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Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic
calculus of Hudson and Parthasarathy, have become standard in current quantum
technological applications. This paper investigates the stability theory of such sys-
tems. Lyapunov-type conditions in the Heisenberg picture are derived in order to
stabilize the evolution of system operators as well as the underlying dynamics of
the quantum states. In particular, using the quantum Markov semigroup associated
with this quantum stochastic differential equation, we derive sufficient conditions for
the existence and stability of a unique and faithful invariant quantum state. Further-
more, this paper proves the quantum invariance principle, which extends the LaSalle
invariance principle to quantum systems in the Heisenberg picture. These results
are formulated in terms of algebraic constraints suitable for engineering quantum
systems that are used in coherent feedback networks. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4884300]

I. INTRODUCTION

The last two decades have witnessed a rapid development of quantum control technologies,
which have proved to be crucial in a large number of quantum systems applications that require
a high level of reliability, such as the generation of on-demand quantum states, or the regulation
of system performance for quantum information processing.1, 5, 23, 42, 44 Stability is central to these
quantum control systems. For example, quantum control tasks may require stabilization of stochastic
filtering process,2, 13, 28, 35 of quantum oscillators in optical systems,12, 37 or of a complex network
constructed via the coherent interconnection of quantum components.11, 15, 29, 43, 45

The traditional approach has been Schrödinger picture Lyapunov techniques, that is, where
one defines a Lyapunov function as a positive function over the set of states. This has led to several
important results on the stability of quantum states in different control settings.4, 28, 32, 39, 41 In general,
the main concern in these control problems is the asymptotic behavior of quantum systems in the
Schrödinger picture.
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In contrast, we wish to develop a Heisenberg picture Lyapunov approach which exploits the fact
that the Heisenberg picture more readily captures the physical dynamics, and that this allows for a
more direct extension of classical stability techniques. We are interested primarily in open quantum
systems and, in particular, the quantum stochastic calculus of Hudson and Parthasarathy14 gives the
appropriate mathematical description. This moreover turns out to be a very convenient setup for
modeling open quantum coherent networks. It has been shown in a number of references10, 44 that
evolution of such networks in the Heisenberg picture can be associated with what is now sometimes
referred to as the (S, L, H) representation. (Here, S is a scattering matrix and L, H are coupling
and Hamiltonian operators of the system, respectively, and appear as coefficients in the quantum
stochastic differential equation for the unitary evolution process.14, 30 As we are interested in the
average dynamics in the vacuum state for the environment, we shall take S = I for simplicity as only
L and H appear in the Lindbladian.) Ideally, conclusions about stability properties of these operators
should be made according to their dynamics in the Heisenberg picture, particularly in the form
of conditioning on the infinitesimal generator of a Lyapunov operator which will be introduced in
Sec. III. It is worth mentioning that the Lyapunov operator is a generalization of the existing results
about quantum stability based on operator inequalities, which are closely related to the dissipativity
of the system.16, 31 To fix ideas, suppose that the evolution of an observable X ∈ A in the Heisenberg
picture is given by : t �→ jt(X) and that this may be described by a Langevin equation

d jt (X ) = jt (G(X ))dt + Noise,

where G is a Lindblad generator and the “Noise” terms are martingale increments for the envi-
ronment state. Mirroring the approach to the classical stochastic stability theory, the dynamics of
the expectation of an operator can then be established from the properties of the corresponding
infinitesimal generator of a Lyapunov operator V and, for instance, an exponential stability criterion
would be that

G(V ) ≤ −cV + d I, c, d > 0, (1)

see, e.g., Refs. 16, 17, and 31. Here, I is the identity operator, and we include a dissipation rate d.
We point out a similarity between (1) and conditions that arise in the Lyapunov stability theory of
classical stochastic differential equations.18

Our aim in this paper is to further develop the Lyapunov stability theory of quantum stochastic
evolutions in the Heisenberg picture. First, we will study an interplay between stability of states
and stability of operators. For example, we will employ the Lyapunov condition (1) to infer the
asymptotic behavior of quantum states from the corresponding properties of the operator V . In
particular, we will present a stability analysis of the invariant state of an open quantum system
based on the Lyapunov method and the quantum semigroup theory. In a sense, this contribution is
in parallel with the results in the classical stochastic stability theory, such as the Foster-Lyapunov
theory,27 concerned with the existence and stability of invariant probability measures of Markov
processes.

In addition to invariant states, we are also interested in invariant sets of states or operators
to which quantum evolutions converge. To characterize the invariance property of the system, we
develop a quantum version of the LaSalle invariance principle in the Heisenberg picture. Using this
result, we are able to determine a limit set of state trajectories, as well as explore the possibility of
stabilizing two non-commuting operators simultaneously. Similar conditions that employ Lyapunov
techniques have been developed for classical stochastic systems.18, 19, 25 The objective of our devel-
opment is to pave the way to the design of coherent feedback networks, as operators of a quantum
system form a non-commutative algebra. An alternative approach of analyzing stability of state
trajectories in the Schrödinger picture is often too difficult in this case.

The main results of this paper are formulated in the way such that the ground states of an
operator V or W are stabilized, given that certain Lyapunov conditions are satisfied. This is directly
relevant to a recent quantum information processing scheme,40 where the task is either stabilizing
the ground states of a Hamiltonian which encode the solution to a quantum computation problem,
or robustly preparing entangled quantum states21, 40 through engineering the dissipative property of
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the systems. The results obtained in this paper thus provide tools to design proper environmental
couplings for these applications.

This paper is organized as follows: In Sec. II, we briefly review some facts about Markov
dynamics of open quantum systems. In Sec. III, the definition of the Lyapunov operator is given.
Then in Sec. IV, we propose a Lyapunov condition to ensure the existence of an invariant state. In
Sec. V, we prove the faithfulness and uniqueness of an invariant state using certain non-degeneracy
conditions imposed on the diffusion coefficients of the quantum stochastic differential equation. In
Sec. VI, we derive the quantum invariance principle and discuss its implications. In Sec. VII, we
investigate the stability within the invariant set and provide a sufficient condition to stabilize the
system to the ground state. Section VIII is devoted to conclusions.

