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Abstract

As optical gesture recognition technology advances, touchless human computer inter-
faces of the future will soon become a reality. One particular technology, markerless
motion capture, has gained a large amount of attention, with widespread application
in diverse disciplines, including medical science, sports analysis, advanced user inter-
faces, and virtual arts. However, the complexity of human anatomy makes markerless
motion capture a non-trivial problem: I) parameterised pose configuration exhibits
high dimensionality, and II) there is considerable ambiguity in surjective inverse map-
ping from observation to pose configuration spaces with a limited number of camera
views. These factors together lead to multimodality in high dimensional space, mak-
ing markerless motion capture an ill-posed problem. This study challenges these diffi-
culties by introducing a new framework. It begins with automatically modelling spe-
cific subject template models and calibrating posture at the initial stage. Subsequent
tracking is accomplished by embedding naturally-inspired global optimisation into
the sequential Bayesian filtering framework. Tracking is enhanced by several robust
evaluation improvements. Sparsity of images is managed by compressive evaluation,
further accelerating computational efficiency in high dimensional space.
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Chapter 1

Introduction

Human motion capture can be considered an evolution in human computer interac-
tion that imparts understandability of human movement to computers. The tradi-
tional human interaction devices – keyboards, mice and game controllers – confine
movements of human beings to limited and specific ranges so that the movements are
simple enough to be detected. By contrast, human motion capture offers a powerful
and flexible way to detect and recognise diverse movements in various circumstances
of daily life. The development of such flexible techniques leads to an evolution of hu-
man computer interaction towards something much closer to the natural behaviour
of human beings, enabling the next generation of human computer interfaces.

In the 1970s and 1980s, human motion capture was already used in biomechan-
ics, and later expanded into education, training and sports. For instance, Calvert
et al. [Calvert et al. 1982] at Simon Fraser University, attached potentiometers to a
body and used the output to animate a computer character for choreographic studies
and clinical assessment of movement abnormalities. The studies were limited to use
attachable-sensor enhanced techniques. After the 1980s, optical capture technology
advanced, and an increasing number of optical motion capture emerged in various
fields, including computer animation, clinical medicine, virtual reality and the film
industries. Such techniques require that the performer wears reflective markers that
are captured by multiple cameras over time. The positions, angles, velocities and tra-
jectories of the markers are then computed. The goal of this motion capture is to detect
and record the motion and expression of moving subjects, which can be represented
as poses of the subjects at any time, and then converted to abstract digital format.

Provided adequate computational power and number of cameras, recent marker
based commercial systems are already matured enough to capture complex move-
ments in real time. However, dedicated hardware and multiple expensive cameras
are not suitable for deployment in an everyday environment. Markers may also re-
strict performer spontaneity, affecting realistic motion capture. Recent efforts [Hou
et al. 2007; Vlasic et al. 2007; Sminchisescu et al. 2007; Rosenhahn et al. 2007; Agarwal
and Triggs 2006; Balan and Black 2006; Lee and Elgammal 2006; Wang et al. 2008] in
computer vision therefore have been focused on markerless human motion capture in
order to realise a cost-effective and easily deployed motion capture system. Marker-
less motion capture has several desirable characteristics compared with marker-based
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2 Introduction

motion capture:

1. Absence of markers: This is the most desirable difference from the marker based
system. The obvious imposed condition is that computers should recognise nat-
ural human actions, and this implicitly opens a very broad range of recognition
applications in real life.

2. Basic hardware requirements: The common personal computer should be qualified
for use as markerless motion capture system. In other words, markerless motion
capture should be usable wherever a common personal computer is available.

3. A distributed camera system: This is the only requirement that needs some effort
to setup and calibrate. However, with the availability of new Time-of-Flight
camera technology, the number of cameras will be dramatically reduced. It is
possible that a stereo camera will be sufficient for markerless motion capture in
the near future.

1.1 Problem Formalisation

In this research, most attention is focused on optical and markerless motion cap-
ture using computer vision techniques. In particular, in an indoor setting with a
few distributed cameras, the performer wears common clothes1 and performs in the
space visible from all cameras. While the performer is acting, his/her performance
is recorded and stored as digital images or videos from different angles. Later, these
digital images or videos are processed by computer vision techniques to reconstruct
the original motion and convert it into abstract digital form.

The original motion is reconstructed by analysing each observed image and video
frame in the sequence, in order to extract gesture features, estimate the best pose of
the performer at a particular time, and eventually recover successive motion frame
by frame. This essentially describes markerless human motion capture as an infer-
ence process that infers human pose and motion according to available observations
through time. Within the context of this work, there are several key terms in mark-
erless motion capture that should be clarified: 1) human motion, pose, and parame-
terisation; 2) temporal dependency; 3) the observation and its representation; and 4)
markerless human motion capture with respect to the other definitions.

1. Human Motion, Pose and Parameterisation: Human motion itself is a complex pro-
cess involving interactions of muscles, bones, external forces and other factors.
To simplify it, we assume it only consists of a sequence of poses, each of which
refers to certain time. Therefore, a description of human motion only requires
us to be able to describe human pose. Naturally, the anatomy of the human

1But clothes should be a reasonable fit to his/her body shape and their colour should have a reason-
able contrast with the background
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body allows a definition of human pose using an articulated skeleton and its
joint angles. The articulated skeleton is modelled based on anthropometric mea-
surements of the real performer. Given this articulated skeleton, human pose is
determined by a pose vector that includes a position, an orientation and joint
angles. Human motion can then be described by a sequence of successive pose
vectors over time.

2. Temporal Dependency: If human pose can be considered a description of the spa-
tial structure of the human body, human motion naturally can be considered a
description of both the spatial and the temporal structure of the human body.
Over time, poses are not independent of each other, but each pose somehow de-
pends on previous poses. In other words, a pose is a function of previous poses.
This is so-called temporal dynamics or the dynamic function.

3. Observation: The observation is often regarded as the observable measurement
or emitted signal that reflects the underlying pose. It may contain redundant
and noisy information, and have various formats depending on the specific sit-
uation. In the context of this work, the observation often refers to the observed
image or features extracted from the image.

4. Markerless Human Motion: The essential problem is finding the best poses that fit
observations at each time, while maintaining consistency with previous poses.

1.2 Challenges

Generic image-based object detection and tracking techniques have been widely stud-
ied in the past several decades. Significant achievements in computer vision have al-
ready been seen as a consequence. Since such techniques inherit advantages of gener-
alisations for coping with the characteristics of regular objects, they are able to handle
various objects and situations. However, this appears not very fruitful and less ef-
fective when problems require more precise information and domain-specific knowl-
edge. For example, markerless motion capture requires that each joint position and
rotation of a skeleton be tracked. This type of problem has specialised characteris-
tics and structures which cause difficulties for the generic techniques. Furthermore,
markerless motion capture requires dealing with the irregular articulated structure,
high dimensionality of human motion, variations of body shape among different peo-
ple and interactions with the environment. These complications suggest the problem
of human motion capture has to be modelled separately and attacked differently. This
section outlines the four specific challenges in human motion capture.

1.2.1 Ambiguity and Multimodality

In the marker-based approach, target tracking is simplified, since markers have illumi-
native significance and known relative transformations with respect to the pose. Thus,
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marker based motion capture has relatively better behaviour that tracks well-specified
illuminative marker points as targets. Conversely, markerless motion capture does not
have a well specified but rather poorly defined tracking target – the entire performer’s
body – which has an irregular and deformable shape, and usually does not have the
visual significance from the image processing point of the view. Moreover, the joint lo-
cation and orientation must be inferred from indirect observation of clothes and body
shape. Therefore, detecting and identifying the tracking target in markerless motion
capture is much more challenging than marker-based approaches.

Common approaches in markerless motion capture rely on the shape-from-silhouette
[Laurentini 1994] concept to detect the tracking target. A bounding geometry of the
original 3D shape, the so called visual hull, can be determined by intersecting gener-
alised cones that are formed by back-projecting each multi-view performer silhouette
with its camera parameters. However, without a special setup2, silhouette segmen-
tation may misclassify some background pixels with some foreground pixels. Even
when accurate silhouettes can be acquired, with a small number of camera view sil-
houettes, multiple distinctive postures may still correspond to the same visual hull or
same set of silhouettes. This is because the visual hull does not uniquely determine
one posture, but rather it encompasses the maximum volume of the underlying ob-
ject. As a result, there is considerable difficulty in determining a unique posture from
a given observation. Another consequence of using a small number of cameras is that
self-occlusions are likely to occur, resulting in gesture ambiguities. These together
cause multimodality in the evaluation between the observations and a hypothetical
pose. When multimodality (e.g. Figure 1.1) is present in the optimisation of the eval-
uation function, the local landscape of the evaluation function does not always have
shape consistent with the landscape of the global optimum, like the convex function
does. This makes markerless motion capture an ill-conditioned problem. Many meth-
ods, for example the gradient-based method, utilise the shape of the local landscape
and would be easily trapped into local optimums. Hence, stochastic optimisation is
often chosen to avoid local optimums.

