images of the hip. 63

Interconnectivity
A property of a network that describes the degree to which different nodes are connected together. 10, 19, 37
Glossary

Intertrochanteric line
A line that separates the femoral neck from the shaft of the femur. 72

Intracortical
Relating to the region within the cortex. 66

Kernel
A matrix of values used to filter an image. 19, 103

MCS
Maximum covering sphere. A measure of pore / solid size. At each point a size is defined as the radius of the largest sphere containing that point and which is also completely contained within that phase. 19, 35, 40

Medial axis
An axis that approximates the centre of an object. 40, 104

Medullary
The region within the bone occupied by the marrow. 75

Mesoscopic
The scale above which the fluctuations of individual particles or atoms do not dominate the observation of an averaged property or phenomena. 45

Monoenergetic
Radiation consisting of photons whose energies are within a very narrow range. 6

Morphological closing
An image processing algorithm to remove small holes; dilation followed by an erosion. 19, 103

Morphological opening
An image processing algorithm to remove small objects; erosion followed by dilation. 73

Morphology
The study of form and structure. 11, 21, 84, 118, 121

NSA
Neck shaft angle. The angle formed by a line drawn through the shaft of the femur with one passing through the axis of the femoral neck. 69
Padding voxels
A layer of voxels surrounding an image. 44

POF
Pore occupancy fraction. The ratio of bone volume to pore volume for a given volume or pore. 21

Region merging
An algorithm to combine labels or clusters in an image according to their relative shape, size and separation. 40

Section modulus
A measure of a beam’s resistance to bending. Calculated as the ratio of the cross section’s second moment of area to its greatest distance from the neutral axis. 73

Segmentation
An algorithm for partitioning digital images into multiple regions. 14, 99

Trilinear element
A cubic finite element with eight nodes - one at each vertex. Quantities of interest can be interpolated linearly from the eight nodes. 44

UNSW
University of New South Wales. 12

vBMD
Volumetric bone mineral density. Calculated as the bone mineral content (BMC) divided by bone volume. 68

Voxel
A 3D volume element. 6

Watershed
An image processing algorithm for partitioning an image into multiple regions. 40
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>vii</td>
</tr>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
<tr>
<td>Glossary</td>
<td>xi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Literature Review</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Micro-computed Tomography</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Interaction of X-rays with Matter</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Attenuation</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3 ANU Micro-CT Facility</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4 Image Acquisition and Reconstruction</td>
<td>6</td>
</tr>
<tr>
<td>I Structure and Properties of Ceramic Scaffolds</td>
<td>9</td>
</tr>
<tr>
<td>2 Scaffold Morphology</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Experimental Methodology</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Scaffold Preparation</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2 Animal Model</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3 Micro-computed Tomography</td>
<td>15</td>
</tr>
<tr>
<td>2.2.4 Phase Segmentation</td>
<td>15</td>
</tr>
<tr>
<td>2.2.5 Three-dimensional Visualisation</td>
<td>19</td>
</tr>
<tr>
<td>2.2.6 Numerical Analysis of Structure</td>
<td>19</td>
</tr>
<tr>
<td>2.2.7 Approximation of Scaffold Boundary</td>
<td>20</td>
</tr>
<tr>
<td>2.2.8 Cluster Size Distribution</td>
<td>20</td>
</tr>
<tr>
<td>2.2.9 Pore Size Distribution within the Scaffold</td>
<td>20</td>
</tr>
<tr>
<td>2.2.10 Accessible Pore Size</td>
<td>21</td>
</tr>
<tr>
<td>2.2.11 Distribution of Bone Ingrowth</td>
<td>22</td>
</tr>
<tr>
<td>2.2.12 Anisotropy in Bone Ingrowth</td>
<td>22</td>
</tr>
<tr>
<td>2.2.13 Surface Area</td>
<td>22</td>
</tr>
</tbody>
</table>
4.2 Anatomy of the Femoral Neck ... 70
4.3 Methodology ... 73
 4.3.1 Calculation of vBMD Using Model Cross Sections 74
 4.3.2 Geometric Properties from micro-CT 77
 4.3.3 Estimating Moments of Inertia and Section Modulus 78
 4.3.4 Assessment of FN Size, Shape 79
 4.3.5 Data Analysis .. 80
4.4 Results ... 82
 4.4.1 Femoral Neck Geometry ... 82
 4.4.2 FN Size, Shape Measured by micro-CT 83
 4.4.3 Estimates of Femoral Neck Properties 85
4.5 Discussion ... 85
4.6 Conclusion ... 90

