Inferring Human Pose and Motion from Images

Yifan Lu

Research School of Engineering
The College of Computer Sciences and Engineering
The Australian National University

August 2011
Acknowledgements

I am very grateful to be a member of the computer vision group at Australian National University. I would like to thank my supervisors Dr. Lei Wang, Professor Richard Hartley and Dr. Hongdong Li for invaluable direction and assistance in the development of this work. Thanks especially to Leslay Goldburg, Elspeth Davies and Marie Katselas for helping with conference travel and other issues in PhD life. Thank you also to Professor Henry Gardener for the encouragement and help to international students. Thank you to fellow students, Novi Quadrianto, Yuhang Zhang, Peter Carr, Tamir Yedidya, Luping Zhou and Cong Phuoc Huynh for their accompany. Last but not least, thanks to my parents for their continuous support.
Abstract

As optical gesture recognition technology advances, touchless human computer interfaces of the future will soon become a reality. One particular technology, markerless motion capture, has gained a large amount of attention, with widespread application in diverse disciplines, including medical science, sports analysis, advanced user interfaces, and virtual arts. However, the complexity of human anatomy makes markerless motion capture a non-trivial problem: I) parameterised pose configuration exhibits high dimensionality, and II) there is considerable ambiguity in surjective inverse mapping from observation to pose configuration spaces with a limited number of camera views. These factors together lead to multimodality in high dimensional space, making markerless motion capture an ill-posed problem. This study challenges these difficulties by introducing a new framework. It begins with automatically modelling specific subject template models and calibrating posture at the initial stage. Subsequent tracking is accomplished by embedding naturally-inspired global optimisation into the sequential Bayesian filtering framework. Tracking is enhanced by several robust evaluation improvements. Sparsity of images is managed by compressive evaluation, further accelerating computational efficiency in high dimensional space.
Contents

Acknowledgements

Abstract

1 Introduction

1.1 Problem Formalisation 2

1.2 Challenges .. 3

1.2.1 Ambiguity and Multimodality 3

1.2.2 High Dimensionality 5

1.2.3 Subject Specific Modelling 6

1.2.4 Computational Performance 6

1.3 Thesis Outline .. 6

2 Literature review .. 9

2.1 Global Optimisation and Template based Generative Approach 9

2.1.1 Global Optimisation 10

2.1.1.1 Annealed Particle Filter 10

2.1.1.2 Covariance Scaled Sampling 11

2.1.1.3 Interacting Simulated Annealing and Hybrid Approach ... 12

2.1.2 Template Model Generation 15

2.1.2.1 Articulated ICP and Subject Specific Model Generation ... 15

2.1.2.2 Performance Capture 17

2.1.3 Object Localisation and Pose Estimation using a Graphic Model 21

2.2 Learning Based Approach 22

2.2.1 Tracking by Regression 22

2.2.2 Gaussian Process Dynamical Model 24

2.2.3 Dimensionality Reduction and Manifold Learning on Visual Tracking 26

2.3 Graph Based Image Segmentation and Tracking 29

2.3.1 Simultaneous Segmentation and Pose Estimation 31

2.3.2 Transductive Image Segmentation 32

2.3.3 Laplacian Matrix and Tracking 36

3 Architecture Overview and Sequential Tracking Pipeline 39

3.1 Architecture of Human Motion Capture 39

3.2 Sequential Bayesian Filtering Framework 43

3.3 Particle Filter on Visual Tracking 46
Contents

3.3.1 Recursive Bayesian Filtering .. 46

4 Subject Specific Body Shape Modelling and Automatic Initialisation 51
 4.1 Related Works .. 52
 4.2 Generic Human Body Skeleton ... 55
 4.3 Human body shape ... 58
 4.3.1 Needle based Body Shape Parameterisation 59
 4.3.1.1 Contour from Needle Projection 66
 4.3.2 Data-Driven Body Shape Parameterisation 69
 4.3.2.1 Dynamic Bone Length and Collision Bounding Box Adjustment ... 71
 4.4 Automatic Initialisation ... 74
 4.4.1 Using Needle based Body Parameterisation 75
 4.4.2 Using Data-Driven Shape Parameterisation 77

