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SPECTRAL CURVES AND PARAMETERIZATION OF A DISCRETE

INTEGRABLE THREE-DIMENSIONAL MODEL

S. Z. Pakuliak∗ and S. M. Sergeev†

We consider a discrete classical integrable model on a three-dimensional cubic lattice. The solutions of this

model can be used to parameterize the Boltzmann weights of various three-dimensional spin models. We

find the general solution of this model constructed in terms of the theta functions defined on an arbitrary

compact algebraic curve. Imposing periodic boundary conditions fixes the algebraic curve. We show that

the curve then coincides with the spectral curve of the auxiliary linear problem. For a rational curve, we

construct the soliton solution of the model.
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1. Introduction

This paper is devoted to describing the periodic and soliton solutions of a general classical three-
dimensional discrete integrable model. We show that this description can be given completely analogously
to the description of the finite-gap solutions of the hierarchy of the continuous integrable equations, although
our way of deriving our discrete systems of equation is nonstandard and is motivated by the approach
developed in [1] for discrete integrable spin models. First, we construct the discrete equations of motion
from an equivalence condition for the auxiliary linear systems (which replaces the zero-curvature condition
for the Lax operators in the standard formulation) and then prove the integrability by counting the number
of independent integrals of motion.

Several types of boundary conditions can be considered on the cubic lattice: open boundary, periodic
boundary conditions in chosen directions, or completely periodic boundary conditions. Choosing the specific
boundary conditions leads to a specific dynamical interpretation of the model: the Cauchy problem, the
Bäcklund transformation, or an analogue of a standing wave on the discrete three-dimensional torus.

Starting from the discrete equations of motion for our model, we change variables through a triple of
the Legendre variables, which transforms the equations of motion into the trilinear form. These trilinear
equations are a generalization of the famous Hirota bilinear difference equation. We then observe that
these trilinear equations can be formally solved using Fay’s identity for the theta function on an arbitrary
algebraic curve.

Some facts observed in this paper are a manifestation of the well-known statement proved more than
two decades ago [2] that any discrete integrable system can be solved using algebraic-geometric methods. In
this paper, we further develop an alternative approach to three-dimensional discrete integrable systems [1]
that does not use the notion of Lax operators and can be applied to both quantum (spin) and classical
integrable systems associated with several three-dimensional lattices. Instead of the Lax operators, we
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Fig. 1

Fig. 2

use the notion of the linear system defined on auxiliary planes. In this paper, we consider only the cubic
lattice although these methods may be applied to an arbitrary three-dimensional lattice formed by a set of
intersecting planes.

2. Classical discrete integrable system on the cubic lattice

Let the vertices of a cubic lattice spanned by the orthogonal basis e1, e2, and e3 be labeled by the
vectors

n = n1e1 + n2e2 + n3e3. (1)

The cubic lattice is formed by three sets of parallel planes or, equivalently, by three sets of parallel lines
(see Fig. 1, where the cubic lattice of the size 3×2×4 is shown as an example). We associate the dynamical
variables with each edge of the cubic lattice of a given type α, (α = 1, 2, 3 corresponds to the three orthogonal
directions of the lattice) as shown in Fig. 2. Namely, the pairs of dynamical variables uα,n, wα,n, α = 1, 2, 3,
are associated with the edges incoming to the oriented vertex n, while uα,n+eα , wα,n+eα are associated with
the outgoing edges. In Fig. 2, we also depict two auxiliary planes intersecting the respective incoming and
outgoing edges with the number n (these intersecting planes form the triangles 123 and 1′2′3′). Each of
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Fig. 3

Fig. 4

these planes intersects seven of the eight octants around the vertex of the cubic lattice labeled by the vector
n.

We stress that our considerations are strictly local at the moment. Our goal is to obtain the relations
between the dynamical variables surrounding a given vertex. We then extend these relations to the whole
lattice, thus obtaining the discrete dynamical system.

Each triangle on the auxiliary planes is formed by three lines obtained by the intersection of the
corresponding plane with the planes forming the vertex n of the cubic lattice. The vertices of the auxiliary
triangles are thus associated with the edges of the cubic lattice and consequently with a pair of the dynamical
variables. We consider two linear problems associated with the auxiliary triangles by the following rules.
First, we introduce the linear variables Φa, Φb, Φc, and Φd around the vertex on the auxiliary plane
according to Fig. 3. The linear problems for each vertex on the auxiliary planes always have the form

0 = Φa − Φb · u+Φc · w +Φd · κuw, (2)

where κ ∈ C is an additional parameter associated with the edge of the cubic lattice. We note that the
coefficients of linear form (2) are fixed by the orientation of the lines that form the vertex on the auxiliary
plane.

The parameterization of the linear variables on the auxiliary planes for the cubic geometry is shown in
Fig. 4. It is clear that these linear variables are associated with the internal parts of the cubes in the cubic
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lattice. According to (2), we can write the system of linear equations

0 = Φn+e2 − Φn+e2+e3u1,n +Φnw1,n +Φn+e3κ1,nu1,nw1,n,

0 = Φn − Φn+e3u2,n +Φn+e1w2,n +Φn+e1+e3κ2,nu2,nw2,n,

0 = Φn+e2 − Φnu3,n +Φn+e1+e2w3,n +Φn+e1κ3,nu3,nw3,n

(3)

for the left triangle shown in Fig. 4 and the linear system

0 = Φn+e1+e2 − Φn+e1+e2+e3u1,n+e1 +Φn+e1w1,n+e1 +

+Φn+e1+e3κ1,nu1,n+e1w1,n+e1 ,

0 = Φn+e2 − Φn+e2+e3u2,n+e2 +Φn+e1+e2w2,n+e2 +

+Φn+e1+e2+e3κ2,nu2,n+e2w2,n+e2 ,

0 = Φn+e2+e3 − Φn+e3u3,n+e3 +Φn+e1+e2+e3w3,n+e3 +

+Φn+e2+e3κ3,nu3,n+e3w3,n+e3

(4)

for the right triangle.
Assuming that the dynamical variables do not vanish identically on any edge of the lattice, we can

eliminate the linear variables Φn and Φn+e1+e2+e3 from systems (3) and (4). We require that systems (3)
and (4) (each now contains only two linear relations for the remaining six linear variables Φn+e1 , Φn+e1+e2 ,
etc.) be equivalent. This means that the matrix elements of these linear systems, which are rational functions
of all dynamical variables around a given vertex, coincide identically. Moreover, we require that each type
of the parameters κα,n be conserved along the corresponding direction α (which was already taken into
account in (4)):

κα,n = κα,n+eα , α = 1, 2, 3. (5)

