Analysis and modelling of the flood pulse and vegetation productivity response in floodplain wetlands.

by

Susan Jennifer Powell

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of the Australian National University
February 2011
Candidate's Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of the author’s knowledge, it contains no material previously published or written by another person, except where due reference is made in the text.

Susan Jennifer Powell

Date:
Acknowledgements

I would like to thank Dr Rebecca Letcher and Professor Tony Jakeman for their support and encouragement throughout my time at the ANU. This support continued with Dr Carmel Pollino joining my supervisory team, providing a crucial sounding board and mentor. Professor Brendan Mackey was critical in early formulation of my research topic and writing while Dr Damian Barrett, CSIRO, greatly assisted in understanding the remotely sensed data.

I would also like to acknowledge Dr Barry Croke, Dr Sandy Berry, Susan Cuddy and all the staff and students of iCAM and the Fenner School, ANU, for many fruitful discussions and ideas. Dr Berry also provided many useful comments on the remote sensing approach and analysis. Dr Edward King, CSIRO, was invaluable in extracting data from the AVHRR database and assisting in the technical manipulation and analysis of the remote sensing. Dr Emma Knight and Dr Hwan-Jin Yoon, ANU, provided assistance with statistical analysis ideas and methods. Thanks also to Nicola Glendining who helped edit the final draft of this thesis and to the examiners whose comments and advice are appreciated.

The impetus for this research came from many years of fieldwork in river and wetland ecology and management in the Barwon Region of the (then) NSW Department of Land and Water Conservation. I am deeply indebted to Neal Foster, Warwick Mawhinney and Tracey Fulford from the Department for the many enjoyable years of working in and around the Gwydir wetlands, and their continued support of this research through the provision of data, photographs and personal communications. To Bruce and Jen Southern, previous owners of the property ‘Old Dromana’, their deep understanding of the Gwydir wetlands and the changes they have seen since river regulation have also contributed to my interest and understanding of Australian wetlands. More recently the NSW Department of Environment, Climate Change and Water have become involved in research and management of the Gwydir wetlands and I thank Rachel Thomas and Dr Neil Saintilan for some interesting and enlightening discussions. Support and advice often comes from unexpected quarters and I would like to thank Daren Barma, Paul Wettin, Sian Mulholland, Glenn Doney, Dr Lyndsey Vivian, Simon Dwyer, Dr Ben Long, Dr Sue Holzknecht and Dr Jane Roberts for their help and support along the way.

Financial support for this work was obtained through an ANU scholarship with top-up and operational support from the CSIRO Water for a Healthy Country and the Cotton Catchment Communities Cooperative Research Centre. This thesis was a little longer in the making than originally planned and I would like to thank everyone for their continued patience. From working on the development of the wetlands decision support tool, Ibis, to competing for Australia in the sporting arena, I have had some amazing opportunities and have been very fortunate to have this level of support to complete this research along the way.
Abstract

This thesis aims to develop a conceptual understanding of the flooding patterns and vegetation response of large floodplain wetlands, and to apply this knowledge to develop an inundation and vegetation response model for water management. Applicable to a range of floodplain wetland systems, the conceptual node-network approach was developed in relation to the Gwydir wetlands, NSW, Australia. The Gwydir floodplains and wetlands occur in a dryland setting and are reliant on flows from the upstream catchment that has substantial water resource development. The Gwydir wetlands include a range of ecological values and are listed under international agreements for the protection of wetlands and migratory waterbirds.

The challenge of understanding flooding patterns in the Gwydir wetlands are common to other floodplain systems where shallow inundation, rapid vegetation growth and canopy cover may preclude the assessment of open water flooding from conventional remote sensing techniques. To characterise the flooding patterns a multi-temporal decision tree approach was developed. Based on classification of flooding as open water or from the subsequent high vigour vegetation response, the method uses remotely sensed vegetation indices to map a range of flood events. The results are summarised into homogenous patches with respect to flood frequency and connectivity. Over 250 discrete patches were identified in the study area of which 17 patches could be used to describe over 92% of the floodplains. Using the patch analysis and assessment of connectivity between the patches and channels, the floodplain wetlands were conceptualised using a node-network model of the 17 patches.