5 Elastic Properties of the Human Proximal Femur 91
 5.1 Introduction ... 91
 5.1.1 Anatomy of the Femoral Neck 92
 5.1.2 Mechanics of Bone .. 95
 5.1.2.1 Experimental Data .. 95
 5.1.2.2 Numerical FEM Data .. 96
 5.1.2.3 Empirical Relationships 96
 5.1.3 Elastic Anisotropy ... 99
 5.1.3.1 Symmetry Groups .. 99
 5.1.4 Finite Element Modelling of Femoral Neck 101
 5.2 Methodology ... 102
 5.2.1 Image Acquisition and Reconstruction 102
 5.2.2 Segmentation ... 103
 5.2.3 Morphology ... 107
 5.2.3.1 Estimation of Porosity 107
 5.2.3.2 Network Representation 107
 5.2.4 Finite Element Model .. 109
 5.2.4.1 Choice of Elastic Properties 109
 5.2.4.2 Boundary Conditions .. 109
 5.2.4.3 Computational Aspects 111
 5.2.4.4 Convergence .. 111
 5.2.4.5 Compliance Tensors ... 112
 5.2.5 Estimation of Elastic Symmetry 113
 5.2.5.1 Identifying Elastic Symmetry 113
Contents

5.3 Results .. 114
 5.3.1 Porosity ... 114
 5.3.2 Structural Visualisation 117
 5.3.3 Structural Characterisation 122
 5.3.3.1 Variability Within a Specimen 122
 5.3.3.2 Variability Across Specimens 125
 5.3.3.3 Overall Network Statistics 126
 5.3.3.4 Relationship of Age and Network Parameters 128
 5.3.4 Elasticity .. 131
 5.3.4.1 Orthotropy and Transverse Isotropy Estimation 136
 5.3.4.2 Trends in Compliance Tensor Components 137
5.4 Discussion .. 142
 5.4.1 Cross Sectional Studies 142
 5.4.2 Resolution Scaling Relationships 144
 5.4.2.1 Resolution Effects on Topology 145
 5.4.2.2 Resolution Effects on Elastic Properties 147
 5.4.3 Elastic Property Assumption 150
5.5 Concluding Remarks 152
 5.5.1 Estimations of Bone Symmetry 152
 5.5.2 Elastic Anisotropy 152
 5.5.3 The Relationship of Porosity to Elastic Properties . 153
 5.5.3.1 Whole Hip Versus Femoral Head Subset 153
 5.5.3.2 Comparison with Empirical Models 156
 5.5.4 Porosity-Age Relationship 156
 5.5.5 The Relationship of Topology to Elastic Properties . 156
 5.5.6 Local Fields as Predictors of Local Fragility 157

6 Conclusion and Outlook 159
 6.1 Part I: Scaffold Architecture and Properties 159
 6.2 Part II: Femoral Neck Architecture and Properties 160

A Appendix A: Elasticity 165
 A.1 Generalised Hooke’s Law for Linear Elastic Solids 165
 A.2 Finite Element Formulation 168

B Appendix B: Elasticity Tensors 173
 B.1 Hip10R .. 173
 B.1.1 Orthotropic Approximation 173
 B.1.2 Transverse Isotropic Approximation 173
B.2 11R 175
 B.2.1 Orthotropic Approximation 175
 B.2.2 Transverse Isotropic Approximation 175
B.3 15R 176
 B.3.1 Orthotropic Approximation 176
 B.3.2 Transverse Isotropic Approximation 176
B.4 169R 177
 B.4.1 Orthotropic Approximation 177
 B.4.2 Transverse Isotropic Approximation 177
B.5 177R 178
 B.5.1 Orthotropic Approximation 178
 B.5.2 Transverse Isotropic Approximation 178
B.6 17R 179
 B.6.1 Orthotropic Approximation 179
 B.6.2 Transverse Isotropic Approximation 179
B.7 180R 2K 180
 B.7.1 Orthotropic Approximation 180
 B.7.2 Transverse Isotropic Approximation 180
B.8 180R 2K 222 181
 B.8.1 Orthotropic Approximation 181
 B.8.2 Transverse Isotropic Approximation 181
B.9 180R 2K 444 182
 B.9.1 Orthotropic Approximation 182
 B.9.2 Transverse Isotropic Approximation 182
B.10 180R 2K 888 183
 B.10.1 Orthotropic Approximation 183
 B.10.2 Transverse Isotropic Approximation 183
B.11 180R 1K 184
 B.11.1 Orthotropic Approximation 184
 B.11.2 Transverse Isotropic Approximation 184
B.12 19R 185
 B.12.1 Orthotropic Approximation 185
 B.12.2 Transverse Isotropic Approximation 185
B.13 45R 186
 B.13.1 Orthotropic Approximation 186
 B.13.2 Transverse Isotropic Approximation 186
B.14 72R 187
 B.14.1 Orthotropic Approximation 187