As a result, we obtain the recursive relations for the dynamical variables uα,n, wα,n, uα,n+eα , and wα,n+eα ,

u1,n+e1 =
κ2,nu1,nu2,nw2,n

κ1,nu1,nw2,n + κ3,nu2,nw3,n + κ1,nκ3,nu1,nw3,n
,

w1,n+e1 =
w1,nw2,n + u3,nw2,n + κ3,nu3,nw3,n

w3,n
,

(6)

u2,n+e2 =
u1,nu2,nu3,n

u2,nu3,n + u2,nw1,n + κ1,nu1,nw1,n
,

w2,n+e2 =
w1,nw2,nw3,n

w1,nw2,n + u3,nw2,n + κ3,nu3,nw3,n
,

(7)

u3,n+e3 =
u2,nu3,n + u2,nw1,n + κ1,nu1,nw1,n

u1,n
,

w3,n+e3 =
κ2,nu2,nw2,nw3,n

κ1,nu1,nw2,n + κ3,nu2,nw3,n + κ1,nκ3,nu1,nw3,n
,

(8)

where, by virtue of (5), κ1,n is independent of the coordinate n1 in expansion (1), κ2,n is analogously
independent of n2, and κ3,n is independent of n3. Such a dependence on not all the coordinates of n is
denoted by

κ1,n = κ1:n2,n3 , κ2,n = κ2:n1,n3 , κ3,n = κ3:n1,n2 . (9)
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It might be asked why recursive relations (6)–(8) constitute a dynamical system. We introduce the
nonzero Poisson bracket for the edges incoming to the vertex with some fixed n,

{uα,n, wβ,n} = uα,nwα,nδαβ . (10)

Transformation (6)–(8) is canonical, i.e., it follows from (10) that

{uα,n+eα , wβ,n+eβ
} = uα,n+eαwβ,n+eβ

δαβ. (11)

The auxiliary triangles shown in Fig. 2 are fragments of two spacelike surfaces. The set of three-dimensional
vertices between these surfaces provides canonical transformation (6)–(8) of the set of dynamical variables
from one surface to the other. We call this transformation the local equation of motion in the direction
perpendicular to the chosen spacelike surface. In addition to local equations of motion (6)–(8), a complete
formulation of the dynamical system requires the specification of boundary conditions.

The type of the boundary conditions, as well as the global characteristics of the model, depends on
the choice of the spacelike surface. The described auxiliary lattices are appropriate for the Cauchy problem
for the cubic lattice. In Sec. 6, we choose n1 as the discrete time, while n2 and n3 are the discrete space
coordinates. System (6) then describes the “time” evolution of the variables u1,n, w1,n, while systems (7)
and (8) describe the spatial distribution of the variables u2,n, w2,n, and u3,n, w3,n, which are “auxiliary”
for this evolution. All the dynamical quantities, such as integrals of motion, spectral curves, etc., must be
calculated for system (6) in this case.

3. The Legendre transform

It follows from (6)–(8) that

w1,nw2,n = w1,n+e1w2,n+e2 , u2,nu3,n = u2,n+e2u3,n+e3 ,

u1,n

w3,n
=
u1,n+e1

w3,n+e3

.
(12)

In general, we can use these relations to perform the change of variables

u1,n = u(0)
1:n2,n3

τ2,n

τ2,n+e3

, w1,n = w(0)
1:n2,n3

τ3,n+e2

τ3,n
,

u2,n = u(0)
2:n1,n3

τ1,n

τ1,n+e3

, w2,n = w(0)
2:n1,n3

τ3,n

τ3,n+e1

,

u3,n = u(0)
3:n1,n2

τ1,n+e2

τ1,n
, w3,n = w(0)

3:n1,n2

τ2,n

τ2,n+e1

.

(13)

After substitution (13), Eqs. (6)–(8) can be rewritten in the trilinear form

rα,nτα,n+eβ+eγ τβ,nτγ,n = τα,nτβ,n+eγ τγ,n+eβ
+

+ sβ,nτα,n+eβ
τβ,n+eγ τγ,n + s−1

γ,nτα,n+eγ τβ,nτγ,n+eβ
, (14)
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where (α, β, γ) is any cyclic permutation of the indices (1, 2, 3) and the coefficients are

s1,n =
κ3:n1,n2w

(0)
3:n1,n2

w
(0)
2:n1,n3

, r1,n =
u

(0)
1:n2,n3

u
(0)
3:n1,n2

w
(0)
1:n2,n3

u
(0)
2:n1,n3

,

s2,n =
u

(0)
3:n1,n2

w
(0)
1:n2,n3

, r2,n =
κ2:n1,n3u

(0)
2:n1,n3

w
(0)
2:n1,n3

κ1:n2,n3κ3:n1,n2u
(0)
1:n2,n3

w
(0)
3:n1,n2

,

s3,n =
u

(0)
2:n1,n3

κ1:n2,n3u
(0)
1:n2,n3

, r3,n =
w

(0)
1:n2,n3

w
(0)
3:n1,n2

w
(0)
2:n1,n3

u
(0)
3:n1,n2

.

(15)

Change of variables (13) admits the following interpretation. Equations (6)–(8) are a kind of Hamiltonian
equations of motion for the classical discrete system. Substitution (13) is therefore the Legendre transfor-
mation. Finally, Eqs. (14) are the Lagrangian equations of motion. We call ταn the Legendre variables and
the coefficients u(0)

α:nβ ,nγ and w(0)
α:nβ ,nγ the preexponentials.

Equations (14) in a sense generalize the famous Hirota bilinear equation [3], which can be obtained
from (14) as a special limit where all the parameters κα:nβ ,nγ vanish in a definite way. Indeed, let the
parameters r2n, s3n, and s−1

1n , which depend on the parameters κ, tend to infinity as ε→ 0,

r2,n ∼ ε−2 +
1
2
ε−1, s3,n ∼ ε−2 − 1

2
ε−1, s−1

1,n ∼ ε−1. (16)

Choosing α = 2, β = 3, and γ = 1 and equating the coefficients at ε−2 and ε−1 in (14), we obtain

τ3,n = τ2,n+e3 , τ1,n = τ2,n+e1 . (17)

We note that κ1,n ∼ ε2 and κ2,n ∼ κ3,n ∼ ε in limit (16). Imposing one more condition r1,n = s2,nr3,n, we
find that the remaining two equations in (14) coincide and can be written as a single difference equation
for the Legendre variable τ2,n:

r1,nτ2,n+e1+e2+e3τ2,n = τ2,n+e1τ2,n+e2+e3 + s2,nτ2,n+e3τ2,n+e1+e2 .