Notations. In this paper, H is a separable Hilbert space, and A denotes the von Neumann algebra
of operators acting on the Hilbert space H. The commutator of two operators A and B is written as
[A, B] = AB − BA, while X† is the adjoint of an operator X. M′ = {A ∈ A : [A, X ] = 0, X ∈ M}
denotes the commutant of a von Neumann algebra M of operators. In particular, we write C I for the
trivial von Neumann algebra consisting of multiples of identity. C is the set of complex numbers. A
positive-semidefinite operator X is indicated as X ≥ 0. We shall only work with normal states, and
typically write ρ for the corresponding density operator so that the expectation of an operator X will
be denoted as 〈X〉ρ = Tr (ρX ), e.g., Ref. 34.

II. QUANTUM MARKOV SYSTEMS

Consider the system defined on a Hilbert space HS , and the environment on a Fock space HB

over L2(R+, dt) corresponding to a single Boson field mode. The composite system can be regarded
as a single closed system whose dynamics are characterized by a unitary evolution U(t) on HS ⊗ HB

obeying a quantum stochastic differential equation14, 16

dU (t) = {d B†L − L†d B − 1

2
L†Ldt − i Hdt}U (t).

Here, H is the Hamiltonian of the system, and L describes the coupling between the system and
environment; B( · ) and B†( · ) are the annihilation and creation process defined on HB . In the
Heisenberg picture, an operator X(t) = jt(X) of the system evolves as jt(X) = U(t)†(X⊗I)U(t). Given
the interaction Hamiltonian of the combined system, the explicit dynamical equation for X(t) can be
written as

d jt (X ) = jt (G(X ))dt + jt (B(X ))dW1(t) + jt (C(X ))dW2(t). (2)

Here, the following notation is used:

G(X ) = −i[X, H ] + L(X ), (3)

B(X ) = 1

2
([X, L] + [L(t)†, X ]),

C(X ) = i

2
(−[X, L] + [L†, X ]),

with

L(X ) = L† X L − 1

2
L†L X − 1

2
X L†L . (4)

We have written the noise increments in quadrature form, that is, in terms of

dW1(t) = d B(t) + d B†(t), dW2(t) = i(d B(t)† − d B(t)),

with all increments understood in the Itō sense.
Alternatively, we can characterize the average evolution of X(t) by the semigroup Tt acting as

Tt (X ) = E0(U (t)†(X ⊗ I )U (t)).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.203.162.49 On: Thu, 16 Apr 2015 05:31:44



062701-4 Pan et al. J. Math. Phys. 55, 062701 (2014)

E0 is a conditional expectation on the given initial algebra A and the initial vacuum state |0〉〈0|
of HB . The infinitesimal generator of this Markov semigroup is then given by G. The dissipation
functional of the semigroup is defined as8, 22

D(X ) = G(X† X ) − G(X†)X − X†G(X ). (5)

For a completely positive semigroup Tt, we have D(X ) ≥ 0, X ∈ A. The dissipation functional
characterizes the irreversible nature of the quantum Markov process, and consequently the system
is dissipative if D �= 0.

The corresponding semigroup in the predual space of the trace class operators (the state space)
is denoted as T∗t(ρ) = ρ t. The support projection Psup of a state ρ is defined as the smallest projection
(in the sense that Psup ≤ P) to which the state assigns probability 1.

Definition 1 (Ref. 7). A state ρI is an invariant state, if it satisfies the condition T∗t(ρI) = ρI ∀t
≥ 0. A state ρ is faithful in A if Tr (ρ A) = 0 implies A = 0 for any positive operator A ∈ A. In other
words, ρ is faithful if the support projection of ρ is the identity operator in the space of bounded
operators on the underlying Hilbert space.

The faithfulness of an invariant state is essential to the analysis of the asymptotic behavior of
a quantum Markov system. For example, if the system possesses a faithful invariant state, then its
ergodic properties and the problem of convergence to equilibrium can be studied for this system.9

Moreover, if this faithful invariant state is unique, then it is the only equilibrium state of the system.6

III. QUANTUM LYAPUNOV OPERATORS AND STABILITY IN THE HEISENBERG PICTURE

In classical theory, stability refers to the property that the trajectories of the dynamical systems
will remain near an equilibrium point xe if the initial states x0 are near xe. A stronger notion is
asymptotic stability which additionally requires that the trajectories that start near the equilibrium
state xe will converge to xe. In practice, it is often too complicated for nonlinear systems to solve the
dynamical equations directly, and the main tool for proving stability of these systems is Lyapunov
theory18, 19, 38 without finding the trajectories. Generally speaking, if a given system possesses a
Lyapunov function V (x), with certain conditions on V (x) and its convective derivative V̇ (x), then
the trajectories of the system state xt will be stable in some sense. For example, any continuous
scalar function V : Rn → R having the property

V (0) = 0, V (x) > 0, V̇ (x) < 0, x ∈ Rn\{0}
can be chosen as a Lyapunov function for the purpose of establishing asymptotic stability of the zero
equilibrium state of the system. Alternatively, the Lyapunov function can be defined as a continuous
function V (x) satisfying18, 24

a(|x |) ≤ V (x) ≤ b(|x |), V̇ (x) ≤ 0,

where a( · ), b( · ) are strictly increasing functions with a(0) = b(0) = 0 and a(∞) = b(∞) = ∞. In
both cases, if such a V exists, then any trajectory xt will converge to 0.

As noted in the Introduction, stability of quantum systems may be considered within either the
Schrödinger or Heisenberg pictures. In this paper, our intention is to develop the Heisenberg picture
approach and tools for studying stability of state trajectories ρ t within the underlying Schrödinger
picture. To this end, we define the Lyapunov operator in the Heisenberg picture.