Generally speaking, ambiguities occur because inadequate constraints and infor-
mation are utilised. Considering an underdetermined system of linear equations,
where the number of equations is smaller than the number of the unknowns, the
unknowns have multiple solutions. Multiple solutions for each unknown can be re-
garded as ambiguous. If extra linearly independent equations can be introduced so
that the number of equations is equal to the number of unknowns, then unknowns
will have a unique solution, and ambiguity will be resolved. Similarly, if additional
camera views can be introduced in markerless motion capture, multimodality can be
resolved.

2For example, chroma keying lighting and background can be used to distinguish the foreground
object to improve the quality of silhouette segmentation.
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Figure 1.1: Multimodality in the two dimensional Ackley function [Ackley 1987]

1.2.2 High Dimensionality

Because the complexity of the anatomical structure of the human body, the pose vector
usually resides in high dimensional space which often has more than 20 dimensions.
This makes markerless motion capture suffer from the “curse of dimensionality” in
the size of the search space, in which finding the solution increases exponentially with
respect to dimensionality. As the relationship between the observed image and the
pose is entangled with skin deformation, clothing colour, light reflection and other
factors, the complete mapping function between them is hard to unfold using current
representation techniques (e.g. manifold learning). The common solution in the lit-
erature is stochastic optimisation, for example using Markov chain Monte Carlo sam-
pling to estimate maximum a posteriori (MAP) the observation likelihood. This re-
quires dense sampling to cover a relatively small area [Sminchisescu and Triggs 2003]
in which the global optimum has high probability of occurring. Both of the terms
“small area” and “dense” are meant relative to the size of the search space. When the
search space is high dimensional, the “small area” becomes massive, and “dense sam-
pling” becomes infeasible. As a consequence, common sampling techniques become
very sensitive and vulnerable to the coverage and number of samples, and they are
not well scalable especially when the tracking subject has fast movement.

High dimensionality indirectly demands a good representation of the problem so
that the problem can be solved by simple and effective algorithms. Moreover, it also
demands that the evaluation can be quickly performed due to the fact that a large
number of evaluations are often required for optimisation.
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1.2.3 Subject Specific Modelling

When the precision required by human tracking reaches the level of joint angles and
joint positions, it becomes necessary to consider subject specific modelling and an-
thropometric measurements. Although 3D laser scanning is able to provide accurate
full body modelling, there are practical difficulties with using it on multiple people
and with frequent clothing changes, and it is an additional equipment requirement.
Moreover, the limb lengths of the tracking subject are also necessary for markerless
motion capture, and 3D laser scanning cannot provide them. All in all, we require
human body specific modelling which is suitable for markerless motion capture.

Additionally, interactions between external forces and the human body are often
ignored to simplify the complex process. Hence human body movement can be for-
mulated as rigid-body kinematics of articulated segments with joint angles. Since 3D
joint rotation parameterisation involves mapping between a flat Euclidean space and
a spherical space – Special Orthogonal Group (SO(3)) – there always exists singulari-
ties and double cover in such a parameterisation. A suitable optimisation procedure
has to handle these two special cases appropriately so that continuous exploration can
be maintained everywhere.

1.2.4 Computational Performance

Most human computer interaction applications require instant responses and real
time feedback, otherwise users could easily fail to engage with the immersive en-
vironment. Human motion capture as a human computer interfacing technique often
needs to respond in excess of 25 times per second. This is a crucial requirement for all
human computer interfacing applications. However, stochastic optimisation methods
used in markerless motion capture suffer from issues associated with convergence
rate and computational time. Many of them are practically infeasible when the di-
mensionality of problems is very high, since they have an exponential or higher order
polynomial time complexity. The execution time of current algorithms for each frame
on an average personal computer may take several seconds or even several minutes,
several orders of magnitude slower than the real time requirement. Thus, designing
an optimisation process specialised to human motion capture and improved compu-
tational performance is a very challenging task.

1.3 Thesis Outline

In this section, an overview is outlined for each chapter which proposes different ap-
proaches to challenge difficulties presented in the previous section.

1. Chapter 1 Introduction: We describe the motivation for markerless motion cap-
ture as an evolutionary development and briefly review the history of motion
capture, followed by the problem formalisation which clarifies the key terms
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and give formal explanations of markerless motion capture. Then, the ma-
jor challenging issues in markerless motion capture are addressed. Finally, an
overview of the thesis structure is presented.

2. Chapter 2 Literature Review: Recent state of the art studies in markerless motion
capture are reviewed. The strengths and weaknesses of diverse approaches are
analysed in depth, including generative, learning based approaches, and track-
ing by graphical image segmentation. Finally, we motivate our approach from
the analysis of existing studies.

3. Chapter 3 Architecture Overview: An overview of the proposed framework is
depicted, and the major components’ characteristics and functionality are de-
scribed related to overcoming the challenging issues. Major contributions to the
architecture will be highlighted by referring to particular chapters.

4. Chapter 4 Subject Specific Body Shape Modelling and Automatic Initialisation: We
begin with describing the generic articulated skeleton and standard skin de-
formation method used in the computer graphics community. Then, based on
the skin deformation technique, we introduce two methods, Needle based and
Data-Driven Body Shape Parameterisation to realise subject specific modelling.
Finally, we describe how to automatically estimate the subject shape parameters,
anthropometric measurements and the initial posture simultaneously by using
our CMA-Annealing method.

5. Chapter 5 Nature Inspired Global Optimisation: To deal with multimodality and
high dimensionality, global optimisation, Simulated Annealing, Particle Swarm
Optimisation and Covariance Matrix Adaptation Evolution Strategy are described.
Considering the characteristics and properties of these methods, we propose a
novel hybrid optimisation method–Covariance Matrix Adaptation Annealing.
It takes advantages of both fast convergence and robustness to multimodality
to attack one specific class of problems. At the end of the chapter, four meth-
ods’ behaviour and performance are validated by experiments with a series of
benchmark multimodal functions.

6. Chapter 6 Robust Evaluation Model: We propose several improvements to the
evaluations of annealing-based optimisation in this chapter. These include de-
tails of Incremental Relaxation by the Fast March Method, Colour and Tex-
ture Incorporation, Maximisation of Mutual Information and Gradual Sampling.
These techniques improve the original algorithm from three perspectives–precision,
robustness and computational performance.

7. Chapter 7 Compressive Evaluation: Noticing sparsity in the observation likelihood
evaluation, we use the compressive sensing [Candès et al. 2006; Candès and Tao
2006; Candes and Wakin 2008; Donoho 2006] technique to eliminate irrelevant
error terms in the observation likelihood. Multilevel wavelet decomposition is
seamlessly integrated into the annealing schedule so that both computational
speed and tracking accuracy are dramatically boosted.
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8. In Chapter 8 Conclusion and Discussion: Conclusions are drawn by summaris-
ing the contributions of this thesis. Further discussions concerning limitations,
remaining issues and possible future research are presented.



Chapter 2

Literature review

Many different methods have been used to perform markerless motion capture. These
can be classified into two major approaches: 1) methods modelling image features (eg.
silhouettes and edges) as a generative process from pose, and 2) methods based on
learning regression from image observations of pose. The generative methods model
image feature space as a function of pose, and inferring pose from a limited number
of view based image features often involves solving a hard multimodal optimisation
problem. Learning based techniques try to model the pose configuration as a func-
tion of image observations. However because of the problem’s multimodality, such
functional is very difficult to learn. The methods reviewed in this chapter will present
diverse approaches to overcoming these issues. Apart from these two approaches,
many works integrate image segmentation into the pose estimation process. This al-
lows image segmentation and pose estimation to be improved iteratively, as the image
is segmented with the current best pose estimate and the pose is then estimated based
on the improved segmentation results.

2.1 Global Optimisation and Template based Generative Ap-

proach

Here we review recent template based methods that handle markerless motion cap-
ture in multi-view settings. This category of methods combines different basic com-
ponents into the tracking pipeline. These methods implement different ideas to over-
come challenges in markerless motion capture, which include interactive simulated
annealing, covariance scale sampling, loose-limb using graphical models and articu-
lated ICP.