In the homogeneous limit where the parameters r1,n = r1 and s2n = s2 are independent of the vertex
number n, the latter equation can be rewritten in the canonical Hirota form after an obvious reenumeration
of the discrete variables. Because of this analogy, we often call the Legendre variables τjn the triplet of tau
functions.

We conclude this section by describing the discrete gauge invariance of linear systems (3) and (4). We
require that these systems be invariant under a simultaneous shift of the linear variables

Φn 	→ ξnΦn, (18)

where ξn ∈ C. This invariance requires the corresponding change of the dynamical variables

u1,n 	→ ξn+e2

ξn+e2+e3

u1,n, w1,n 	→ ξn+e2

ξn
w1,n,

etc. We must then require the coincidence of the gauge transformation of the parameters καn, α = 1, 2, 3,
in both linear systems (3) and (4), i.e.,

κ1,n 	→ ξnξn+e2+e3

ξn+e2ξn+e3

κ1,n =
ξn+e1ξn+e1+e2+e3

ξn+e1+e2ξn+e1+e3

κ1,n. (19)
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Similar equalities can be obtained for the parameters κ2n and κ3n. Any of these requirements leads to the
single relation

ξnξn+e1+e2ξn+e1+e3ξn+e2+e3 = ξn+e1ξn+e2ξn+e3ξn+e1+e2+e3 . (20)

The last equation can be easily satisfied by the ansatz

ξn = ξ1:n2,n3ξ2:n1,n3ξ3:n1,n2 . (21)

This explains all ξ-dependent factors appearing in the statement of Proposition 1 below.

4. General solution of the classical equations of motion

As was shown, Eqs. (14) generalize the Hirota equations. The structure of (14) repeats the structure of
the Hirota equation. In this section, we present a general solution of these classical equations of motion when
each trilinear equation (14) is reduced to a pair of bilinear equations. This form is suitable for imposing
periodic boundary conditions. The bilinear relations can be identified with Fay’s well-known identities for
the theta functions associated with an algebraic curve of a finite genus. Periodic boundary conditions fix
the form of a general algebraic curve uniquely. The form of this curve depends on the type of boundary
conditions. We claim that the obtained solution of trilinear equations (14) is the most general solution
for periodic boundary conditions. We start by formulating the necessary algebraic-geometric objects (see,
e.g., [4], [5]).

Let Γ be an arbitrary algebraic curve of genus g and ω = (ω1, ω2, . . . , ωg) be the g-dimensional vector
of holomorphic differentials. We use the standard normalization

∮
aj

ωk = δk,j ,

∮
bj

ωk = Ωk,j , (22)

where aj and bj , j = 1, . . . , g, are the sets of canonical cycles on Γ.
Let I : Γ⊗2 	→ Jac(Γ) be the Jacobi map

X,Y ∈ Γ 	→ I(X,Y ) =
∫ Y

X

ω ∈ Jac(Γ), (23)

and let Θε(v), v ∈ Cg, ε = (ε1, ε2), εi ∈ Cg, be the theta function with characteristic ε on the Jacobian
Jac(Γ),

Θε(v) =
∑

m∈Zg

exp
(
iπ(m+ ε1,Ωm+ ε1) + 2iπ(m+ ε1,v + ε2)

)
, (24)

and let E(X,Y ) = −E(Y,X) be the prime form for X,Y ∈ Γ such that the cross ratio

E(X,Y )E(X ′, Y ′)
E(X,Y ′)E(X ′, Y )

=
Θεodd

(
I(X,Y )

)
Θεodd

(
I(X ′, Y ′)

)
Θεodd

(
I(X,Y ′)

)
Θεodd

(
I(X ′, Y )

) (25)

is a well-defined quasiperiodic function on Γ⊗4. The parameter εodd is a nonsingular odd theta characteristic
such that Θεodd(0) = 0. We let Θ(v) denote the theta function with the zero characteristic.

There is an identity on Γ⊗4 ⊗ Jac(Γ), the so-called bilinear Fay identity, which can be written in the
form

Θ(v)Θ
(
v + I(B +D,A+ C)

)
=
E(A,B)E(D,C)
E(A,C)E(D,B)

Θ
(
v + I(D,A)

)
Θ
(
v + I(B,C)

)
+

+
E(A,D)E(C,B)
E(A,C)E(D,B)

Θ
(
v + I(B,A)

)
Θ
(
v + I(D,C)

)
, (26)
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where it is assumed that I(B +D,A+ C) = I(B,A) + I(D,C) = I(D,A) + I(B,C).

Let v ∈ Jac(Γ), Xn1 , X ′
n1
, Yn2 , Y ′

n2
, Zn3 , Z ′

n3
(nα ∈ Z), and P , Q be arbitrary distinct points on the

algebraic curve Γ. We then have the following proposition.

Proposition 1. Any solution of local equations of motion (14) is a particular case of the general
solution

τ1,n = ξ1:n2,n3Θ
(
In + I(Q,Xn1)

)
,

τ2,n = ξ2:n1,n3Θ
(
In + I(Q, Yn2)

)
,

τ3,n = ξ3:n1,n2Θ
(
In + I(Q,Zn3)

)
,

(27)

where

In = v +
n1−1∑
m1=0

I(X ′
m1
, Xm1) +

n2−1∑
m2=0

I(Y ′
m2
, Ym2) +

n3−1∑
m3=0

I(Z ′
m3
, Zm3) (28)

and the parameters ξ and points Xn1
, . . . , Z ′

n3
enter the parameterizations of καn and the preexponentials

as

κ1:n2,n3 = −ξ1:n2,n3ξ1:n2+1,n3+1

ξ1:n2+1,n3ξ1:n2,n3+1

E(Y ′
n2
, Zn3)E(Yn2 , Z

′
n3
)

E(Y ′
n2
, Z ′

n3
)E(Yn2 , Zn3)

,

κ2:n1,n3 = −ξ2:n1+1,n3ξ2:n1,n3+1

ξ2:n1,n3ξ2:n1+1,n3+1

E(Xn1 , Zn3)E(X
′
n1
, Z ′

n3
)

E(X ′
n1
, Zn3)E(Xn1 , Z

′
n3
)
,

κ3:n1,n2 = −ξ3:n1,n2ξ3:n1+1,n2+1

ξ3:n1+1,n2ξ3:n1,n2+1

E(X ′
n1
, Yn2)E(Xn1 , Y

′
n2
)

E(Xn1 , Yn2)E(X ′
n1
, Y ′

n2
)

(29)

and

u
(0)
3:n1,n2

w
(0)
1:n2,n3

= −ξ1:n2,n3ξ3:n1,n2+1

ξ1:n2+1,n3ξ3:n1,n2

E(Y ′
n2
, Zn3)E(Yn2 , Xn1)

E(Y ′
n2
, Xn1)E(Yn2 , Zn3)

,

u
(0)
2:n1,n3

u
(0)
1:n2,n3

=
ξ1:n2+1,n3+1ξ2:n1,n3

ξ1:n2+1,n3ξ2:n1,n3+1

E(Y ′
n2
, Zn3)E(Xn1 , Z

′
n3
)

E(Y ′
n2
, Z ′

n3
)E(Xn1 , Zn3)

,

w
(0)
3:n1,n2

w
(0)
2:n1,n3

=
ξ2:n1+1,n3ξ3:n1,n2+1

ξ2:n1,n3ξ3:n1+1,n2+1

E(Y ′
n2
, X ′

n1
)E(Xn1 , Zn3)

E(Y ′
n2
, Xn1)E(X ′

n1
, Zn3)

.

