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ABSTRACT 
The Gemini High-Resolution Optical SpecTrograph (GHOST) will fill an important gap in the current suite of Gemini 
instruments. We will describe the Australian Astronomical Observatory (AAO)-led concept for GHOST, which consists 
of a multi-object, compact, high-efficiency, fixed-format, fiber-fed design. The spectrograph itself is a four-arm variant 
of the asymmetric white-pupil echelle Kiwispec spectrograph, Kiwisped, produced by Industrial Research Ltd. This 
spectrograph has an R4 grating and a 100mm pupil, and separate cross-disperser and camera optics for each of the four 
arms, carefully optimized for their respective wavelength ranges. We feed this spectrograph with a miniature lenslet-
based IFU that sub-samples the seeing disk of a single object into 7 hexagonal sub-images, reformatting this into a slit 
with a second set of double microlenses at the spectrograph entrance with relatively little loss due to focal-ratio 
degradation. This reformatting enables high spectral resolution from a compact design that fits well within the relatively 
tight GHOST budget. We will describe our baseline 2-object R~50,000 design with full wavelength coverage from the 
ultraviolet to the silicon cutoff, as well as the high-resolution single-object R~75,000 mode. 
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1. INTRODUCTION 
The Gemini consortium have prioritized the development of a new high-resolution optical spectrograph for the 

Gemini telescope(s). Gemini’s design strength for seeing-limited infrared and target of opportunity observations is a 
single Cassegrain focus, with several instruments that can be easily switched via a tertiary fold mirror. This feature is 
problematic for high-resolution spectroscopy, however, because a large instrument has to either maintain adequate 
stability over a wide range of gravity vectors, or be placed a distance of tens of meters from the focus via a fiber cable. 
In late 2011, the Gemini Observatory awarded three competitive conceptual design studies for the Gemini High-
Resolution Optical Spectrograph (GHOS) instrument. The Australian Astronomical Observatory (AAO) in partnership 
with the Australian National University (ANU) conducted one of these studies. Our concept, opting for the more easily 
pronounced “Gemini High-Resolution Optical SpecTrograph” (GHOST), is based on a fiber-fed design incorporating a 
Kiwispec spectrograph. In this paper, we will describe an overview of the GHOST instrument concept and a more 
detailed description of the image-plane reformatting optics.  

1.1  Science Context 
As a workhorse instrument, GHOST is expected to meet a wide range of science goals. Gemini provided 14 science 

cases derived from earlier White Papers. Most of these involved measuring abundances in different astrophysical 
contexts, 2 required spectropolarimetry and only one required a long slit. Desired wavelength ranges included the 310nm 
to 1000nm range, and only 3 of the 14 cases listed resolutions above 60,000 as being desirable. After consulting the 
Australian community, we added 3 additional science cases: 
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1. Exoplanet detection via radial velocity, particularly follow-up of fainter transiting exoplanet hosts, and 
exoplanet searches around M dwarfs. This science required no better than 2 m/s calibration precision due to 
the relatively faint magnitudes of the targets, but did require a high efficiency spectrograph with broad 
wavelength coverage. 

2. The study of time variation of fundamental constants through redshifted quasar absorption systems. 
Previous work in this area has been limited by the long-term calibration precision of other spectrographs on 
8m class telescopes. This science case required at least 10m/s long-term radial velocity precision. 

3. Absorption spectroscopy of Gamma-Ray Bursts. Of greatest interest are both the properties of the GRB host 
galaxies, and how the gas in the galaxies at high redshift is modified by the very strong radiation field from 
the explosion. These observations require the Rapid Target of Opportunity (RToO) mode of Gemini, benefit 
from the widest simultaneous wavelength range possible and require a resolution of 40,000 or greater. 

The science requirements resulting from these science cases are given in Table 1. 
Table 1. The science requirements for GHOST. 

Title Requirement 

Wavelength range GHOST shall provide simultaneous wavelength coverage from 363nm to 1000nm 

Spectral resolution GHOST shall have two selectable spectral resolution modes: standard resolution mode with R>50,000 
and high resolution mode with R>75,000. 