9
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2.1.1 Global Optimisation

2.1.1.1 Annealed Particle Filter

Deutscher et al’s studies [Deutscher et al. 1999; Deutscher et al. 2000; Deutscher et al.
2001; Deutscher and Reid 2005] have developed a stochastic scheme, annealed parti-
cle filtering (APF), that incorporates particle filtering [Doucet et al. 2000] with simu-
lated annealing to effectively search high dimensional space. Unlike the Kalman filter
which can be provably optimal for sequential propagation of Gaussian probability
densities (though it fails catastrophically in non-linear settings), particle filtering is
able to approximate arbitrary densities and propagate multiple hypotheses, leading
to much better behaviour in non-linear settings. Its robustness was demonstrated by
the Condensation algorithms [Isard and Blake 1998a] in the context of visual track-
ing. However, in high dimensional space occurring in markerless motion capture and
other disciplines, particle filtering experiences serious scalability problems, both in
populating space and representing an arbitrary density using a manageably sized par-
ticle set. In fact it has been shown by MacCormick [MacCormick and Isard 2000] that
the number of particles N has to satisfy N > Dmin/α

d, where Dmin ∈ [1, N] denotes
the minimum acceptable survival diagnostic and α << 1 is a survive rate powered
by the number of the dimensions d. Clearly, when d is large, the number of particles
becomes infeasible. This is essentially caused by the fact that importance sampling
scales badly with dimension [MacKay 1998]. Moreover, the evaluation on the entire
multimodal posterior distribution in high dimensional space is also computationally
prohibitive. Therefore, Deutscher et al proposed a Simulated Annealing procedure to
only approximate the global mode of the posterior distribution by estimating a Maxi-
mum A Posteriori of the observation likelihood.

The Simulated Annealing algorithm was proposed by Kirkpatrick et al [Kirkpatrick
et al. 1983] to solve multivariate and combinatorial optimisation. Its process is anal-
ogous to iteratively attaining thermal equilibrium in statistical mechanics. Initially
at high temperature, the particles with energy E0 are free to move into the new state
with the energy E. New states are accepted if δE = E − E0 < 0 otherwise the ac-
ceptance probability is equal to exp{−δE/(kbT)} where, kb denotes the Boltzmann
constant and T denotes temperature. This is the so called Metropolis criterion. With
the temperature gradually decreasing, the range of particles gradually concentrates
on the states with the lowest energy, as high energy states become increasingly un-
likely. Eventually, T becomes so low that the system ”freezes”, and if the temperature
is lowered sufficiently slowly this frozen state will have minimum energy.

With Simulated Annealing, APF has a higher probability of escaping from local
optimums. However, it is still computationally intensive. To reduce the computa-
tional time and effectively distribute particles according to the kinematic structure of
the human figure, Deutscher et al imposed soft hierarchical partitioning by scaling
the perturbation covariance matrix Pm at the layer m and time t, proportional to the
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covariance of the current particle set {xi
t,m}N

i=1.

Pm ∝
1
N

N

∑
i=1

(xi
t,m − xt,m)(xi

t,m − xt,m)
T

Inspired by genetic algorithms, they also incorporate a cross operation to APF, result-
ing in further improvement.

2.1.1.2 Covariance Scaled Sampling

Theoretically, sufficiently dense sampling can approximate arbitrary distributions in
high dimensions, but it is computationally prohibitive in practice. Therefore, reason-
ably dense coverage of the entire probability distribution may not be feasible, espe-
cially in high dimensional space. Methods like the particle filter are able to demon-
strate a certain effectiveness in approximating the probability distribution in low di-
mensional space, but are very likely to miss the global mode during the iterative pro-
cedure over time [Sminchisescu and Triggs 2003]. Sminchisescu et al believed that
random perturbation in the stochastic approach is an effective search strategy only
for relatively low dimensional problems, where samples can cover the surrounding
neighbourhood fairly densely. In high dimensions, volume increases very rapidly
with radius, so random samples must be extremely sparse to cover the global mode
(since any two modes far from each other). Hence, samples are very unlikely to hit the
small core of the mode surrounding the local optimum, and are more likely to remain
in the non-mode area. This is fatal for approaches of the importance resampling class:
samples in non-mode areas are very unlikely to be resampled, so the new mode is
almost certain to be missed.

Sminchisescu et al [Sminchisescu and Triggs 2003] proposed an approach using a
combination of local optimisation and global controlled search to address the above
issues by 1) wide tail sampling to gain large coverage, 2) adaptive local covariance
scaling to focus on the important sample space, 3) and local optimisation in order to
guarantee samples fall into the modes. For local optimisation, a second order New-
ton’s method with a trust region (whose descent direction is chosen by solving a reg-
ularised subproblem) is used to accelerate sample convergence to the local optimums.
At each iteration, the log-likelihood gradients and Hessians of the posterior are calcu-
lated to build proposed quadratic model q(x) imposed constraints.

Sminchisescu et al also believed that the locations of modes are based on under-
lying rules determined by particular domain knowledge. A sensible sampling tech-
nique should adapt this domain knowledge in order to reduce the sampling space.
Covariance scaled sampling inherits this principle. It moderately inflates the local
shape impact by rebuilding the covariance matrix along the most important direc-
tions, so that it removes sampling wastage along other directions. The local shape is
formed from the previous posterior and temporal dynamics models. The important
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directions usually point out the potential locations of modes, so covariance scaled
sampling always scales the sampling space (illustrated in Figure 2.1) with respect to
the shape of local distribution such that it has better chance to sample the locations
having modes.

Figure 2.1: Sampling space (courtesy of [Sminchisescu and Triggs 2003])

In their study, they assume that the importance distribution and the posterior dis-
tribution are constructed by Gaussian mixtures. In this case Gaussian mixtures are fit
to multimodality in high dimensional space. The particle is generalised as the Gaus-
sian distribution xi

t = N (µi
t,Σ

i
t), and then the Particle Filter with covariance scaled

sampling is outlined in Algorithm 1:

2.1.1.3 Interacting Simulated Annealing and Hybrid Approach

In Gall et al’s work[Gall et al. 2007], an Interacting Simulated Annealing (ISA) algo-
rithm was proposed based on the FeynmanKac model [Kac 1949], which is a more
general form of the APF paradigm. They also showed APF is a special case of ISA
where the “Updating” and “Resampling” steps are replaced by the Interacting Simu-
lated Annealing algorithm (shown in Algorithm 2) with ϵt = 0. ϵt satisfies ϵt > 0 and
ϵt∥πt∥∞ 6 1,where functions πt are often unnormalised BoltzmannGibbs measures
πt(x) = exp(−λE(x)). It is interesting to note that the parameters ϵt are allowed to
depend on the current distribution. Their ISA algorithm is another special case that
sets the parameters:

ϵt = ϵ
′
t/⟨ηt, πt⟩ 0 < ϵ′t 6 1/g

g = sup
t∈N0

(
sup

x,y∈[0,1]

(
πt(x)
πt(y)

))
< ∞
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Algorithm 1 Covariance Scale Sampling

for i=1 to N do
Construct covariance matrix Σ̂i

t−1, eigen-decompose Σi
t−1, select its k most uncer-

tain eigenvectors v j. Then Σ̂i
t−1 = ∑k

j=1 λ jv jvT
j .

Calculate importance distribution π(xi
t|xi

t−1, yi
t) = ∑M

i=1 wi
t−1N (µi

t−1, sΣ̂i
t−1),

where s is a scale factor from 4 to 14
end for
repeat

Choose single Gaussian x̂i
t from π() according to the weight wi

t−1,

Sample from x̂i
t to obtain s j, with respect to the observation likelihood at time t,

perform local optimisation beginning with s j. At its convergence, µi
t and Σi

t =

H(µi
t)
−1 are found if they haven’t been already. xi

t = N (µi
t,Σ

i
t).

if the number of modes< N then
Reduce N

end if
until N samples are generated from π(xi

t|xi
t−1, yi

t)
for i=1 to N do

Calculate normalised weights by wi
t =

p(µi
t|yt)

∑N
j=1 p(µ j

t |yt)

end for
Select the K most important xi

t according to their weights wi
t, re-normalise the se-

lected weights wi
t

for i=1 to K do
Find the closest xclosest

t−1 to xi
t according to a Bhattacharyya distance.

Modify the weight wi
t = wi

t × wclosest
t−1 discard xclosest

t−1 from further consideration
end for
Re-normalise the weights, compute the posterior mixture p(xt|y1:t) = ∑K

i=1 wi
tx

i
t
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as proposed in [Moral and Doucet 2003]. It turns out when the number of particles
N is greater than g, ϵ′t can then be set to 1/N. This leads to ϵt = 1/∑N

k=1 wk
t where

the sequence of posterior distribution approximations has strictly smaller variances
than ϵt = 0. In their experiments, ISA has better convergence results with the particle
approximation if N > g is guaranteed.