(30)

Proof. To prove that substitution (13) with the tau functions given by (27) solves (14), we repeatedly
use Fay’s identity. For example, Eq. (14) at α = 1, β = 2, and γ = 3 follows from two Fay identities (26)
taken for the respective sets of divisors (A,B,C,D) and (A′, B′, C′, D′), where A = A′ = Xn1 , B = B′ =
Yn2 , D = D′ = Y ′

n2
, C = Z ′

n3
, and C′ = Zn3 . The ratios containing the parameters ξα:nβ ,nγ in (29) and (30)

appear because of the gauge invariance of linear systems (3) and (4). The gauge parameters ξα:nβ ,nγ , the
divisors Xn1 , X

′
n1
, . . . , and also the period matrix Ω and the point on the Jacobian v are free parameters

of the general solution. Imposing periodic boundary conditions (which, in particular, means fixing the size
of the system), we can relate these parameters to the values of the integrals of motion.

We can solve expressions (30) to avoid the ratios of preexponentials. For this, we introduce extra
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parameters An1 , Bn2 , and Cn3 . We then obtain

u1,n =
ξ1:n2+1,n3

ξ1:n2+1,n3+1

E(Y ′
n2
, Z ′

n3
)

E(Y ′
n2
, Zn3)

E(Cn3 , Zn3)
E(Cn3 , Z

′
n3
)
τ2,n

τ2,n+e3

,

w1,n = −ξ1:n2+1,n3

ξ1:n2,n3

E(Zn3 , Yn2)
E(Zn3 , Y

′
n2
)
E(Bn2 , Y

′
n2
)

E(Bn2 , Yn2)
τ3,n+e2

τ3,n
,

κ1:n2,n3 = −ξ1:n2,n3ξ1:n2+1,n3+1

ξ1:n2+1,n3ξ1:n2,n3+1

E(Y ′
n2
, Zn3)E(Yn2 , Z

′
n3
)

E(Y ′
n2
, Z ′

n3
)E(Yn2 , Zn3)

,

(31)

u2,n =
ξ2:n1,n3

ξ2:n1,n3+1

E(Xn1 , Z
′
n3
)

E(Xn1 , Zn3)
E(Cn3 , Zn3)
E(Cn3 , Z

′
n3
)
τ1,n

τ1,n+e3

,

w2,n = − ξ2:n1,n3

ξ2:n1+1,n3

E(Zn3 , X
′
n1
)

E(Zn3 , Xn1)
E(An1 , Xn1)
E(An1 , X

′
n1
)
τ3,n

τ3,n+e1

,

κ2:n1,n3 = −ξ2:n1+1,n3ξ2:n1,n3+1

ξ2:n1,n3ξ2:n1+1,n3+1

E(Xn1 , Zn3)E(X ′
n1
, Z ′

n3
)

E(X ′
n1
, Zn3)E(Xn1 , Z

′
n3
)
,

(32)

u3,n =
ξ3:n1,n2+1

ξ3:n1,n2

E(Xn1 , Yn2)
E(Xn1 , Y

′
n2
)
E(Bn2 , Y

′
n2
)

E(Bn2 , Yn2)
τ1,n+e2

τ1,n
,

w3,n = − ξ3:n1,n2+1

ξ3:n1+1,n2+1

E(Y ′
n2
, X ′

n1
)

E(Y ′
n2
, Xn1)

E(An1 , Xn1)
E(An1 , X

′
n1
)
τ2,n

τ2,n+e1

,

κ3:n1,n2 = −ξ3:n1,n2ξ3:n1+1,n2+1

ξ3:n1+1,n2ξ3:n1,n2+1

E(X ′
n1
, Yn2)E(Xn1 , Y

′
n2
)

E(Xn1 , Yn2)E(X ′
n1
, Y ′

n2
)
,

(33)

where ταn are given by (27). The discrete Baker–Akhiezer function Φn, satisfying the whole set of Eqs. (3)
(and therefore (4)) and normalized by Φ0 = ξ0, is given by

Φn = Φn(P ) = ξnΦ(0)
n (P )

Θ
(
v + I(Q,P ) + In

)
Θ
(
v + I(Q,P )

) , (34)

where

Φ(0)
n (P ) =

n1−1∏
m1=0

E(P,Xm1 )E(Am1 , X
′
m1

)
E(P,X ′

m1
)E(Am1 , Xm1)

×

×
n2−1∏
m2=0

E(P, Ym2 )E(Bm2 , Y
′
m2

)
E(P, Y ′

m2
)E(Bm2 , Ym2)

n3−1∏
m3=0

E(P,Zm3 )E(Cm3 , Z
′
m3

)
E(P,Z ′

m3
)E(Cm3 , Zm3)

. (35)

5. Finite lattice with open boundaries

To this point, all the considerations were strictly local and did not take the size and the boundary
of the cubic lattice into account. To describe global characteristics, such as integrals of motion, we must
nevertheless specify these additional data.

We consider a finite cubic lattice with open boundary conditions and the corresponding Cauchy prob-
lem. For a cubic lattice of the size N1 × N2 × N3, we restrict the coordinates n1, n2, n3 of the three-
dimensional vector n in (1) by

0 ≤ nα < Nα, α = 1, 2, 3. (36)
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On the ∆ = N1N2 +N2N3 +N3N1 incoming edges of the cubic lattice, 2∆ initial data values can be given,

u1:n2,n3 ≡ u1,0e1+n2e2+n3e3 , w1:n2,n3 ≡ w1,0e1+n2e2+n3e3 ,

u2:n1,n3 ≡ u2,n1e1+0e2+n3e3 , w2:n1,n3 ≡ w2,n1e1+0e2+n3e3 ,

u3:n1,n2 ≡ u3,n1e1+n2e2+0e3 , w3:n1,n2 ≡ w3,n1e1+n2e2+0e3 .