Sensitivity GHOST shall obtain a sensitivity of m=18.0 in a 1 hour observation for 30 sigma per resolution element 
in standard resolution mode in dark time (50th sky brightness percentile) at a wavelength of 500 nm. 

Targets and field size GHOST shall have the capability to observe 2 targets simultaneously over a 7.5 arcmin diameter field of 
view. 

Radial velocity 
precision 

GHOST shall provide a radial velocity precision of 200 m/s over the full wavelength range in standard 
resolution mode and shall have the capability to provide a radial velocity precision of 2 m/s over the full 
wavelength range for the high spectral resolution mode. 

Spatial Sampling GHOST shall spatially sample each target object over a field size of 1.2 arcsec. 

Spectro-polarimetry GHOST should provide a spectropolarimetric capability that can distinguish all Stokes parameters. 

 

2. INSTRUMENT CONCEPT OVERVIEW 
The GHOST instrument concept comprises multi-object integral field units (IFUs) with individual Atmospheric 

Dispersion Compensators (ADCs) that are positionable at the Cassegrain focal plane, feeding a fiber bundle that 
transports light to a gravity-invariant thermally-controlled spectrograph mounted on the rotating carousel. Key design 
features for GHOST are as follows: 

• Broad Simultaneous Wavelength Coverage. A simultaneous wavelength coverage of 363 to 1000nm. The 
short end of this wavelength cutoff met all science goals other than N and O abundances in cool, metal poor 
stars, where the NH and OH bands lie, and a key Be doublet at 313nm are located. 

• Focal-plane image-slicing. GHOST finely samples the stellar PSF at the focal plane over a 1.2″ diameter 
field of view with 7 elements (standard-resolution mode) or 19 elements (high-resolution mode) and 
reformats this into a spectrograph slit. This gives a very large saving in spectrograph cost, weight and 
throughput compared to alternative approaches. 

• Microlens-based IFUs. GHOST uses a pair of microlens arrays at the focal plane to inject light into the 
fibers. This approach gives added versatility in spectrograph and input optics design, and has high-
efficiency (>90% of a fiber-only design). 

• Miniature-ADCs. A dedicated Atmospheric Dispersion Compensator (ADC) is provided for each IFU. This 
approach allows the ADCs to comprise small optics giving significant improvements in blue throughput. 

• Dual slits. Two separate slits are fed from IFUs with a different scale of image sampling. This provides two 
separate spectral resolution modes: “standard” and “high”. 
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transmission exceeding 97%, as shown in Figure 5. Figure 6 depicts a mock-up of the user interface for controlling the 
positioners. 

 

 
Figure 3. The Cassegrain unit, excluding the ballast weight. The orange and black elements are the COTS stages from Physiks 
Instrumente, that position the two IFUs over a 7.5 arcminute field of view. The first (green) element is a telecentricity correction lens, 
which ensures that the pupil image formed on the fiber faces is centered irrespective of where the object is in the field of view. 

 
Figure 4. A close-up of the ADCs for one IFU. Each ADC consists of two rotating prism pairs with maximum clear aperture of 20mm.  
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Figure 8. Optical layout of the spectrograph, showing the key common elements. All dichroics in the system are long-pass, with 
intermediate slit planes after the first dichroic that enable additional baffling to avoid scattered light. The grisms perform both cross-
dispersion and anamorphism, to shrink the spectra in the cross-dispersion direction. 

Table 2. Summary of the Kiwispec-GHOST properties. 
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Figure 14. The arrangement of  the input hexagonal micro-lenses in the image-plane, for the two IFUs. The larger black hexagons are 
the standard  resolution (R=50K)  IFU elements, and the smaller black hexagons are the high resolution (R~75K) microlens elements. 
The green IFU elements are allocated to sky. The orange/red IFU elements are fibers used for acquisition and flexure compensation, 
with 100% of their received flux viewed by the slit-viewing camera. 

 

Figure 15. The arrangement of the output micro-lenses in the slit plane, showing the standard resolution (lower) and high resolution 
(upper) slits, with science (black) and sky (green) IFU elements. Only one slit is illuminated at a time. The blue IFU element in the 
high resolution slit is a simultaneous Th/Ar reference fiber. 
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