Definition 2. A quantum Lyapunov operator V is an observable (self-adjoint operator) on a
Hilbert space H for which the following properties hold:

1. V ∈ D(G),
2. V ≥ 0,
3. G(V ) ≤ 0.
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D(G) is the domain of the generator. Note that 〈V 〉ρ ≥ 0 for all states ρ. In Secs. IV and V, we
will show that the existence and stability of the invariant state of the system can be proved using a
Lyapunov operator.

One advantage of the Heisenberg approach is that the stability of operators in the Heisenberg pic-
ture may be studied, and not just stability of states. This is of practical importance, especially within
the framework of quantum coherent networks. Although the stability of operators has been studied
using operator semigroup theory, to the best of our knowledge the first approach to stabilization of
quantum systems via Lyapunov methods is in Ref. 16.

We now introduce our concept of stability of operators in the Heisenberg picture.

Definition 3. Given a set of positive operators S, the system is S-stable if 〈jt(A)〉ρ is bounded
for each A ∈ S and any initial state ρ.

In our development of Lyapunov quantum stability, we will make use of the notion of quantum
coercivity defined in terms of the spectral decomposition of a Lyapunov operator V .

Definition 4. Consider a positive operator V with the spectral decomposition V = ∑
i vi Pi ,

vi being the eigenvalues of V . V is coercive if there exists a strictly increasing function k( · ) with
limi → ∞k(i) = ∞ such that vi ≥ k(i), i > i0, for some i0.

Note that the definition of quantum coercivity is analogous to its classical counterpart27, 33

V (x) ≥ c(|x |)
with c(|x|) being a strictly increasing function that goes to infinity as |x| → ∞.

From Definition 4, it follows that if the system possesses a coercive Lyapunov operator
V = ∑

i vi Pi , then the set of operators S = {A ≥ 0 : Tr (APi ) ≤ εk(i), ε > 0} are bounded in ex-
pectation, hence the system is S-stable. Also, in Sec. VI we will prove that when given a Lyapunov
operator V , the set S of operators defined by S = {W ≥ 0 : G(V ) ≤ −W } are bounded in expecta-
tion. Indeed, the expectation 〈W (t)〉ρ will converge to zero according to quantum LaSalle invariance
principle. Hence, a conclusion about stability of the system can be made.

As in the classical case, one may have a number of variations on the definition of a Lyapunov
function, depending on the context of stability property which one is interested in. The definition
of Lyapunov operator can be relaxed for quantum stability analysis in different contexts. Therefore,
we still call V a Lyapunov operator when the property G(V ) ≤ 0 is replaced by a weaker condition
(1), as in the following example.

Example 1. Consider a quantum oscillator with the Hamiltonian given by H = ωa†a, and the
coupling operator L = αa + βa†, a and a† are annihilation and creation operators, respectively, and
they satisfy the commutation relation [a, a†] = 1. Choose the candidate Lyapunov operator as the
photon number operator V = a†a which represents the energy of the system. By calculation we find
G(V ) = −(|α|2 − |β|2)V + |β|2 I . If |α|2 > |β|2, G(V ) satisfies the condition (1) and V becomes
a Lyapunov operator in this problem. Furthermore, the system is S-stable with S being the von
Neumann algebra generated by V since 〈V (t)〉 is bounded.16 If |α|2 < |β|2, 〈V (t)〉 is unbounded
and the system is unstable in energy.

In the sequel, a Lyapunov operator V for which condition (1) holds is referred to as a quantum
Lyapunov operator in the weak sense.

IV. QUANTUM TIGHTNESS AND THE EXISTENCE OF INVARIANT STATES

As a first step to study the stability of quantum states, we derive certain conditions to guarantee
the existence of invariant state. First, we present the definition of quantum tightness.26

Definition 5. A sequence (ρn)n≥1 in the Banach space of trace-class operators on a Hilbert
space H is tight if for every ε > 0, there exists a finite rank projection P and n0 > 0 such that
Tr (ρn P) > 1 − ε for all n ≥ n0.
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Obviously, trajectories of states corresponding to finite-dimensional systems are tight. We will
refer to the following lemma.26

Lemma 1. A tight sequence (ρn)n≥1 of quantum states admits a subsequence converging to a
quantum state.

Theorem 1 (Ref. 7). If the system possesses a tight family of quantum states, (ρ t, t > 0), then
the system possesses at least one invariant state.

Proof. As ρ t is tight, any sequence of states ρtn = 1
tn

∫ tn
0 ρt ′dt ′ is also tight and therefore has

normalized sequential limit points. These states are invariant because any sequential limit point of
1
tn

∫ tn
0 ρt ′dt ′ is invariant, according to Proposition 2.3 in Ref. 7. �
Based on these properties, we can develop the condition on the tightness of general quantum sys-

tems. Recall the inequality (1) involving the (Lindblad) generatorG of a quantum Markov process de-
fined by Eq. (3). Suppose V is a Lyapunov operator in the weak sense, i.e.,G(V ) ≤ −cV + d I, c > 0.
By integrating (1) we obtain the following inequality:16

〈V (t)〉 ≤ e−ct 〈V (0)〉 + d

c
,

which means 〈V (t)〉 ≤ λ for any t ≥ 0 and some positive λ. Next, we will show that the condition (1)
not only gives us the mean stability of V but also implies tightness of the corresponding collection
of quantum states {ρ t, t ≥ 0}.

First, let us consider the following example.