(37)

Recursively applying equations of motion (6)–(8), we define the transformation from initial data (37) to
the 2∆ final data:

u′1:n2,n3
≡ u1,N1e1+n2e2+n3e3 , w′

1:n2,n3
≡ w1,N1e1+n2e2+n3e3 ,

u′2:n1,n3
≡ u2,n1e1+N2e2+n3e3 , w′

2:n1,n3
≡ w2,n1e1+N2e2+n3e3 ,

u′3:n1,n2
≡ u3,n1e1+n2e2+N3e3 , w′

3:n1,n2
≡ w3,n1e1+n2e2+N3e3 .

(38)

Assuming that initial data (37) are general, we reach the natural question of how we can invert the pa-
rameterizations described by formulas (31)–(33) in order to restore the algebraic-geometric data in terms
of (37) and the parameters κα:nβ ,nγ (the total number of parameters is 3∆).

In general, the solution of this problem is not unique. Evidently, the same initial data can be parame-
terized by various sets of algebraic-geometric data related to algebraic curves with a sufficiently high genus.
But there exists a unique preferred compact Riemann surface that is minimum (in a certain sense) among
all possible curves parameterizing dynamics (6)–(8).

In the Cauchy problem with (37) and (38), this curve appears as follows. Let the initial data be
parameterized by a curve Γ. We can write

uα:nβ ,nγ = uα:nβ ,nγ (v), wα:nβ ,nγ = wα:nβ ,nγ (v).

Because of (27) and (28), the solution of the Cauchy problem is then

u′α:nβ ,nγ
= uα:nβ ,nγ (v +Tα), w′

α:nβ ,nγ
= wα:nβ ,nγ (v +Tα),

where

T1 =
N1∑

n1=0

I(X ′
n1
, Xn1), T2 =

N2∑
n2=0

I(Y ′
n2
, Yn2), T3 =

N3∑
n3=0

I(Z ′
n3
, Zn3). (39)

The transformation from the initial data to the final data is the evolution if

T1 = T2 = T3 = T mod (Zg +ΩZ
g). (40)

In what follows, we understand all relations of this type modulo Zg +ΩZg.
Evolution conditions (40) mean that because of the Abel theorem, there exist two meromorphic func-

tions λ(P ) and µ(P ), P ∈ Γ, with the divisors

(λ) =
∑

n1∈ZN1

Xn1 −
∑

n1∈ZN1

X ′
n1

−
∑

n3∈ZN3

Zn3 +
∑

n3∈ZN3

Z ′
n3
,

(µ) =
∑

n2∈ZN2

Yn2 −
∑

n2∈ZN2

Y ′
n2

−
∑

n3∈ZN3

Zn3 +
∑

n3∈ZN3

Z ′
n3
.

(41)
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Fig. 5

The curve Γ is then the compact Riemann surface determined by the polynomial equation J�(λ, µ) = 0 (see,
e.g., Theorem 10-23 in [6]). Moreover, conditions (41) fix the general structure of J�(λ, µ) (see (48) below).
The key observation is that evolution conditions (40) imply that J�(λ, µ), considered as a functional of the
initial data, generates the set of evolution invariants and the curve defined by this polynomial is therefore
the spectral curve.

We can derive the polynomial J� using a linear system of type (3) written for the whole auxiliary
plane. We fix the position of the auxiliary planes corresponding to the initial and final data. The auxiliary
plane for the initial data crosses all the incoming edges of the cubic lattice, while the plane for the final
data intersects all the outgoing edges. These auxiliary planes play the role of the two-dimensional spacelike
surfaces, and the discrete evolution process corresponds to translating the auxiliary plane in the direction
perpendicular to this spacelike surface.

All the objects, namely, the dynamical and auxiliary linear variables on the spacelike surface, can be
labeled by a two-dimensional discrete index. We choose the labeling for the linear variables in a form similar
to the labeling of initial data (37) or final data (38):

Φ0e1+n2e2+n3e3 = Φ1:n2,n3 ,

Φn1e1+0e2+n3e3 = Φ2:n1,n3 ,

Φn1e1+n2e2+0e3 = Φ3:n1,n2 ,

0 ≤ ni ≤ Ni, i = 1, 2, 3.

(42)

An example of such an enumeration on the auxiliary plane in the simplest case N1 = N2 = N3 = 2 is shown
in Fig. 5.
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Fig. 6

Let L(λ, µ) be the matrix of the linear system

0 = Φ1:n2+1,n3 − Φ1:n2+1,n3+1u1:n2,n3 +Φ1:n2,n3w1:n2,n3 +

+Φn2,n3+1κ1:n2,n3u1:n2,n3w1:n2,n3 ,

0 = Φ2:n1,n3 − Φ2:n1,n3+1u2:n1,n3 +Φ2:n1+1,n3w2:n1,n3 +

+Φ2:n1+1,n3+1κ2:n1,n3u2:n1,n3w2:n1,n3 ,

0 = Φ3:n1,n2+1 − Φ3:n1,n2u3:n1,n2 +Φ3:n1+1,n2+1w3:n1,n2 +

+Φ3:n1+1,n2κ3:n1,n2u3:n1,n2w3:n1,n2

(43)

written in the matrix form 0 = Φ · L(λ, µ), where the linear variables satisfy the identification conditions

Φ1:0,n3 = Φ2:0,n3 , Φ1:n2,0 = Φ3:0,n2 , Φ2:n1,0 = Φ3:n1,0 (44)

and the quasiperiodicity conditions

Φ3:N1,n2

x
=

Φ1:n2,N3

z
,

Φ3:n1,N2

y
=

Φ2:n1,N3

z
,

Φ1:N2,n3

y
=

Φ2:N1,n3

x
(45)

for the boundary domains on the auxiliary plane. The parameters

λ =
x

z
, µ =

y

z
(46)

are complex numbers, and we call them the spectral parameters. By virtue of (44) and (45), it is clear
that the total number of the independent linear variables in system (43) is ∆ and L(λ, µ) is a ∆×∆ square
matrix.