Algorithm 2 Interacting Simulated Annealing Algorithm

Require: : parameters ϵt, number of particles N, initial distribution η0, weighting
functions πt, transition kernels Kt and observations yt.
1. Initialisation: Draw N samples xi

0 from η0
2. Selection: Calculate all particle weights using wi

t = πt(xi
t, yt)

for i=1 to N do
Sample κ uniformly from [0, 1]
if κ < ϵtwi

t then
x̂i

t = xi
t

else
x̂i

t = x j
t with probability w j

t
∑N

k=1 wk
t

end if
end for
3. Perturbation: Obtain new particles by xi

t+1=Kt(x̂i
t) and go to 2

A continued work in [Gall et al. 2008] proposes an analysis-by-synthesis frame-
work for tracking rigid and articulated models by using region-based and patch-based
matching. In region-based matching, the difference between the projected surface of
the model and the real object region extracted in the image is minimised through the
correspondences of the model and real object contours. The contour of the real object
is extracted by level-set segmentation in which the contour is given by the zero-line
of a level-set function Φ. As shown in [Rosenhahn et al. 2007], the contour, zero-line
of Φ, can be obtained by minimising the energy function:

E(Φ, x̂) = −
∫
Ω

H(Φ) ln p1 + (1− H(Φ)) ln p2dx + v
∫
Ω
|∇H(Φ)|dx + λ

∫
Ω
(Φ−Φ0(x̂))2dx

where H is a regularised version of the step function, and p1 and p2 are the densi-

ties of the fore- and background modelled by local Gaussian densities. While the first

term maximises the likelihood, the second term regulates the smoothness of the con-

tour with the parameter v = 2. The last term penalises deviations from the projected

surface of the predicted pose Φ0(x̂) with λ = 0.06. In patch-based matching, cor-

respondences between two successive frames for prediction, and between the current

image and a synthesised image, are found by applying PCA-SIFT [Ke and Sukthankar
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2004] as a local descriptor. The local descriptor is trained for the object by building the

patch eigenspace from the object’s texture. Therefore pose estimation can be accom-

plished by solving a simple least squares problem with respect to correspondences.

Since the accurate correspondences can be extracted, their experimental results with

both rigid and articulated models are very robust to the accumulation of estimation

errors and the tracking drift.

More recent works [Gall et al. 2009; Gall et al. 2010] focused on a hybrid approach

combining local and global optimisation. Global optimisation usually is more robust

to fast motions and ambiguities, but the price is that the computational effort is very

high. On the other hand, local optimisation has advantages in convergence speed.

If the initial pose is close to the global optimum, local optimisation is able to find a

reasonable solution using much fewer evaluations. [Gall et al. 2009] finds the contour

and SIFT texture correspondences, transforms 2D-2D to 3D-2D correspondences, and

solves local optimisation as a weighted least squares problem. If the errors of local

optimisation exceed a predefined threshold, global optimisation ISA is executed to

improve results. This usually happens when the top branch of the skeleton hierarchy

(torso) is not well estimated by local optimisation. In [Gall et al. 2010], ISA global opti-

misation is adopted at first to locate a good initial position for local optimisation, then

the contour correspondences are found by an iterated closest point (ICP) approach.

Finally pose estimation is refined by the least squares solution using these correspon-

dences. These hybrid approaches show very encouraging results in diverse activity

tracking and performance capture tests.

2.1.2 Template Model Generation

2.1.2.1 Articulated ICP and Subject Specific Model Generation

The works [Corazza et al. 2010; Corazza et al. 2009; Mundermann et al. 2007] by Ste-

fano Corazza et al investigate the problem with a different approach which relies on
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registering a subject specific model to the sequence of visual hulls. The subject specific

model is built by following this procedure (also shown in Figure 2.2):

1. Rigid segments of the articulated model obtained from the SCAPE method [Anguelov

et al. 2005a] are registered into the laser scanned subject mesh. The global trans-

formation registering every body segment is estimated;

2. The scanned mesh is divided according to the different body parts with a prox-

imity criteria check. For any point in the scanned mesh, if the closest point in

the model belongs to the part i, then it is labelled as belonging to that part;

3. For every body part in the scanned mesh, the inverse of the global transforma-

tion calculated in 1 is applied. This registers the scanned mesh to the reference

pose of the articulated model;

4. The above steps are repeated until convergence.

Figure 2.2: Subject specific modelling using iterative shape registration (courtesy of
[Corazza et al. 2009])

The Articulated ICP presented in [Corazza et al. 2010] extends the ICP algorithm

to articulated objects. Each segment with a 6 DOF joint is hierarchically connected

so that the motion is propagated along the kinematic chain, unlike their previous



§2.1 Global Optimisation and Template based Generative Approach 17

work [Mundermann et al. 2007] that treats each rigid segment independently. The im-

proved algorithm allows extraction from the tracker of anatomically meaningful and

rigourous data. Each point on the model surface is expressed as a function of joint pa-

rameters in the articulated model. This function is linearised so that the registration

problem can be attacked by minimising a series of least correspondence residuals in

the ICP paradigm:

H =
N

∑
i=1
∥Pi − CPi∥2

where, N denotes the number of correspondences, and CPi denotes a point on the

scanned data which corresponds to point Pi on the model. At each iteration CPi points

are estimated through a closest point criterion with respect to points Pi. The normal

on the visual hull surface in proximity of CPi is compared to the model surface normal

in proximity of Pi. If these norms differ excessively (typically more than 90 degrees),

the pair of corresponding points are excluded from the minimisation problem. When

provided with more than 8 camera views, their method is able to track very fast move-

ments, including a cricket bowl, handball throw, and gymnastic flip. However when

the number of cameras is less than 8, for example HumanEvaII four colour camera

views, it can not track very well.

2.1.2.2 Performance Capture

Detailed appearances are difficult to capture but they are visually compelling and

have a great impact on visual quality. Several works [Starck and Hilton 2007b; de Aguiar

et al. 2008; Vlasic et al. 2009; Vlasic et al. 2008] have focused on high quality and

small scale details capture, and their impressive quality proves that the accuracy of

markerless motion capture is competitive with marker-based systems, and therefore

adequate for studio performance capture.

In [Starck and Hilton 2007b], Starck et al proposed a fully automated surface cap-

ture system for recording a human’s shape, appearance and motion from multiple
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video cameras to create highly realistic animated content from an actor’s performance

in full wardrobe. Their method has seven distinctive steps:

1. A multiple-view video sequence of an actor’s performance is recorded.

2. Chroma-key matting is performed to extract foreground silhouettes from the

camera images, separating the image’s foreground pixels from the known back-

ground colour.

3. An alpha matte for each image is extracted, which defines the foreground opac-

ity at each pixel and the foreground colour where pixels in the original image

are mixed between foreground and background.

4. The shape-from-silhouette technique is used to define the visual hull of the

rough (maximal) volume in the scene.

5. The visual-hull defines an upper-bound on the scene’s true volume and so con-

strains the feasible space.

6. Canny edge detection is used to find local discontinuities which correspond to

surface edge features. Then, the correspondence is found between each surface

feature in an image with that of an adjacent camera view. The correspondences

are constrained to be located inside of the visual hull and satisfy the camera

epipolar geometry defining the relationship between observations in pairs of

cameras. Finally, the connected set of pixel correspondences with the adjacent

view is maximised in terms of the image correlation.

7. Appearance consistencies (features, silhouettes) and temporal consistencies (be-

tween successive frames) are maximised together using a global optimisation

technique-graph cut.

8. The scene is represented by a texture spherical remeshing technique, extend-

ing the work of [Praun and Hoppe 2003]. Multiple resolution blending with
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spherical surface continuity is used to construct a single seamless texture. This

ensures that the extent of texture blending corresponds to the spatial frequency

of the image’s features, preserving the higher frequency detail that can become

blurred with simple linear texture-blending techniques.

The work in [de Aguiar et al. 2008] uses a detailed static laser scan of the subject

as the template model. Performances are captured in a coarse-to-fine way. First, a

global model pose is inferred using a lower-detail tetrahedral model. Subsequently,

smaller-scale shape and motion detail is estimated based on a high-quality tetrahedral

model. Global pose capture employs a new analysis-through-synthesis scheme based

on image and silhouette cues. It estimates the global pose of an actor at each frame on

the basis of the lower-detail tetrahedral model. From the input footage, this scheme

robustly extracts a set of positions and constraints of physically plausible shape de-

formations in order to make the scan mimic the motion of its real-world counterpart.