Example 2. The photon number operator for a quantum oscillator can be written as V =∑∞
0 i |i〉〈i | where |i〉 is the photon number state. If 〈V (t)〉 ≤ c, c ≥ 0, then we have

∑∞
i=0 iρi i

t ≤ c
for an arbitrary sequence of states ρ t; here, ρi i

t = Tr (ρt |i〉〈i |). For an arbitrary ε > 0, choose m such
that m = [

c
ε

]
, where [x] is the nearest integer to x that is greater than x. Through m

∑∞
i=m ρi i

t ≤∑∞
i=m iρi i

t ≤ c, we conclude
∑∞

m ρi i
t ≤ ε for any t. The finite rank projection P = ∑m

i=0 |i〉〈i |
then satisfies the condition Tr (ρt P) > 1 − ε, which indicates that the sequence ρ t is tight. Hence,
the corresponding state trajectory of the quantum oscillator gives rise to an invariant state for the
oscillator.

The example shows that under certain conditions, the stability of an operator in the mean sense
may imply tightness of a corresponding state trajectory. The inequality

m
∞∑
m

ρi i
t ≤

∞∑
m

iρi i
t ≤ c

is essential in this example. In fact, the spectral property of the above operator is the key element
connecting tightness and stability. We generalize this idea in the following theorem.

Theorem 2. Suppose the evolution of a positive observable V on a separable Hilbert space H,
with spectral decomposition as V = ∑∞

i=0 vi Pi , is stable in the mean, that is, there exists a constant
c ≥ 0 such that 〈V (t)〉ρ ≤ c with ρ as the initial state. If V is coercive, then any sequence ρ t is tight
which implies the existence of an invariant state.

Proof. The proof is similar to the proof used in example 2 to show tightness. The condition that
〈V (t)〉ρ ≤ c means

∑∞
i=0 viρ

i i
t ≤ c for t ≥ 0. Here, ρi i = Tr (ρ Pi ) denotes the projection Pi on the

state ρ. Since V is coercive, there exists some N0 such that vi is increasing for i ≥ N0 and vi → ∞ as
i → ∞. Choose m = max{N0, inf{i : vi ≥ c

ε
}}. Then vm

∑∞
m ρi i

t ≤ ∑∞
m viρ

i i
t ≤ c, so we find that∑∞

i=m ρi i
t ≤ ε. Letting P = ∑m−1

i=0 Pi , we obtain Tr (ρt P) > 1 − ε; i.e., ρ t is tight. The result of the
theorem then follows from Theorem 1. �
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It follows from Theorem 2 that the existence of a coercive Lyapunov operator in the weak
sense (1) guarantees the existence of an invariant state. This prompts the question as to under what
condition such an invariant state is unique and/or faithful. This question is addressed in Sec. V.

V. STABILITY OF INVARIANT STATES

In this section, we obtain some conditions to guarantee the faithfulness and uniqueness of an
invariant state.

For a particular invariant state ρI, its support projection is denoted as PI. We shall need the
following proposition.

Proposition 1 (see, e.g., Ref. 7). The support projection of an invariant state is subharmonic.
That is, Tt(PI) ≥ PI.

The above property of the support projection can be expressed in terms of the generator G of
the semigroup Tt as G(PI ) ≥ 0.

A. Stability of invariant states of finite-dimensional systems

For a finite-dimensional system with the underlying Hilbert space H = Cn , the following
theorem determines faithfulness and uniqueness of an invariant state.

Definition 6. A state ρ is said to be globally attractive if all system trajectories asymptotically
converge to ρ for any initial state.

Theorem 3. Suppose H = Cn . If PL†(I − P)LP �= 0 for any non-trivial projection P, then the
invariant state ρI is faithful and unique.

Proof. A finite dimensional system is tight by Definition 5 and therefore, according to Theorem 1,
it admits an invariant state ρI. Let PI be the support projection of ρI.

If we take any orthogonal projection P, then we have

G(P) = G(P2) = PG(P) + G(P)P + D(P),

where D is the dissipation functional defined in (5), and so

PG(P)P = −PD(P)P.

However, we note that D(X ) = [X, L]†[X, L] ≥ 0, and in particular,

PD(P)P = P L†(I − P)L P.

Now take the invariant state ρI with support projection PI, then from Proposition 1 we will have
G(PI ) ≥ 0, and therefore PIG(PI )PI ≥ 0. But we then must have PI D(PI )PI = 0, as D ≥ 0. We
thereby deduce that for the invariant state support

PI D(PI )PI = PI L†(I − PI )L PI = 0. (6)

This is automatically satisfied if ρI is faithful, since here I − PI ≡ 0.
Suppose the hypothesis of the theorem is true, namely, that PL†(I − P)LP �= 0 for any non-

trivial orthogonal projection P. If we also now suppose that ρI is not faithful, then PI is non-trivial,
then setting P = PI in (6) leads to a contradiction. Therefore, under the hypothesis, we see that any
invariant state must be faithful.

Suppose the invariant state is not unique, then there exist non-trivial orthogonal invariant
subspaces by Refs. 3 and 36. This leads to a contradiction since there will exist non-faithful invariant
states in the subspace. �

Remark 1. Condition PL†(I − P)LP �= 0 means that any non-trivial projection P is connected
with its orthogonal complement by L. This property can be easily verified when the system has
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reduced dynamics. For example, if the quantum states maintain a diagonal form ρ(t) = ∑
iρ

ii(t)Pi,
Pi = |i〉〈i| during evolution, we only need to verify PiL†(I − Pi)LPi �= 0 for all Pi. To generalize, if
there exists a family of projections {Pi} such that

∑
iPi = I and PiL†(I − Pi)LPi �= 0, the marginal

distribution of the invariant state will have non-vanishing probability on each projector Pi.

It is worth mentioning that for finite dimensional system, uniqueness of invariant state directly
leads to global convergence.36

Example 3. Consider the quantum two-level system with a basis denoted as {|0〉, |1〉}. H = ωσ z

= ω(|0〉〈0| − |1〉〈1|) and L = σ x = |0〉〈1| + |1〉〈0|. The quantum state evolves according to the
master equation

dρ(t)

dt
= −i[H, ρ(t)] + Lρ(t)L† − 1

2
L†Lρ(t) − 1

2
ρ(t)L†L .