We define

J�(λ, µ) = detL(λ, µ)
( ∏

n2,n3

u1:n2,n3

)−1

. (47)

In other words, J�(λ, µ) is a normalized Laurent polynomial (J0,0 = 1) of the spectral parameters λ and µ,

J� =
∑

a,b∈Π

λaµ−bJa,b,

Π = {0 ≤ a ≤ N2 +N3, 0 ≤ b ≤ N1 +N3, −N1 ≤ a− b ≤ N2}.
(48)

The domain Π (the Newton polygon of J�) is shown in Fig. 6. It can be proved (see [1]) that the coefficients
of this Laurent polynomial are invariants of the evolution, i.e., they are the same for initial data (37) and
final data (38) and can generate the algebraic-geometric data for the solution of these equations with open
boundary conditions.
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The requirement that linear system (43) have a nontrivial solution is equivalent to the requirement
that the spectral parameters lie on the algebraic curve,

P = (λ, µ) ∈ Γ� ⇔ J�(λ, µ) = 0. (49)

Assuming that all the incoming data together with the parameters κα:nβ ,nγ are in general position, we can
calculate the genus of curve (49) using the Newton polygon. For a cubic lattice of size N1 ×N2 ×N3 such
that N1 ≥ N2 ≥ N3, the Newton polygon associated with corresponding curve (49) is shown in Fig. 6. The
genus of the curve Γ� is equal to the number of points with integer coordinates inside this polygon,

g� = (N1N2 +N1N3 +N2N3)− (N1 +N2 +N3) + 1. (50)

Then, g� coefficients Ja,b in the Laurent polynomial J�(λ, µ) corresponding to the internal points of
the Newton polygon with integer coordinates are related to the moduli of the algebraic curve Γ� and
consequently to the period matrix Ω�. The coefficients Ja,b corresponding to the perimeter of the polygon
are related to the divisors of the functions λ and µ meromorphic on Γ�, thus giving the set of parameters
Xn1

, . . . , Z ′
n3
. From (41) and (34), we explicitly obtain

λ(P ) =
N1−1∏
n1=0

E(P,Xn1)E(An1 , X
′
n1
)

E(P,X ′
n1
)E(An1 , Xn1)

N2−1∏
n2=0

E(P, Y ′
n2
)E(Bn2 , Yn2)

E(P, Yn2)E(Bn2 , Y
′
n2
)
,

µ(P ) =
N2−1∏
n2=0

E(P, Yn2)E(Bn2 , Y
′
n2
)

E(P, Y ′
n2
)E(Bn2 , Yn2)

N3−1∏
n3=0

E(P,Z ′
n3
)E(Cn3 , Zn3)

E(P,Zn3)E(Cn3 , Z
′
n3
)
.

(51)

A different approach was previously used in [7]. Because of Theorem 2 in [7], the solution Φ(λ, µ) of
the linear problem Φ · L(λ, µ) = 0, as a vector of meromorphic functions on the curve Γ�, was given by
expression (34) on Jac(Γ�). Using (34), we can unambiguously restore parameterization (27)–(30).

We conclude the discussion of the Cauchy problem by calculating the degrees of freedom of the
algebraic-geometric parameterizations. Having ∆ = N1N2 + N2M3 + N3N1, ∆′ = N1 + N2 + N3, and
g = ∆ − ∆′ + 1, we have g moduli of Γ�, g complex numbers v ∈ Jac(Γ∆), g independent cross ratios
of ξn, 2∆′ − 2 independent divisors Xn1

, . . . , Z ′
n3
, and ∆′ arbitrary divisors An1 , Bn2 , Cn3 ; in this, one

extraneous degree of freedom corresponding to the arbitrariness of Q is taken into account. We thus obtain
3∆ parameters in total. This proves the completeness of the algebraic-geometric parameterization in terms
of the curve Γ�.

6. The Bäcklund transformation

The curve Γ� corresponds to initial data in the general position and open boundary conditions. But to
apply our results to integrable spin models, it is necessary to specify periodic boundary conditions T = 0,
i.e., to set ∑

n1∈ZN1

I(X ′
n1
, Xn1) =

∑
n2∈ZN2

I(Y ′
n2
, Yn2) =

∑
n3∈ZN3

I(Z ′
n3
, Zn3) = 0. (52)

These boundary conditions reduce the spectral curve Γ�. Namely, because of (52), the parameters x, y,
and z in (45) become meromorphic functions with the divisors

(x) =
∑
n1

Xn1 −
∑
n1

X ′
n1
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and (58) (see below). Because x, y, and z themselves (not only their ratios) are meromorphic functions,
the curve can be defined by an algebraic equation for any pair of x, y, or z, i.e.,

J1(y, z) = J2(x, z) = J3(x, y) = 0. (53)

The Laurent polynomial J�(x/z, y/z) is then not irreducible, and the condition J� = 0 follows from
algebraic relations (53).

In this section, we describe the reduced spectral curve and the meromorphic functions uniformizing it
for another choice of the auxiliary plane. The interpretation of the problem now differs from the Cauchy
problem for the open cubic lattice. The discrete evolution can now be considered a sequence of Bäcklund
transformations in the square auxiliary plane.

We first define the new location of the auxiliary plane. Let it cross the incoming edges for the vertices
of the three-dimensional lattice with the coordinates n2e2+n3e3. With this choice, the role of the variables
uα and wα, α = 1, 2, 3, becomes different: u2n, w2n and u3n, w3n are auxiliary, while u1n, w1n are
dynamical. The evolution then means a variation of these dynamical variables with the “time” n1 with
periodic boundary conditions for the second and third directions:

u1:n2+N2,n3 = u1:n2,n3+N3 = u1:n2,n3 , w1:n2+N2,n3 = w1:n2,n3+N3 = w1:n2,n3 . (54)

The auxiliary variables for this evolution also vary from layer to layer according to discrete equations (7)
and (8). We preserve the open boundary conditions in the first direction.

We now consider one layer of the cubic lattice corresponding to the initial value n1 = 0. Equations of
motion (6) and periodic boundary conditions (54) yield the implicit transformation

u1:n2,n3 , w1:n2,n3 	→ u′1:n2,n3
, w′

1:n2,n3
. (55)

According to (27)–(30), we can define

u1:n2,n3 = u1:n2,n3(v), w1:n2,n3 = w1:n2,n3(v), (56)

where v ∈ Jac(Γ) for some algebraic curve Γ. Then transformation (55) can be written in the form

u′1:n2,n3
= u1:n2,n3

(
v + I(X ′

0, X0)
)
, w′

1:n2,n3
= w1:n2,n3

(
v + I(X ′

0, X0)
)
. (57)

Periodic conditions (54) in parameterization (27)–(30) yield
∑

n2∈ZN2
I(Y ′

n2
Yn2) =

∑
n3∈ZN3

I(Z ′
n3
, Zn3) = 0

(see (52)). Using the same arguments that led to formula (41), we can conclude that there exist two
meromorphic functions y and z on Γ such that

(y) =
∑
n2

Yn2 − Y ′
n2
, (z) =

∑
n3

Zn3 − Z ′
n3
, (58)

and a compact Riemann surface Γ is defined by the polynomial equation J�(y, z) = 0. Moreover, the
structure of (y) and (z) fixes the algebraic form of Γ (see (61) below).