After global pose recovery in each frame, a model-guided multi-view stereo and con-

tour alignment method reconstructs finer surface details at each time step. Their re-

sults show very reliable reconstructions of very complex motion exhibiting speed and

dynamics that would even challenge the limits of traditional marker-based optical

capturing approaches.

Vlasic et al [Vlasic et al. 2008] use a multi-view studio to acquire a set of syn-

chronised high-definition silhouette videos by recording a performance from multiple

distributed calibrated cameras. The silhouette from each viewpoint corresponds to a

cone of rays from the camera origin through all points of the subject. The intersection

of these cones reconstructs the subject’s visual hull. They also used a template mesh

rigged with a skeleton that matches the physical dimensions of the performer: the

skeleton is positioned within the template mesh and each vertex is assigned a weight

that is used to deform the template with linear blend skinning (LBS). Initially their

method uses the visual hulls to optimise the skeletal pose of the performer so that it
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positions bones deeply into the visual hull and maintains temporal smoothness. Dur-

ing the iteration over frames, it provides visual feedback of the frame progress to the

user and allows user corrections for especially difficult frames. The user can specify

constraints for joint positions, allowing for more robust tracking than is possible with

fully automatic methods. The method deforms a template mesh of the performer to fit

the recovered pose and silhouettes at each frame. Then an iterative algorithm is used

for non-rigid shape matching using Laplacian coordinates [Alexa 2003]. It begins with

a smoothed version of the LBS mesh as the initial guess. At each iteration, it reintro-

duces part of the original template detail and vertex position constraints to bring the

shape closer to the contours in each camera. To enhance temporal consistency, their

method interleaves a bilateral filter on the meshes for each iteration. The resulting

shapes match the silhouettes while still resembling the undeformed template. This

allows the preservation of detail in the template and capture of secondary deforma-

tion, such as flapping clothing, that makes the motion appear natural. The quality of

their output is suitable for video editing because the template ensures frame-to-frame

correspondence.

The study [Vlasic et al. 2009] describes a novel hardware system by Charles-Felix

et al [Chabert et al. 2006] which creates active illumination. The lighting hardware

consists of the top two-thirds of an 8-metre, 6th-frequency geodesic sphere with 1,200

regularly-spaced and individually controllable light sources, of which 901 are on the

sphere and the rest are placed on the floor. A central area is reserved for the subject.

Eight Vision Research V5.1 cameras are placed on the sphere around the subject, at an

approximate height of 1.7 metres relative to the central performance area. Then image

processing algorithms are used to obtain high-quality normal maps and silhouettes

from multiple viewpoints at video rates. The surface reconstruction algorithms pro-

cess this data to derive high-quality mesh sequences. The resulting mesh sequences

can be used in biomechanics to analyse complex motions, in computer games to create

next-generation characters, and in movies to create digital doubles.
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2.1.3 Object Localisation and Pose Estimation using a Graphic Model

In the work by [Sigal et al. 2004; Sigal and Black 2006b], a loose-limbed representation

for the human body similar to a graphical model was presented, in which limbs are

connected via learned probabilistic constraints, facilitating initialisation and failure re-

covery. The tracking and pose estimation problem is formulated as one of inference in

the graphical model, and belief propagation is used to estimate the pose of the body

at each image frame. Each node in the graphical model represents the 3D position

and orientation of a limb in Figure 2.3. Undirected edges between nodes represent

statistical dependencies and these constraints between limbs are used to form mes-

sages that are sent to neighbouring nodes in space and time. Additionally, each node

has an associated likelihood defined over a set of image features. The combination of

highly non-Gaussian likelihoods and a six-dimensional continuous parameter space

(3D position and orientation) for each limb makes standard belief propagation algo-

rithms infeasible. Conditional probabilities relating the 3D pose of connected limbs

are learned from motion captured training data. Similarly, probabilistic models for

the temporal evolution of each limb (forward and backward in time) are also learned.

The human pose and motion estimation are then solved with non-parametric belief

propagation [Isard 2003; Sudderth et al. 2003] using a variation of the Particle Filter

that can be applied over a general loopy graph.

The main advantages in this approach are that the complexity of the search task is

linear rather than exponential in the number of body parts, and bottom-up limb and

head detection are integrated at every frame allowing automatic initialisation and re-

covery from transient tracking failures. However, the loose-limbed representation has

difficulty in handling poses where one limb penetrates another. When self-occlusions

appear, multiple limbs may fit the same image region resulting in incorrect pose esti-

mations that poorly explain the overall image observations. Occlusion-sensitive local

image likelihoods were introduced by [Sigal and Black 2006b] that approximate the
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global likelihood by accounting for occlusions and competing explanations of image

observations by multiple limbs. Since occlusion reasoning involves interactions be-

tween non-adjacent body parts which create loops in the graphical model structure

representing the body, a variant of approximate belief propagation (BP) that is able to

infer the real-valued pose of the person in 2D was introduced.

Figure 2.3: Graphic model of the articulated human structure: Nodes represent limbs
and arrows represent statistical dependencies between limbs. Black and blue edges
correspond to kinematic and interpenetration constraints, respectively. (courtesy of
[Sigal 2008])

2.2 Learning Based Approach

In this section, we review several learning based methods in markerless motion cap-

ture, including the relevance vector machine, Gaussian process dynamical models and

dimensionality reduction techniques to identify low dimensional representations.

2.2.1 Tracking by Regression

[Agarwal and Triggs 2006; Agarwal and Triggs 2004a; Agarwal and Triggs 2004b]

take a learning-based approach to attack markerless motion capture in the monocu-

lar view setting, using regression as a basic tool to distill a large training database of
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3D poses and corresponding images into a compact model that has good generalisa-

tion to unseen examples. They use a bottom-up approach in which the underlying

pose is predicted directly from a feature-based image representation, without directly

modelling the generative process of image formation from the body configuration.

The method is purely data-driven and does not make use of any explicit human body

model or prior labelling of body parts in the image. The pose and observed image

are represented by the vectors y and x, respectively. Given the high dimensionality

and intrinsic ambiguity of the monocular pose estimation problem, the active selec-

tion of appropriate image features is critical for success. They use the training images

to learn suitable image representations specific to capturing human body shape and

appearance. Two kinds of representation have been employed. 1) When the silhou-

ette is available, the silhouette is encoded in terms of the distribution of its softly

vector quantised local shape context descriptors [Belongie et al. 2002], with the vector

quantisation centres being learned from a representative set of human body shapes.

This transforms each silhouette to a point in a 100D space of characteristic silhou-

ette shapes. Such an encoding allows 3D body pose to be recovered by using direct

regression on the descriptors. 2) When the silhouette is not available, the observed im-

age is used to directly compute histograms of gradient orientations on local patches

densely over the entire image (using the SIFT and HOG descriptors). These are then

re-encoded to suppress the contributions of background clutter using a basis learned

using Non-negative Matrix Factorisation [Lee and Seung 1999] on training data.

The pose recovery problem reduces to estimating the pose from the vectorial im-

age representation. Given a set of labelled n training examples (x, y), the Relevance

Vector Machine [Tipping 2001] is used to learn a smooth reconstruction function y =

r(y̌, x), valid over the region spanned by the training points. This function directly

encodes the inverse mapping from image to body pose. The forward mapping from

body pose to image observations can be more easily explained by projecting a human

body model or learning image likelihoods. The function is a weighted linear combina-
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tion r(x) = ∑kαkϕk(y̌, x) of a presanctified set of scalar basis functions {ϕk(y̌, x)|k =

1...p}, where,αk denotes the weight vectors. They are damped to control over-fitting,

and sparse in the sense that many of them are zero. Sparsity is ensured by the use of

the Relevance Vector Machine that actively selects the most “relevant” basis functions.

At each time step t, a state estimate y̌ is obtained from the previous two pose vectors

using an autoregressive dynamical model. Incorporating this preliminary pose esti-

mate y̌ to the regression model helps to maintain temporal continuity and to disam-

biguate pose in cases where there are several possible reconstructions.