Patches were categorised according to vegetation associations and the resulting landscape units used to develop models of vegetation productivity response measured as the fraction of photosynthetically active radiation (fPAR). Phenological attributes such as greenup, maturity, senescence and dormancy were extracted from the time series fPAR to characterise landscape units, and the fPAR response to inflow and soil moisture was modelled. Peak fPAR in the Gwydir is associated with macrophyte communities in the most frequently flooded areas, with fPAR exceeding 0.9 in summer months following inundation. Multiple linear regression models show significant relationship with inflows for many of the wetland landscape units.

The node-network and fPAR models are combined to develop the Inundation and Vegetation Response Model (IVRM) that provides a means of distributing river inflow and climate variables across the landscape and linking these to vegetation productivity response. Sensitivity testing is undertaken for uncertain parameters and further research needs identified. The model is applied to predicting inundation and vegetation response outcomes from predevelopment, current development and future climate change (2030) scenarios. Results suggested that in the most frequently flooded patch, inundation could have occurred over 99%
of the time under the predevelopment scenario, compared to less than 63% of the time under a ‘dry’ prediction of future climate change. This change could see a reduction in peak fPAR from 47% of the time in the predevelopment scenario, to less than 8% of time under the ‘dry’ climate change scenario.

This thesis integrates hydrological and ecological understanding, remote sensing analysis, statistical methods, and good modelling practice to develop the IVRM. The assessment framework takes a holistic view of an ecosystem, and explores how a wetting regime influences structure and function. The landscape scale approach uses the lateral, temporal and vertical connectivity, critical to the floodplain wetland functioning, to inform the development of the model. The spatial and temporal scales are specific to the geomorphology, hydrology and ecology of the case study catchment, but the principles and methods can be applied to floodplain wetland systems in general.
Table of Contents

Candidate's Declaration... ii

Acknowledgements ... iii

Abstract .. iv

Table of Contents ... vi

List of Figures ... ix

List of Tables ... xiv

List of acronyms and abbreviations ... xvi

Chapter 1: Introduction .. 1

Chapter 2: Floodplain wetland systems .. 4

 2.1 Overview ... 4

 2.2 Floodplain wetland form and function .. 4

 2.2.1 Floodplain form ... 4

 2.2.2 Rivers and floodplain function .. 6

 2.2.3 Hydrological regime .. 8

 2.3 Floodplain wetland ecology ... 9

 2.3.1 Vegetation .. 11

 2.4 Monitoring and assessment .. 13

 2.4.1 Flow ... 13

 2.4.2 Flooding and inundation patterns ... 13

 2.4.3 Wetland functional classification ... 14

 2.4.4 Vegetation response ... 15

 2.4.5 Knowledge Gaps ... 16

 2.5 Remote sensing of floodplain wetlands .. 17

 2.5.1 Overview .. 17

 2.5.2 Remote sensing of flooding ... 19

 2.5.3 Remote sensing of vegetation response .. 20

 2.5.4 Sensor comparisons .. 21

 2.5.5 Case studies applicable to the remote sensing of wetlands and floodplains . 23

Chapter 3: The Gwydir floodplains and wetlands .. 27

 3.1 Location... 27

 3.2 Floodplain description .. 28

 3.3 Climate .. 32

 3.4 Hydrology ... 33
Chapter 7: Developing an inundation and vegetation response model 156
 7.1 Introduction .. 156
 7.2 Development of an inundation and vegetation response model 158
 7.2.1 Water balance model ... 158
 7.2.2 Vegetation model ... 158
 7.2.3 Verification ... 166
 7.2.4 Sensitivity .. 182
 7.2.5 Summary of model development .. 186
 7.3 Applying the model .. 188
 7.3.1 Scenario comparison ... 188
 7.3.2 Results ... 189
 7.4 Discussion .. 192
 7.5 Conclusions .. 195

Chapter 8: Conclusions ... 197
 8.1 Overview .. 197
 8.2 Summary and outcomes ... 197
 8.3 Future directions for model development ... 200
 8.4 Concluding remarks .. 201

References ... 203

Appendix 1: Landsat scenes ... 217

Appendix 2: Flood assessments 1988-2005 .. 218

Appendix 3: Modelling ecosystem response to flooding: a remote sensing approach ... 250

Appendix 4: Modelling floodplain inundation for environmental flows: Gwydir wetlands, Australia ... 258