Obviously, the density matrix of the state will remain diagonal if the initial state is α|0〉〈0|
+ β|1〉〈1| with arbitrary α and β satisfying |α|2 + |β|2 = 1. As a result, the system will pos-
sess a diagonal invariant state. We only need to consider the projections {|1〉〈1|, |0〉〈0|} in order to
conclude faithfulness of this invariant state. In fact, we have |1〉〈1|σ x|0〉〈0|σ x|1〉〈1| = |1〉〈1| �= 0
and |0〉〈0|σ x|1〉〈1|σ x|0〉〈0| = |0〉〈0| �= 0, so the two-level system has a unique faithful invariant state
which is globally attractive.

B. Stability of invariant states of infinite-dimensional systems

Now we can prove the main result in this section for the quantum system defined on a separable
Hilbert space H.

Theorem 4. Suppose there exists a coercive Lyapunov operator in the weak sense (1). If
PL†(I − P)LP �= 0 for any non-trivial projection P, then any invariant state ρI is faithful and unique.
Furthermore, this faithful state ρI is globally attractive.

Proof. The proof follows along the same lines as the proof of Theorem 3. However, the existence
of invariant state comes from condition (1) and coercivity, and is a direct result of Theorem 2. The
Lyapunov operator inequality (1) and the algebraic condition PL†(I − P)LP �= 0 are then combined
to guarantee the uniqueness and faithfulness of this invariant state which is also the equilibrium
point of the system. In addition, the unique invariant state is also globally attractive due to its
faithfulness.6 �

We also note a certain analogy between Theorem 4 and the corresponding results from the
classical theory of stochastic Markov processes; e.g., see Ref. 27. In particular, our condition (1) is
analogous to the positive recurrence condition (CD2) in Ref. 27.

Example 4. Consider again a quantum oscillator with the Hamiltonian H = ωa†a, and the
coupling operator L = αa + βa†.

Consider the observable V = a†a which has a strictly increasing and unbounded spectrum.
G(V ) = −(|α|2 − |β|2)V + |β|2 I . In order to satisfy the Lyapunov condition in Theorem 4, we
need to set |α| > |β|. In this case, 〈V (t)〉 is bounded with respect to any initial state. Hence,
according to Theorem 2, this system admits an invariant state. Now we want to study the set of
projections {Pi = |i〉〈i|}. Note that since |i〉 is the photon number state, then

∑
iPi = I. We have

|i〉〈i|L†|i + 1〉〈i + 1|L|i〉〈i| = (i + 1)|β|2|i〉〈i| �= 0 and |i〉〈i|L†|i − 1〉〈i − 1|L|i〉〈i| = i|α|2|i〉〈i| �=
0. Therefore, any photon number state is connected to its two neighboring states, so by induction any
non-trivial projection P = ∑

jPj �= I is not a support projection of an invariant state ρI. Consequently,
the photon-number distribution of the invariant state has non-vanishing probability on the entire Fock
basis. However, this does not imply that the invariant state is faithful because there may exist other
set of projections that does not satisfy the algebraic condition of Theorem 4.
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VI. QUANTUM LASALLE INVARIANCE PRINCIPLE

In Sec. V, we studied the stability property of convergence to faithful invariant states. Other
classes of stabilization problems of interest are concerned with stability of non-commuting operators,
or require convergence to an invariant set for any state trajectories. Similar to the classical LaSalle’s
invariance principle20, 25 that is used to identify the asymptotic stability of system trajectories, the
invariance theorems which we will derive here pave the way for analyzing the underlying dynamics
of general quantum states which may not be faithful in the Heisenberg picture.

The classical LaSalle theorem states the following fact:20 If a positive and uniformly continuous
function V (x) can be found on a compact space such that V̇ (x) ≤ 0, then the limit points of any
trajectory xt are contained in the largest invariant subset of {x : V̇ (x) = 0}.

First, we will derive the direct analogue of the classical LaSalle invariance theorem in the
Heisenberg picture.

Definition 7. A quantum state ρ is said to be the zero solution of an operator X if ρ solves
〈X〉ρ = 0.

Theorem 5. If there exists a coercive Lyapunov operator V and a positive operator W with
G(W ) bounded in the operator norm such that

G(V ) ≤ −W, (7)

then limt→∞〈V (t)〉ρ0 = limt→∞〈V 〉ρt exists for any initial state ρ0 and∫ ∞
0 〈W (t ′)〉ρ0 dt ′ = ∫ ∞

0 〈W 〉ρt ′ dt ′ < +∞,

limt→∞〈W (t)〉ρ0 = limt→∞〈W 〉ρt = 0. (8)

Proof. Referring to Theorem 2, tightness of ρ t ensures the existence of a limit point (or an
accumulation point) of the system evolutions. The function 〈V (t)〉ρ0 is decreasing with t since
G(V ) ≤ 0. Therefore, limt→∞〈V (t)〉ρ0 = limt→∞〈V 〉ρt exists because any decreasing sequence with
a lower bound will converge to a limit. Moreover, 〈V (t)〉ρ0 evolves according to

〈V (t)〉ρ0 − 〈V 〉ρ0 =
∫ t

0
〈G(V (t ′))〉ρ0 dt ′ ≤

∫ t

0
〈−W (t ′)〉ρ0 dt ′. (9)

It follows from (9) that
∫ t

0 〈W (t ′)〉ρ0 dt ′ ≤ 〈V 〉ρ0 , which implies∫ ∞

0
〈W (t ′)〉ρ0 dt ′ =

∫ ∞

0
〈W 〉ρt ′ dt ′ < +∞.