2.2.2 Gaussian Process Dynamical Model

The prior dynamic model of pose and motion plays a central role in 3D monocular hu-

man tracking. It can resolve problems caused by ambiguities, occlusions, and image

measurement noise. Effective models for human tracking can be learned using the

Gaussian Process Dynamical Model (GPDM) [Wang et al. 2006], even when modest

amounts of training data are available. The GPDM is a latent variable model with a

nonlinear probabilistic mapping from latent positions x to human poses y, and a non-

linear dynamic mapping on the latent space. It provides a continuous density function

over poses and motions that is generally non-Gaussian and multimodal. Given train-

ing sequences, one simultaneously learns the latent embedding, the latent dynamics,

and the pose reconstruction mapping. With Bayesian model averaging a GPDM can

be learned from relatively small amounts of data, and it generalises gracefully to mo-

tions outside the training set. [Urtasun et al. 2006a] proposed a balanced GPDM for

learning smooth models from training motions with stylistic diversity, and showed

that they are effective for monocular human tracking. Therefore, the tracking problem

is formulated as a MAP estimator on short pose sequences in a sliding temporal win-

dow. Estimates are obtained with deterministic optimisation, and look remarkably

good despite very noisy, missing or erroneous image data and significant occlusions.
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In the line of GPDM, [Ek et al. 2008] takes a learning based approach where it

models both silhouette observations, joint angles and their dynamics as generative

models from shared low dimensional latent representations using the Gaussian Pro-

cess Latent Variable Model [Lawrence 2005]. Each image is background subtracted to

get its silhouette. As in [Agarwal and Triggs 2006] each silhouette is represented using

shape context histograms [Belongie et al. 2002]. Each contour is subsampled with one

pixel spacing, acquiring about 100 - 150 histograms for each image. To reduce dimen-

sionality of the descriptor and remove the effects of ordering, they vector-quantise the

histograms using K-means clustering, resulting in a 100D silhouette descriptor. Gen-

erative methods model the space of silhouettes as a function of pose. This correctly

reflects the structure of the problem as each silhouette could have been generated by

several different poses but each pose can only generate one single silhouette. Learn-

ing a low-dimensional representation of the pose is not required, so it is not necessary

to fall-back on approximative methods for solving the inverse of this generative map-

ping. Therefore the latent representation reflects the dynamics of the data and can

predict poses over time in a simple manner. The model requires no manual initialisa-

tion when predicting sequential data but automatically initialises from training data.

Wang et al’s approach [Wang et al. 2008] is also inspired by the Gaussian process

latent variable model [Lawrence 2005]. The GPLVM models the joint distribution of

the observed data and their corresponding representation in a low-dimensional latent

space. It is not, however, a dynamical model; rather, it assumes that data are gen-

erated independently, ignoring temporal structure of the input. Here the GPLVM is

augmented with a latent dynamical model, which gives a closed-form expression for

the joint distribution of the observed sequences and their latent space representations.

The incorporation of dynamics not only enables predictions to be made about future

data, but also helps to regularise the latent space for modelling temporal data in gen-

eral. The unknowns in the GPDM consist of latent trajectories and hyperparameters.

Generally, if the dynamics process defined by the latent trajectories is smooth, then
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the models tend to make good predictions. Initially a maximum a posteriori (MAP)

algorithm is introduced for estimating all unknowns. To learn smoother models, three

alternative learning algorithms are used, namely, the balanced GPDM [Urtasun et al.

2006a], manually specifying hyperparameters, and a two-stage MAP approach. These

algorithms present trade-offs in efficiency, synthesis quality, and generalisability.

2.2.3 Dimensionality Reduction and Manifold Learning on Visual Track-

ing

Human motion capture involves searching in high dimensional space (often more

than 30 dimensions). Unavoidably, it suffers from the “curse of dimensionality”. That

is, the computational complexity of searching the entire space increases exponentially

as a function of dimensionality. One possible way to deal with the “curse of dimen-

sionality” is to carefully design algorithms to explore the solution in a sensible and

efficient way. An alternative way is by decreasing the dimensionality of the original

problem and solving the problem in a lower dimension space. The class of these ap-

proaches is often referred to as dimensionality reduction. Dimensionality reduction is

constructed on the premise that many high dimensional problems have a considerable

amount of redundancy and irrelevance to the solution, with only a portion of infor-

mation crucial for the solution. In fact, lower dimensional variables are often most

necessary to present and describe the intrinsic information of problems. These lower

dimensional variables are usually called latent or hidden variables. Latent variables

usually can be figured out by mapping original data from high dimensional space to

low dimensional space via some function. Mathematically, where xi ∈ Rd denotes la-

tent variables, yi ∈ RD (i = 1...N) denotes the original data in the observation space,

there is some function f such that:

yi = f (xi,Θ) +σi
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where, σi is random noise, and Θ are parameters of the function f . The objective is

to estimate the appropriate parameters Θ. This resembles the canonical parametric

regression framework.

Despite the high dimensionality of pose configuration space, many human activi-

ties lie intrinsically on low dimensional manifolds. Exploiting this property is essen-

tial to reveal the high degree of correlation in human motion and constrain the solu-

tion space for tracking and posture estimation. There are many studies [Tangkuampien

and Suter 2006; Lee 2007; Elgammal and Lee 2009] that show interest in learning low

dimensional representations of the pose configuration manifolds.

[Tangkuampien and Suter 2006] proposed an efficient technique based on kernel

principal component analysis (KPCA) [Bernhard et al. 1999], which is defined for out-

of-sample points. KPCA is used to learn two feature space representations, which are

derived from the synthetic silhouettes and relative skeleton joint positions of a single

generic human mesh model. After training, novel silhouettes of previously unseen

actors (and of unseen poses) are projected through the two manifolds using Locally

Linear Embedding [Roweis and Saul 2000] reconstruction. The captured pose is then

determined by calculating the pre-image [Scholkopf et al. 1998] of the projected sil-

houettes. An inherent advantage of KPCA is its ability to de-noise input images be-

fore processing, as shown in [Bernhard et al. 1999] with images of handwritten char-

acters. There is, however, no previous work on the de-noising of human silhouettes

for human motion capture using the KPCA projection. This novel concept allows the

inference of relatively accurate poses from noisy unseen silhouettes by using only one

synthetic human training model. A limitation of this approach is that silhouette data

will be projected onto the subspace spanned by the training pose, hence restricting the

output to within this subspace.

Lee et al [Lee 2007] proposed an approach to model the visual manifold of an ar-

ticulated object observed from different view points. The model introduced here is
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generative. However, it generates observations for a certain motion as observed from

different view points without any explicit 3D body model. Rather, this is achieved

through modelling the visual manifold corresponding to different postures and views.

An embedding of the kinematics and the motion manifold invariant to the view are

acquired by using joint angles data. Then a parameterisation of the motion manifold

in the embedding space and the dynamics are obtained through learning a flow field.

Given view-based observations, view-based nonlinear mapping functions from the

kinematic manifold embedding space to the observations in each of the views are con-

structed. The view factor can then be factorised using high order singular value de-

composition [Lathauwer et al. 2000] according to the coefficients of view based func-

tions, arranged as a tensor. With the view factor, the view manifold can be explicitly

modelled in coefficient space, which leads to a representation of the view manifold

invariant to pose configuration. Meanwhile individuals’ shape variabilities are fac-

torised within the same model. This results in two low-dimensional embeddings for

the pose configuration and the view, as well as a generative model that can generate

observations given the two manifolds’ parameterisations. This fits perfectly into the

Bayesian tracking framework as it provides: 1) a low dimensional state representation

for each of the view and pose configurations, 2) a constrained dynamic model since

the manifolds are modelled explicitly, and 3) an observation model, which comes di-

rectly from the generative model used.

Elgammal et al [Elgammal and Lee 2009] considered motion observed from a cam-

era (stationary or moving), with motion representation as a kinematic sequence com-

ing from a sequence of observations. With an accurate 3D body model, camera cali-

bration, and geometric transformation information, they can explain Y as a projection

of an articulated model. The dynamic kinematic sequence lies on a manifold called

the kinematic manifold, and the observations lie on a manifold labelled the visual

manifold. In fact, observations lie on a product of the body configuration and view

manifolds. The relation between the kinematic manifold and the visual input mani-
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fold can be regarded as a graphical model connecting the two manifolds through two

latent variables: a body configuration variable and a view point variable. The body

configuration variable is shared between both the kinematic manifold and the visual

manifold. The view point variable represents the relative camera location to a human

centred coordinate system. Another variable affecting the observation is the shape

variability among different subjects, i.e. the human shape space, or the shape style.

Their method is able to relate the kinematic manifold with the visual input manifold

in order to infer configuration from input, while also modelling the visual manifold

with all its variabilities due to motion, view point, and shape style. In particular, it can

deal with both body configuration and view points as continuous variables. This fa-

cilitates tracking subjects with varying view points due to camera motion or changing

subject view with respect to the camera.