We call transformation (55) the Bäcklund transformation for the two-dimensional square lattice because
it is a canonical transformation preserving the integrals of motion. To specify the integrals of motion, we
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again consider the linear system for the chosen auxiliary plane. This linear system is a system of N2N3

equations

jn2,n3 = 0, Φ−1,n3 = y
−1ΦN2−1,n3 ,

Φn2,N3 = zΦn2,0, Φ−1,N3 = y
−1zΦN2−1,0,

(59)

where 0 ≤ n2 < N2, 0 ≤ n3 < N3, and the linear form jn2,n3 is defined by the first equation in system (3)
with relabeled auxiliary linear variables Φn2,n3 :

jn2,n3 = Φn2,n3 − Φn2,n3+1u1:n2,n3 +Φn2−1,n3w1:n2,n3 +

+Φn2−1,n3+1κ1:n2,n3u1:n2,n3w1:n2,n3 . (60)

The equations in (59) including the spectral parameters y and z are quasiperiodic boundary conditions for
the linear variables Φn2,n3 .

Let L(y, z) be the complete matrix of the coefficients of system (59), j = Φ · L(y, z). We define the
Laurent polynomial

J�(y, z) = detL(y, z) =
N3∑
a=0

N2∑
b=0

Ja,by
−azb, J0,0 = 1. (61)

The parameters Ja,b are then invariants of Bäcklund transformation (55) (see [1]). For the system Φ(P ) ·
L(y, z) = 0 to have a nonzero solution, the spectral parameters y and z must belong to the spectral curve

P = (y, z) ∈ Γ� ⇔ J�(y, z) = 0. (62)

Assuming that the dynamical variables u1:n2,n3 , w1:n2,n3 and the parameters κ1:n2,n3 are general, we find
that the genus of spectral curve (62) is g� = (N2 − 1)(N3 − 1). We recall that form (61) of the polynomial
J� follows uniquely from conditions (58).

Conversely, Theorem 2 in [7] claims that the solution of Φ(P ) · L(y, z) = 0 as a meromorphic vector-
valued function of Γ� is given by the formula

Φn2,n3(P ) =
n2−1∏
m2=0

E(P, Ym2 )
E(P, Y ′

m2
)
E(Bm2 , Y

′
m2

)
E(Bm2 , Ym2)

n3−1∏
m3=0

E(P,Zm3)
E(P,Z ′

m3
)
E(Cm3 , Z

′
m3

)
E(Cm3 , Zm3)

×

×Θ
(
v + I(Q,P ) +

n2−1∑
m2=0

I(Y ′
m2
, Ym2) +

n3−1∑
m3=0

I(Z ′
m3
, Zm3)

)
, (63)

where the theta functions are constructed using the period matrix Ω� of the algebraic curve Γ�. Using
formula (63), we can find the corresponding expressions for the dynamical variables u1:n2,n3 and w1:n2,n3 .
They coincide with those in the proof of Proposition 1 under the condition that an arbitrary curve Γ
is identified with the spectral curve Γ�. Explicit formulas for the spectral parameters uniformizing the
spectral curve Γ� are

z(P ) =
∏

n3∈ZN3

E(P,Zn3)
E(P,Z ′

n3
)
E(Cn3 , Z

′
n3
)

E(Cn3 , Zn3)
,

y(P ) =
∏

n2∈ZN2

E(P, Yn2 )
E(P, Y ′

n2
)
E(Bn2 , Y

′
n2
)

E(Bn2 , Yn2)
.

(64)
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In the case where the algebraic curve used to construct the general solution is rational, one evolution
step, n1 	→ n1 + 1, can be identified with creating a soliton. We study this phenomenon in more detail in
the next section.

In this section, we have thus established why the curve Γ� appears when periodic boundary conditions
are imposed on the second and third directions. Evidently, the curve J�(y, z) must be identified with the
curve J1(y, z) in (53). In the same way, the periodic boundary conditions can be imposed on any other pair
of directions, and the corresponding curves J2 and J3 are also the spectral determinants. If the periodic
boundary conditions are imposed on all three directions, then each of the three relations J1 = 0, J2 = 0,
and J3 = 0 must define the same curve, and because the generality of the data is lost in this case, the genus
of the curve is restricted to

g ≤ min
{
(N1 − 1)(N2 − 1), (N2 − 1)(N3 − 1), (N3 − 1)(N1 − 1)

}
. (65)

7. The rational limit

In this section, we consider a rational limit of the algebraic-geometric solutions of discrete equation of
motion (14). The rational limit for theta function (24) on the Jacobian of an algebraic curve corresponds
to the limit (see [8])

eiπΩn,n+2iπvn = −fn (66)

and

eiπΩn,n 	→ 0, eiπΩk,n 	→ (qk − qn)(pk − pn)
(qk − pn)(pk − qn)

def= dk,n. (67)

Thus, the set of dk,n arises from the period matrix, as the set of fn arises from the points on the Jacobian
v. The prime forms in the rational limit are the prime forms on the sphere:

E(A,B)E(C,D)
E(A,D)E(C,B)

=
(A−B)(C −D)
(A−D)(C −B) . (68)

For g = 1, 2, . . . and the set of parameters

p0, q0, f0; p2, q2, f2; . . . ; pg−1, qg−1, fg−1 = {pk, qk, fk}g−1
k=0, (69)

we define the rational limit of the theta function (see the appendix in [8])

H(g)
(
{pk, qk, fk}g−1

k=0

)
=

det |qij − fjp
i
j |

g−1
i,j=0∏

i>j(qi − qj)
. (70)

We set H(0) ≡ 1 by definition. We note that if all the parameters fk vanish, then H(g)
(
{pk, qk, 0}g−1

k=0

)
= 1.