ρ t is tight, so the positive sequence 〈W 〉ρt must have convergent subsequence. Suppose there exists
a subsequence ρtk such that limk→∞〈W 〉ρtk

= ε > 0. Now we show that this leads to a contradiction.
Since G(W ) is bounded in operator norm by R, we have

|〈W (t1)〉ρ0 − 〈W (t2)〉ρ0 | = |
∫ t1

t2

Tr (G(W )ρt ′) dt ′| ≤
∫ t1

t2

‖G(W )‖|ρt ′ |dt ′ ≤ R|t1 − t2|,

which means 〈W 〉ρt is uniformly continuous in t. Here, |ρt ′ | = 1 denotes the trace-norm of the
density state ρt ′ . According to the uniform continuity, we are able to find a δ > 0 such that the
following inequality:

〈W 〉ρt ′ >
ε

2

holds if |t ′ − tk | < δ
2 for any tk. This further implies∫ ∞

0
〈W 〉ρt dt ≥

∞∑
k

δ
ε

2
= +∞,

which is a contradiction.
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The above contradiction implies that every converging subsequence of 〈W 〉ρt converges to 0.
Then we conclude that limt→∞〈W 〉ρt = 0. �

Remark 2. For a Lyapunov operator V with G(V ) ≤ 0, we can always let W = −G(V ) and thus
the trajectories will converge to {ρ : 〈G(V )〉ρ = 0} if G(G(V )) is bounded, according to Theorem
5. The states from the invariant set {ρ : 〈G(V )〉ρ = 0} are zero solutions of W . This conclusion is
similar to the statement of the classical LaSalle theorem.

Corollary 1. If inequality (7) in Theorem 5 is replaced by

G(V ) ≤ U − W,

where U is a positive operator satisfying

∫ ∞

0
〈U (t)〉ρ0 dt < ∞

for any initial state ρ0, the conclusions of Theorem 5 still hold.

Proof. The proof is similar to the proof of Theorem 5. �
The question is how we can characterize the pairs of operators V and W for which (7) holds.

Note that 〈G(V )〉ρ ≥ 0 for any ground state ρ of V and consequently 〈W 〉ρ = 0. More specifically,
W must have the ground states of V as its zero solutions. This observation will limit the set of
W we can choose from. For example, if V = a†a is the energy operator of a quantum oscillator,
we will not be able to establish G(V ) ≤ −W for the position operator W = (a + a†)2 because the
ground state |0〉〈0| of V has nonzero variance in position. In other words, it is impossible to generate
states with zero variance in position by stabilizing the energy of the system. This example reveals
the fundamental difficulty in stabilizing non-commuting operators, which is also the implication of
the Heisenberg uncertainty principle. Nevertheless, through the stability of V we can still infer the
information about the non-commuting operators that are restricted in a subspace. In addition, W can
also be used to characterize other invariant limit sets of ρ t besides the set of the ground states of V .
We illustrate these ideas in the following example:

Example 5. Consider a single-qubit system with energy operator V = 1
2 (1 + σz). The aim is to

make the expectation of the coherence operator W = 1
2 (1 + σx ) zero and in the same time stabilize

the energy of the system. However, the non-commuting observables V and W cannot be stabilized
simultaneously via G(V ) ≤ −W since the ground state |1〉〈1| of V is not the zero solution of W .
An alternative solution to this problem is to consider the augmented system with an ancillary qubit
and define W = |0〉〈0| ⊗ 1

2 (1 + σx2 ). The energy of the two-qubit system is characterized by the
operator V as V = σz1 + σz2 . σzi is the Pauli operator σ z acting on the ith qubit. The basis of the
bipartite system is chosen as the four eigenstates {|00〉, |01〉, |10〉, |11〉}, leading to the following
expression of V and W :

V =

⎛
⎜⎜⎜⎜⎜⎝

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −2

⎞
⎟⎟⎟⎟⎟⎠ , W =

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Although V is not positive, Theorem 5 still applies to this example by shifting V with a constant. We
can engineer G(V ) (see the Appendix) through engineering the couplings between the eigenstates.
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By introducing the couplings l|01〉〈00| and l|11〉〈01| with |l|2 = 1
2 , G(V ) will become

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Set the Hamiltonian control H as − 1
2 i |00〉〈01| + 1

2 i |01〉〈00| = |0〉〈0| ⊗ σy2 , the new G(V ) is

⎛
⎜⎜⎜⎜⎜⎝

−1 −1 0 0

−1 −1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

which satisfies the required inequality G(V ) ≤ −W . The system will converge to the zero solutions
of W = |0〉〈0| ⊗ 1

2 (1 + σx2 ) while the energy operator is stabilized (the energy of the two-qubit
system is decreasing).

Given the density matrix of ρ as

⎛
⎜⎜⎜⎜⎜⎝

ρ00 ρ01 ρ02 ρ03

ρ10 ρ11 ρ12 ρ13

ρ20 ρ21 ρ22 ρ23

ρ30 ρ31 ρ32 ρ33

⎞
⎟⎟⎟⎟⎟⎠ ,

the limit states will satisfy 〈|0〉〈0| ⊗ 1
2 (1 + σx2 )〉ρ = 0 and hence ρ00 + ρ01 + ρ10 + ρ11 = 0.

In this example, we are able to infer the information about the coherence ρ01 + ρ10 between
|00〉 and |01〉 within the two-level subspace through the generator of the energy operator V . Note
that V and W do not commute. One particular state satisfying ρ00 + ρ01 + ρ10 + ρ11 = 0 is
1
2 (|00〉〈00| − |00〉〈01| − |01〉〈00| + |01〉〈01|), which is an invariant state of the system. Note that
the space spanned by {|10〉, |11〉} also satisfies ρ00 + ρ01 + ρ10 + ρ11 = 0. We can further narrow
down the set of limit points by making G22 negative via the methods introduced in the Appendix
such that the invariant set will only contain states that are either in the space spanned by {|00〉, |01〉}
with stabilized coherence, or in the ground state |11〉〈11|.