This view variant human motion tracking is formulated as tracking on a torus sur-

face. The torus is used as a state space for both pose configuration and view. The torus

is deformed to the actual visual manifold and to the kinematic manifold through two

nonlinear mapping functions. The torus model is suitable for one dimensional man-

ifold motions, whether periodic, such as walking and running, or non periodic, for

example golf swings or jumping. The experimental results showed that this model

is superior to other representations for the task of tracking and pose/view recovery

since it provides a low dimensional, continuous, uniformly spaced state representa-

tion.

2.3 Graph Based Image Segmentation and Tracking

The performance of silhouette-based human motion capture is heavily affected by

the results of image segmentation. When low colour contrast between the back-

ground and foreground is present, the background and foreground colour histograms

are overlapped and it becomes hard to distinguish and classify them. As a conse-
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quence, noticeable artifacts appear in the image segmentation. This often causes a

multimodal landscape and corrupted global optimum in the observation likelihood

function. Thus, many wrong poses may be considered equally likely to be the good

pose. Ultimately, inaccurate image segmentation can lead to a high chance of mis-

tracking or even complete failure of tracking. Fortunately, human motion capture has

a strong temporal correlation, i.e., that activity is continuous over time. It is therefore

wise to analyse human motion capture by accounting for temporal information. A

natural research direction would utilise historical information to help with image seg-

mentation. These kinds of methods would be beneficial at least from two standpoints.

Firstly, the previous pose estimation suggests a reasonably good initial human body

position and human body shape. This means current image segmentation should be

temporally consistent with the previous pose estimation. If the sampling rate (the

frame rate) is high, the temporal correlation is very strong and useful. Furthermore,

more accurate image segmentation, and therefore improved pose estimation, results

in better image segmentation for the next frame. These kinds of recursively temporal-

dependent relationships have been addressed by Bray et al [Bray et al. 2006; Kohli

et al. 2008]. Their method incorporates the historical pose as a prior in the dynamic

graph cut [Kohli and Torr 2007] to improve image segmentation, and uses improved

image segmentation to help the current pose estimation.

There are various ways to segment the image. The graph based approach has

shown to be a powerful framework which provides a general formalisation based

on graph theory, and a probabilistic construction based on Markov Random Field.

This allows many discrete combinatorial optimisation schemes to be used for solving

image segmentation.
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2.3.1 Simultaneous Segmentation and Pose Estimation

Bray et al [Bray et al. 2006; Kohli et al. 2008] proposed a novel algorithm for perform-

ing integrated segmentation and 3D pose estimation of a human body from multiple

views. The estimation and segmentation are formulated in a Bayesian framework

building on the object-specific Markov Random Field (MRF) and provides an efficient

method for its solution called PoseCut. A human pose-specific shape prior is incor-

porated by a stick figure in a pose-specific MRF for image segmentation, to obtain

high quality segmentation results. Given the label configuration x and pose configu-

ration Θ, image segmentation on the pose-specific MRF can be done by minimising

an energy function:

Ψ(x, Θ) = ∑
i
ϕ(Lbg|xi) +ϕ(L f g|xi) +ϕ(xi|Θ) +∑

j
ϕ(D|xi, x j) +ψ(xi, x j) (2.3.1)

where, ϕ(Lbg|xi) and ϕ(L f g|xi) denotes the unary term which imposes individ-

ual penalties for assigning the background and foreground label to pixel i. ϕ(xi|Θ)

denotes the shape-prior term given by:

ϕ(xi|Θ) = − log
(

1
1 + exp (µ ∗ (d(i, Θ)− dr))

)

where,d(i, Θ) denotes the distance of a pixel i from the shape defined by Θ. The

parameter dr decides how “fat” the shape should be, while parameter µ determines

the ratio of the magnitude of the penalty that points outside the shape have compared

to the points inside the shape. The contrast term ϕ(D|xi, x j) of the energy function is

defined as:

ϕ(D|xi, x j) =


λ exp

(
−g2(i, j)

2σ2

)
1

dist(i, j) if xi ̸= x j

0 otherwise

where g2(i, j) measures the difference in the RGB values and dist(i, j) gives the spatial
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distance between pixels i and j. ψ(xi, x j) takes the form of a Generalised Potts model:

ψ(xi, x j) =


Ki j if xi ̸= x j

0 otherwise

Since the equation (2.3.1) satisfies the sub-modularity condition [Kolmogorov and

Zabih 2002], it can be minimised by the fast dynamical graph cut algorithm. Further-

more, the pose estimation can then be formulated in nested optimisation with respect

to the label configuration:

Θopt = arg min
Θ

(
min

x

(
∑

Nviews

Ψ(x, Θ)

))

Their experiments demonstrate that this approach is able to simultaneously obtain

excellent segmentation and pose estimation results.

2.3.2 Transductive Image Segmentation

In the context of image segmentation, some graph terminologies in graph theory are

reinterpreted below. Given an m by n image, let a undirected graph G = (V, E) with

N = m× n nodes. Its node vi denotes each pixel on the image and an edge ei j denotes

a connection between a pixel vi and its neighbouring pixel v j
1. The N by N similarity

matrix W is defined to describe the similarity between the pair of pixels. Particularly,

wi j is the similarity measurement between pixels vi and v j. The similarity matrix actu-

ally is a generalised adjacency matrix that describes the connectivity between nodes.

The degree matrix D is an N by N diagonal matrix, whose the ith diagonal element

di = ∑ j wi j. The graph cut is a partition that separates the original graph into two dis-

connected subgraphs. The cost of the graph cut is equal to the summation of similarity

values over cutting edges, cut(A, A′) = ∑i∈A, j∈A′ wi j. The Laplacian matrix is an N by

1Depending on the definition of the neighbourhood, the graph is varied. The 4-connected neighbour-
hood and 8-connected neighbourhood are commonly used.
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N symmetric matrix with one row and column for each node defined by L = D−W.

It holds many favourable properties of the graph listed below:

1. L is always positive semidefinite.

2. The number of times 0 appears as an eigenvalue in the Laplacian is the number

of connected components in the graph.

3. The smallest eigenvalue is always 0.

4. The second smallest eigenvalue is called the algebraic connectivity.

5. The smallest non-trivial eigenvalue of L is called the spectral gap or Fiedler

value.

Optimisation of image segmentation often involves integration over the entire fea-

ture space. This is usually analytically intractable. In their work [Duchenne et al.

2008], Duchenne et al point out that as the image segmentation problem deals with

finite space, the integration over the entire feature space can be approximated by a

discrete summation. Particularly, a laplace Beltrami operator is approximated by a

Laplacian matrix. The transductive approach reduces an intractable integration prob-

lem to a discrete approximation, and eventually simple, solvable linear equations.

In their work, segmentation is treated as statistical transductive inference, in which

some pixels are already classified correctly, and remaining ones need to be classified.

The method utilises a laplacian graph regulariser, a powerful manifold learning tool

based on the estimation of variants of the laplace Beltrami operator and tightly related

to diffusion processes. The distinction between transductive and inductive inference

is that there is not any unknown input, rather all inputs have known class labels.

Thus, given a set of classified pixels, the task is to infer the class label of remaining

pixels rather than infer the class label of novel pixels from different images. In this

case, the generalisation process to avoid overfitting becomes less important, and a

better fit decision boundary is more desirable.
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In traditional optimisation of image segmentation, the objective is to search for a

smooth function f from the input space into the output space such that f (xi) is close

to the associated output yi (class label) on a training set. In Duchenne et al’s work, it

is assumed that the points are generated by a probability distribution2 p with a sup-

port on a submanifold M of Euclidean space. Further, they believe the function value

in low density regions (equivalently, the segmentation boundary regions) should be

allowed to vary more than in other regions, since those are places where misclassi-

fications occur. Hence, by imposing a control parameter s > 0, their approach can

control how low the density should be to allow large variations of f . With consider-

ation of the confidence ci of the training pixel assignment, the inference problem can

be summarised as follows:

min
f

∑
i∈Train

ci(yi − f (xi))
2 +

∫
M
∥∇ f ∥2 psdv

Minimisation to find a smooth function which infers the output label yi, given xi,

minimises estimate errors while penalising overfitting, accounting for the density of

the input probability distribution as well as a low density control parameter. ci are

positive coefficients measuring how much the training pair (xi, yi) will contribute to

overall errors, and also reflecting the confidence that the class label yi is correct. When

ps is small it allows a large magnitude of curvature to occur at a particular point, oth-

erwise it encourages small changes at that point. However, the integral in the above

formulation is mathematically intractable. An alternative from Hein et al’s results

[Hein et al. 2005] is an equivalent discrete approximation of this problem (more de-

tails can be found in [Duchenne et al. 2008]). It can be given by:

min
F∈Rn ∑

i∈Train
ci(yi − Fi)

2 + FT LunF

2 p can be viewed as a density with respect to the Lebesgue measure of Euclidean space
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where, Fi = f (xi) i = 1....N × N is an estimate label for xi. Lun is a unnormalised

Laplacian matrix. Further, it can be written as:

min
F∈Rn ∑

i∈Train
(F−Y)TC(F−Y) + FT LunF

where, C is an N by N diagonal matrix for which the ith diagonal element is ci for a

training pixel, and 0 for the remaining pixels. Similarly Y is an N-dimensional vector

for which the ith element is yi for a training pixel, and 0 for the remaining pixels. For

the above quadratic minimisation problem, it is simply reduced to the solution of the

following linear system by assigning the its gradient to zero:

(Lun + C)F = CY (2.3.2)

By assuming Fi = yi, ci = ∞, i ∈ Train, segmentation is obtained by solving this

simple linear system. Once again, the nature of the image segmentation problem is a

linear combinatorial problem accounting for non-linear neighbourhood smoothness.