5 Nature Inspired Global Optimisation 81
 5.1 Simulated Annealing .. 82
 5.1.1 Simulated Annealing Particle Filter 85
 5.2 Particle Swarm Optimisation 88
 5.2.1 Algorithm Description ... 91
 5.3 Covariance Matrix Adaptation Evolution Strategy 92
 5.3.1 Evolution Strategy ... 93
 5.3.2 Covariance Matrix Adaptation 95
 5.3.2.1 Selection and Recombination 95
 5.3.2.2 Adapting the Covariance Matrix 96
 5.3.2.3 Step-Size Control ... 102
 5.4 Covariance Matrix Adaptation Annealing 104
 5.4.1 Problems in Dynamic Settings 104
 5.4.2 Covariance Matrix Adaptation Annealing Algorithm 105
 5.4.2.1 Perturbation Matrix and Particle Velocity Update 107
 5.4.3 Experiments with Benchmark Optimisation Problems 110
 5.4.3.1 Ackley Problem .. 110
 5.4.3.2 Rastning Problem ... 111
 5.4.3.3 Griewank Problem .. 114
 5.4.3.4 Rosenbrock Problem .. 116

6 Robust Evaluation Model 119
 6.1 Incremental Relaxation by Fast March Method 120
 6.1.1 Fast March Method ... 123
 6.1.2 Experiments ... 126
 6.2 Colour and Texture Incorporation 128
 6.2.1 Illumination Invariant Colour Difference 133
 6.2.2 Experiments ... 136
 6.3 Maximisation of Mutual Information 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Gradual Sampling for Annealed Particle Filter</td>
<td>143</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Connection between Gradual Sampling and Annealing Variable</td>
<td>147</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Experiments and Discussion</td>
<td>149</td>
</tr>
<tr>
<td>7</td>
<td>Compressive Evaluation</td>
<td>155</td>
</tr>
<tr>
<td>7.1</td>
<td>Compressive Sensing</td>
<td>156</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Signal Sparse Representation</td>
<td>157</td>
</tr>
<tr>
<td>7.1.2</td>
<td>L1 Minimisation and Reconstruction</td>
<td>158</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Incoherence Sampling</td>
<td>159</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Restricted Isometry Property</td>
<td>161</td>
</tr>
<tr>
<td>7.1.5</td>
<td>RIP Random Sensing</td>
<td>162</td>
</tr>
<tr>
<td>7.2</td>
<td>Discrete Wavelet Transform</td>
<td>163</td>
</tr>
<tr>
<td>7.3</td>
<td>Compressive Annealed Particle Filter</td>
<td>166</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Restricted Isometry Property and Pairwise Distance Preservation</td>
<td>168</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Multilevel Wavelet Likelihood Evaluation on Compressive Measurements</td>
<td>170</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Construct Increasing Wavelet Coefficient Image</td>
<td>171</td>
</tr>
<tr>
<td>7.4</td>
<td>Experiments</td>
<td>172</td>
</tr>
<tr>
<td>8</td>
<td>Conclusion</td>
<td>177</td>
</tr>
<tr>
<td>A</td>
<td>Appendix</td>
<td>181</td>
</tr>
<tr>
<td>A.1</td>
<td>Perspective Projection</td>
<td>181</td>
</tr>
<tr>
<td>A.2</td>
<td>Importance Resampling</td>
<td>183</td>
</tr>
<tr>
<td>A.3</td>
<td>Human Body Segments and Joint AngleRanges</td>
<td>185</td>
</tr>
<tr>
<td>A.4</td>
<td>Parameterisations of Three DOF Rotations</td>
<td>185</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Rotation Matrices</td>
<td>185</td>
</tr>
<tr>
<td>A.4.2</td>
<td>Euler Angles</td>
<td>191</td>
</tr>
<tr>
<td>A.4.3</td>
<td>Axis Angle</td>
<td>192</td>
</tr>
<tr>
<td>A.4.4</td>
<td>Optimisation on Axis Angle</td>
<td>193</td>
</tr>
<tr>
<td>B</td>
<td>Bibliography</td>
<td>197</td>
</tr>
</tbody>
</table>