Moreover, if we make a projection |0〉〈0| on the 1st qubit via a quantum measurement, the
reduced quantum state of the 2nd qubit will satisfy 〈 1

2 (1 + σx2 )〉ρ2 = 0. Interestingly, by stabilizing
the energy operator σz1 + σz2 of the augmented system and then making a projective measurement
|0〉〈0|, we are able to stabilize the coherence operator 1

2 (1 + σx ) of the qubit in the end.
The interpretation of these results is as follows: Extra space is needed to store the excess

noises introduced by the Heisenberg uncertainty principle. This idea is similar to the design of
non-degenerate parametric amplifier, where additional channel of noise input is introduced in order
to amplify the amplitude and phase quadratures simultaneously. �

For a positive operator W with unbounded G(W ), we have the following theorem.

Theorem 6. If there exists a Lyapunov operator V and a positive operator W such that

G(V ) ≤ −W, G(W ) ≤ 0,

then limt→∞〈V (t)〉ρ0 = limt→∞〈V 〉ρt exists for any state trajectory ρ t and (8) holds.
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Proof. Following the same reasoning as in the proof of Theorem 5, we can conclude∫ ∞
0 〈W 〉ρt dt < +∞. The conditions G(W ) ≤ 0 and 〈W 〉ρt is bounded from below guarantee that

〈W 〉ρt is convergent. The limit of 〈W 〉ρt can only be 0 because
∫ ∞

0 〈W 〉ρt dt is finite. �
Remark 3. Suppose G(V ) ≤ −cV , c > 0, and V is a Lyapunov operator. Let W = cV and

we have G(W ) = cG(V ) ≤ −c2V ≤ 0. The system will converge to the zero solutions of V , or
equivalently speaking, to the set of ground states ZV = {ρ : 〈V 〉ρ = 0}.

Theorem 6 can be extended to treat a general Hermitian operator W .

Theorem 7. If there exists a Lyapunov operator V satisfying 〈V (t)〉 ≤ c for t > 0 and

G(V ) = W,

where the generator of W satisfies G(W ) ≤ 0, then

lim
t→∞〈W (t)〉ρ0 = lim

t→∞〈W 〉ρt = 0.

Proof. 〈V (t)〉 is bounded for all t > 0. From (9) we know that −∞ <
∫ ∞

0 〈W 〉ρt dt < +∞. If
G(W ) ≤ 0 by assumption, then the monotonic sequence 〈W 〉ρt is bounded from below and hence
will converge to a limit. The limit is exactly 0 since the integral

∫ ∞
0 〈W 〉ρt dt is bounded. �

VII. STABILITY WITHIN THE INVARIANT SET

We have used multiple Lyapunov conditions in Theorem 6 and Theorem 7. Similarly, we can
use additional Lyapunov conditions to further engineer the dynamics of the trajectories within the
invariant set. For example, we can make use of the Lyapunov operator W = V 2 to drive the system
states to the zero solutions of V , where in general the system will converge only to the zero solutions
of G(V ) by LaSalle invariance principle.

As we have known from classical stochastic stability and quantum semigroup theory, the
asymptotic dynamics of the trajectories are determined by the diffusion terms18 or the dissipation
functional D(·).7–9 As shown in the proof of Theorem 3, we can make explicit connection between
the dissipation functional and the diffusion terms jt (B(X )), jt (C(X )) by calculating G(V 2).

Theorem 8. Suppose G(V ) ≤ 0 for the Lyapunov operator V of a finite-dimensional sys-
tem. The state trajectory ρ t will converge to the set of zero solutions ZV = {ρ : 〈V 〉ρ = 0} if
〈[L†, V ][V, L]〉ρ > 0 for ρ /∈ ZV and [G(V ), V ] = 0.

Proof. Since G(V ) ≤ 0, limt→∞〈V 〉ρt exists and ZV is an invariant set. We only need to prove
that ρ t will exit the domain {ρ : 〈V 〉ρ ≥ ε} for arbitrary ε > 0. Consider the positive operator
W (V ) = V 2. Similar to the derivations in Theorem 3, the generator for W (V ) can be calculated
using the quantum Itō formula

G(W ) = VG(V ) + G(V )V + D(V )

with

D(V ) = B(V )2 + C(V )2 + iB(V )C(V ) − iC(V )B(V ) = [L†, V ][V, L].

For finite-dimensional system, any state trajectory is tight. Suppose the trajectory ρ t is restricted to
a domain {ρ : 〈V 〉ρ ≥ ε} for some ε > 0. Then by Theorem 1 there exists an invariant state ρI which
is the limit point of the tight sequence 1

t

∫ t
0 ρt ′dt ′. Note that 1

t

∫ t
0 ρt ′dt ′ is the mean of the sequence

ρ t, so ρI is in the same domain {ρ : 〈V 〉ρ ≥ ε} as ρ t which means ρI /∈ ZV .
Let the initial state be exactly the invariant state ρI. First, we prove 〈VG(V ) + G(V )V 〉ρI = 0.

Since V is positive and [G(V ), V ] = 0, VG(V ) and G(V )V are negative hermitian operators which
make 〈VG(V ) + G(V )V 〉ρI ≤ 0. Furthermore, we have 〈VG(V ) + G(V )V 〉ρI = 〈(V + β)G(V ) +
G(V )(V + β)〉ρI due to the fact that 〈G(V )〉ρI = 0. V is bounded, so we can choose β < 0 such that
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V + β is negative. Given this β, we can conclude 〈(V + β)G(V ) + G(V )(V + β)〉ρI ≥ 0 which gives
us 〈VG(V ) + G(V )V 〉ρI ≥ 0. So 〈VG(V ) + G(V )V 〉ρI = 0. Next, we have the following relation by
integrating G(W ):

〈W (V )〉ρI − 〈W (V )〉ρI =
∫ t

0
〈VG(V ) + G(V )V + D(V )〉ρI dt ′

=
∫ t

0
〈D(V )〉ρI dt ′. (10)

The LHS of the equality is zero, however the RHS of the equality is strictly positive, since 〈D(V )〉ρI =
〈[L†, V ][V, L]〉ρI > 0 by assumption. So we arrive at a contradiction. The contradiction shows that
a trajectory ρ t cannot be confined to the domain {ρ : 〈V 〉ρ ≥ ε}. Hence, ρ t will approach ZV

asymptotically. �
Corollary 2. Assume in a finite-dimensional system the Lyapunov operator V has the decompo-

sition V = M† M . If M solves M = [V, L] and then G(V ) ≤ 0, [G(V ), V ] = 0, the state trajectory
ρ t will converge to the zero solutions of V .