Let the function σk(z) be

σk(z) =
pk − z
qk − z . (71)

For g = 0, Eqs. (14) admit the simple solution ταn = 1 in the rational limit because of the identity

rα = 1 + sβ + s−1
γ , (72)

where

rα = −
X ′

β −X ′
γ

Xβ −Xγ

Xα −Xβ

Xα −Xγ

Xα −X ′
β

Xα −X ′
γ

, sα = −Xα −Xγ

Xα −Xβ

X ′
α −Xβ

X ′
α −Xγ

, (73)

and (α, β, γ) is any even permutation of the set (1, 2, 3). The notation in (72) and (73) is related to that
in (15) and in Proposition 1 as follows: rα = rα,n, sα = sα,n, X1 = Xn1 , X ′

1 = X ′
n1
, X2 = Yn2 , X ′

2 = Y ′
n2
,

X3 = Zn3 , and X
′
3 = Z

′
n3
.
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Proposition 2. The soliton solutions of Eq. (14) are

τ1,n = H(g)

({
In:k

σk(Xn1)

}g−1

k=0

)
,

τ2,n = H(g)

({
In:k

σk(Yn2)

}g−1

k=0

)
,

τ3,n = H(g)

({
In:k

σk(Zn3)

}g−1

k=0

)
,

(74)

where n1, n2, n3 ∈ Z,

In:k = fk

( n1−1∏
m1=0

σk(X ′
m1

)
σk(Xm1)

)( n2−1∏
m2=0

σk(Y ′
m2

)
σk(Ym2)

)( n3−1∏
m3=0

σk(Z ′
m3

)
σk(Zm3)

)
, (75)

and the parameters rα,n and sα,n are defined by formulas (73).

Proof. The proof of this proposition is based on the rational analogue of Fay’s identity

(A−D)(C −B)H(g)

({
fk
σk(A)
σk(B)

}g

k=1

)
H(g)

({
fk
σk(C)
σk(D)

}g

k=1

)
+

+ (A−B)(D − C)H(g)

({
fk
σk(A)
σk(D)

}g

k=1

)
H(g)

({
fk
σk(C)
σk(B)

}g

k=1

)
=

= (A− C)(D −B)H(g)
(
{fk}g

k=1

)
H(g)

({
fk
σk(A)σk(C)
σk(B)σk(D)

}g

k=1

)
(76)

described in [8].

So far, parameters (69), pk, qk, and fk, have been considered arbitrary complex parameters, and the
solution given by Proposition 2 has been relevant to a lattice infinite in all directions. We now impose
periodic boundary conditions (54) in directions 2 and 3 and interpret the evolution in direction 1 as a
Bäcklund transformation, which creates solitons. For this, we first note that boundary conditions (54) are
equivalent to the algebraic relations for the parameters p and q

N2−1∏
n2=0

σ(Y ′
n2
)

σ(Yn2 )
=

N3−1∏
n3=0

σ(Z ′
n3
)

σ(Zn3)
= 1. (77)

It can be verified that for the parameters Yn2 , . . . , Z
′
n3

in the general position, system of equations (77) has
exactly g = (N2 − 1)(N3 − 1) nonequivalent solutions (equivalence means that if (p, q) is a solution of (77),
then (q, p) is also a solution). We choose this set of solutions as sequence (69), leaving the parameters fk,
k = 1, . . . , g, free.

Using this freedom, we can redefine the “amplitudes” fk as

fk = Fk · σk(Xk), (78)

where, as before, the parameters pk and qk of functions (71) are already fixed by system of equations (77)
while the parameters Xk are still free. We consider the solutions for the tau functions τ2n and τ3n given by
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Proposition 2 with redefined amplitudes (78) at the initial value of the discrete coordinate n1 = 0. Using
the freedom in the parameters Xk, we send

Xk 	→ pk. (79)

In this limit, it is clear that all components of the set {In:k}g−1
k=0 vanish and we have τ2n = τ3n = 1 according

to definition (70). In other words, we obtain a zero-soliton solution for these tau functions at n1 = 0. We
repeat the same procedure at n1 = 1. Namely, we again consider a general solution for these tau functions
given by Proposition 2 and then take limit (79). It is clear that only one element that corresponds to k = 0
does not vanish in the set {In:k}g−1

k=0, and we thus obtain a one-soliton solution. Increasing n1 results in
increasing the number of solitons. It can be seen that the maximum number of solitons that can be created
by this procedure is equal to g = (N2 − 1)(N3 − 1) (see [8] for a detailed description of this phenomenon in
the simplest situation).

Before concluding this section, we give one more explanation of this soliton creation procedure. We
consider Eq. (14) at n1 = 0 for α, β, γ = 1, 2, 3 and for the homogeneous, or zero-soliton, tau functions
τ

(0)
2:n2,n3

= τ
(0)
3:n2,n3

= 1. This is a linear difference equation for the function τ1:n2,n3 with respect to the
“space” coordinates n2 and n3. Using simple algebra, we can verify that in addition to the trivial solution
τ1:n2,n3 = 1, this equation admits a solution of the form

τ1:n2,n3 =
n2−1∏
m2=0

σ0(Y ′
m2

)
σ0(Ym2)

n3−1∏
m3=0

σ0(Z ′
m3

)
σ0(Zm3)

,

where the parameter p0 of the function σ0 is identified with X0. The complete solution of the linear
difference equation is the linear combination

τ
(1)
1:n2,n3

= 1− F0

n2−1∏
m2=0

σ0(Y ′
m2

)
σ0(Ym2)

n3−1∏
m3=0

σ0(Z ′
m3

)
σ0(Zm3)

(80)

with an arbitrary F0. Solving Eq. (14) for α, β, γ = 2, 3, 1 and for α, β, γ = 3, 1, 2 with the already found
τ

(1)
1:n2,n3

, we can now find the values of the tau functions τ2:n2,n3 and τ3:n2,n3 at the discrete time n1 = 1.
They acquire a one-soliton form similar to (80). Using these solutions again in Eq. (14) with α, β, γ = 1, 2, 3,
we then find a two-soliton solution for the function τ1:n2,n3 and then two-soliton solutions for the functions
τ2:n2,n3 and τ3:n2,n3 at the next value of the discrete time n2 = 2. It is clear that this procedure can be
continued, and we can demonstrate the equivalence of the discrete time n1 to the number of solitons. This
simple explanation finally justifies that the discrete dynamics investigated in this paper, which is given by
equations of motion (6)–(8), is a set of consecutive Bäcklund transformations.

8. Discussion

It is well known [1] that the dynamics of the parameters of three-dimensional spin models is equivalent
to dynamics (6)–(8). Therefore, the classical solutions discussed in this paper can be used to describe
spin models of different types. The solutions with periodic boundary conditions can be used to construct
general spin models such that their Boltzmann weights are parameterized by theta functions on higher-genus
curves. The integrability of such spin models is based on the modified tetrahedron equation [9]. Among
these models, there are various generalizations of the chiral Potts model.

On the other hand, the solitonic solutions are also convenient for the completely inhomogeneous
Zamolodchikov–Bazhanov–Baxtermodel and open a way for developing the quantum separation of variables
for that model [10]. In particular, these solutions with parameters fk �= 0 allow constructing the complete
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family of isospectral deformations of the Zamolodchikov–Bazhanov–Baxter transfer matrix (also see [8] for
the realization of a similar program in the case of the relativistic Toda chain model with spin degrees of
freedom).
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