Example 6. Consider a qubit with V = 1
2 (1 + σz), or in matrix expression

V =
(

1 0

0 0

)
.

The decomposition is found to be V = σ+σ− with

σ+ =
(

0 1

0 0

)
, σ− =

(
0 0

1 0

)
,

σ
†
+ = σ− = M . The solution to M = [V, L] is

L =
(

a 0

1 b

)

with a and b being arbitrary constants. With this L, the dissipation part L(V ) equals( −1 − b
2

− b
2 0

)
.

Let H = 0 and b = 0, then G(V ) = L(V ) ≤ 0. The system will converge to the ground state |1〉〈1|.

VIII. CONCLUSION

Many theorems concerning asymptotic properties of quantum Markov semigroups have the
existence of a faithful invariant state as an essential assumption. We have derived sufficient conditions
to verify this assumption. If these sufficient conditions hold, the unique and faithful state is an
equilibrium point which is also globally attractive. Our approach makes use of the Lyapunov method
complemented by additional algebraic conditions. Our result exhibits some analogy with the classical
Foster-Lyapunov theory concerning the existence of invariant measures of Markov processes. Beyond
invariant states, we have introduced the quantum invariance principle to characterize the set of limit
states of the system dynamics. More specifically, the system will asymptotically converge to the
ground state of an operator W if we are able to engineer the generator of a Lyapunov operator V .
These invariance theorems are established via a Lyapunov inequality between these two operators,
which has potential to provide useful tools for stability analysis of the non-commutative algebra
associated with general quantum coherent control systems. Moreover, the system can be driven
further to the ground state of V within the invariant set if additional conditions on the Lyapunov
operator can be engineered. These results may also find essential applications in quantum information
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processing, since the outcomes of quantum computations can be encoded in the ground state of a
particular operator.40
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APPENDIX: CONSTRUCTIVE METHODS FOR ENGINEERING A NEGATIVE GENERATOR

In this appendix, we introduce a constructive method to engineer a negative generator for the
Lyapunov operator V .

First, we will focus on engineering the dissipation part L(V ) = 1
2 (2L†V L − L†LV − V L†L)

of the generator G(V ) by assuming [V, H ] = 0. In a separable space, we can decompose L and V as

L =
(

L00 L01

L10 L11

)
, V =

(
V00 V01

V10 V11

)
.

V is a positive hermitian operator, so we can always make V01 = V10 = 0 through spectral decom-
position. The generator G(V ) is calculated to be

G =
(

G00 G01

G10 G11

)

with

G00 = (L†
00V00 L00 + L†

10V11 L10) − 1

2
{L†

00L00 + L†
10L10, V00},

G01 = (L†
00V00 L01 + L†

10V11 L11) − 1

2
(L†

00L01 + L†
10L11)V11 − 1

2
V00(L†

00L01 + L†
10L11),

G10 = G†
01,

G11 = (L†
01V00 L01 + L†

11V11 L11) − 1

2
{V11, L†

01 L01 + L†
11L11}.

Here, we only present the calculations for two-level system. For higher dimensional systems, the
blocks of G, L, and H will be matrices or operators. However, we can still do analysis for arbitrary
dimensional systems by carefully engineering the two-dimensional subsystems and compensating the
interactions between different subsystems. This approach is possible because of the linearity of the
generatorG. For example, G00 can be divided into the internal dynamics 2L†

00V00 L00 − {L†
00L00, V00}

and the interaction with other dimensions 2L†
10V11 L10 − {L†

10L10, V00}.

1. V00 = V11

We can set L00 = 0 and L11 = 0 to make G01 = G10 = 0. However, due to the degeneracy of V ,
we also have G00 = G11 = 0. Therefore, G = 0 and the entire two-dimensional space is irreducible.
The off-diagonal elements of L will not affect G.
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2. V00 �= V11

Without loss of generality we assume V11 − V00 = v > 0. Again assuming L00 = 0 and L11 = 0,
the generator becomes

G =
(

vL†
10L10 0

0 −vL†
01 L01

)
.

Now we can set L10 = 0, L01 = l �= 0 so that G00 = 0, G11 < 0. The coupling operator L for
engineering negative G(V ) with non-degenerate spectrum could be

L =
(

0 l

0 0

)
.

3. [V, H] �= 0

[V, H ] �= 0 happens when V is not representing the energy of the system or additional Hamil-
tonian control Hc is needed for stabilization. Since V01 = V10 = 0, the commutator C = −i[V, H ]
can be calculated as

C = −i

(
[V00, H00] V00 H01 − H01V11

V11 H10 − H10V00 [V11, H11]

)
.

C00 is the internal unitary dynamics within the subspace X00. For two-dimensional system, Vi j and
Hij are complex numbers, which gives C00 = C11 = 0. If V00 = V11, then C01 = C10 = 0 and the
unitary dynamics induced by H will not affect G. If V00 �= V11, we set V11 − V00 = v > 0 and L10 =
0. In this case, the generator will still satisfy the relations G00 = 0 and G11 < 0 after adding C to G.
However, G01 cannot be made vanish if the diagonal entries of L are all zero. In fact, we have

G01 = L†
00L01(V00 − V11) − i H01(V00 − V11),

so L†
00L01 = i H01 must be satisfied. If we choose L01 = l �= 0, the coupling operator L should be in

the following form:

L =
(

− i H∗
01

l∗ l

0 L11

)

to completely eliminate the influence of H.
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