Overall the transductive segmentation algorithm is outlined by Algorithm 3.

Algorithm 3 Transductive Segmentation

1. Calculate the kernel k(xi, x j) = exp{− ∥xi−x j∥2

2σ2
g
− ∥C(xi)−C(x j)∥2

2σ2
c

}, and degree

d(xi) = ∑n
i= j k(x j, xi), where σg and σc are scales for the geometric and chromatic

neighbourhoods, respectively. C(xi) denotes the RGB levels of a square patch of
size 2m + 1 around the pixel xi.

2. Calculate the normalised kernel and degree by K(xi, x j) =
k(xi ,x j)

(d(xi)d(x j))λ
, where

λ = 1− s/2. D(xi) = ∑n
i= j K(x j, xi)

3. Compute the unnormalised Laplacian matrix L = D−W
4. Solve the linear system 2.3.2
5. Threshold the output to 1/2, if Fj > 1/2, then Fj = 1, j ∈ Remain
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2.3.3 Laplacian Matrix and Tracking

The Laplacian matrix corresponding to a finite sample of data points asymptotically

approaches a continuous Laplacian operator. This is generally believed to be true, pro-

vided the sample size is increasing. On the other hand, the Laplace filter which uses

difference to approximate the Laplacian is often used to detect large variations in an

image, and it serves as an edge detector in image processing. Depending on the def-

inition of the neighbourhood, both Laplacians capture the similarity or dissimilarity

in neighbourhoods.

By definition the Laplacian matrix is equal to the degree matrix minus the sim-

ilarity matrix L = D −W, and the summation of each row is equal to zero. This

corresponds to a meaningful interpretation appearing in the image segmentation lit-

erature. If F denotes an estimated segmentation label, and L denotes the Laplacian

matrix, then the regularisation term FT LF means any segmentation label F should be

consistent with the neighbouring smoothness which is encoded in Laplacian matrix

L. Otherwise, it incurs the residual cost FidiiFi − ∑k∈i′sneigh FiwikFj. Apparently, if all

elements in F have the same label, the residual cost is minimised and equal to zero.

However, this is not the desired image segmentation result. Hence, prior knowledge

is added via an extra term, called the data term, to constrain the segmentation re-

sult. Thus image segmentation becomes a problem that uses prior knowledge data

as a clue, while conforming to the naturally grouped regions in the image. Optimal

segmentation is found when both the data and smooth term are minimised.

For human motion capture, the objective is slightly different from image seg-

mentation. It requires a more accurate (usually more difficult) estimate of the hu-

man pose θ. Therefore, it often incorporates stronger prior knowledge (such as fore-

ground/background subtraction) to guarantee better tracking performance than im-

age segmentation does. This actually involves strong human judgement as a prior, for

example that the foreground pixel belongs to a tracking subject. This assumption is
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simple for a human to make, but a computer cannot come up with it by itself. Thus,

considering the neighbouring smoothness and foreground assumption, an appropri-

ate objective function for human motion capture can be given by:

min
θ∈Rn
∥F(θ)−Y∥2 + F(θ)T LF(θ)

The equation means segmentation generated from the estimated pose θ should obey

the prior judgement Y (foreground subtraction) as well as conform to the natural im-

age regions.
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Chapter 3

Architecture Overview and
Sequential Tracking Pipeline

This work adopts the generative approach rather than the discriminative approach,

because with this approach it is possible to generate synthetic data points and ap-

proximate posterior distributions in temporal manner. This has better behaviour than

recovering pose configurations from image observation space. Herein is presented

a big picture of the entire architecture, and an introduction to the functionalities of

the major components, including template modelling & automatic initialisation, ob-

servation likelihood evaluation, pose estimation and the sequential Bayesian tracking

pipeline. The relationships and inter-operations between basic building blocks are

explained in the sequential Bayesian filtering framework. Subsequent chapters will

separately elaborate each component and address more technical details.

3.1 Architecture of Human Motion Capture

As with many other tracking systems, markerless motion capture can be regarded as

a dynamic system, in which the current event has very strong temporal connections

to preceding and successive events. The Contextualised Dynamical Architecture in

Figure 3.1 visually captures the framework architecture in the temporal domain as

well as functional components below:

39
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Figure 3.1: Contextualised Dynamical Architecture
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1. True posture and observation: There is an actor/subject performing. At any

given instant time t, the actor has a posture xt∗ (a vector including a position and

joint angels), and an observation yt (e.g. multiview images) about the posture.

The ultimate goal is to estimate the true posture xt∗ for every instant

2. Digital Acquisition: Actor’s performance is captured by multiple distributed

digital cameras, and stored as the sequence of digital images or videos.

3. Skeleton Template Model: To be able to describe the posture of the subject, we

adopt the standard articulated skeleton and kinematics routines in computer

graphics. The posture estimate xt at time t is described by a template skeleton

associated with a series of joint angles. Ideally, we hope to find the best match

xt to yt. The details of how to build the generic skeleton is described in Chapter

4.

4. Subject Specific Modelling: To improve tracking accuracy and robustness, a

more advanced template body model is built according to the real subject ap-

pearance. This technique captures the gender, height, weight, shape and mus-

cular tone appearance features and incorporates them into the pose deformable

model. As a result, given a pose xt, we can render a virtual character in the cor-

responding posture. This can provide much richer information about the subject

and helps reduce ambiguities in tracking. The technique details can be found in

Chapter 4 and Section 6.2.

5. Observation Likelihood: Directly observing or obtaining the true pose is not

possible. The core of the framework is to find the best possible estimate xt for yt.

In other words, we want to find the maximum observation likelihood p(yt|xt)

in the sense of the Bayesian paradigm (more analytic details will be elaborated

in following sections). The observation likelihood often takes the observations

(information related to the true pose yt) and a hypothesis estimate xt as inputs,
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evaluates their similarity and outputs the similarity score. This usually requires

that the observations and a hypothesis estimate essentially have a comparable

form. The evaluation of the observation likelihood is a crucial part of marker-

less motion capture, essentially related to the optimisation process, ultimately

the tracking quality, and computational performance. We have proposed sev-

eral novel strategies found in Chapter 6 and 7 to boost accuracy, robustness and

performance.

6. Feature Extraction: Directly utilising digital images usually is not very effective.

Feature extraction can be used to retrieve much more pose-relevant informa-

tion, and remove irrelevant information and noise interference. For instance, the

silhouette feature is often extracted and used in human tracking applications.

Some techniques are introduced in Chapter 6 and 7 along with algorithms.

7. Synthesis: To make observation and hypothesis estimates comparable, a virtual

character must be synthesised. A common approach is to perform perspective

projection, using camera calibration parameters, to generate these images. This

is described in Section A.1.

8. Optimisation on Pose Estimation: optimisation is performed to maximise the

posterior probability. It uses the pose from the previous time as an initial po-

sition, iteratively evaluates the observation likelihood and ideally converges to

the global optimum. The converged result is then regarded as the pose esti-

mation for the current time t. However, because of the high dimensionality of

skeleton parameterisation, ambiguities associated with the limited number of

cameras and self-occlusions, this is a multimodal, high dimensional optimisa-

tion problem. As the conventional gradient-based method has difficulties in

solving this problem, a stochastic approach is often used instead. In Chapter 5,

we describe several nature-inspired algorithms to conquer this problem.
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9. Temporal Dynamics: If temporal transitional information is available, the cur-

rent pose can be transformed to the successive time, with the same procedure

repeated each time. Many studies have been focused on learning the temporal

model for regression. Some examples are introduced in Section 2.2.

3.2 Sequential Bayesian Filtering Framework

Having a big picture of how pose estimation performs in the context of human motion

capture, this section is intended to outline how state estimation is handled by the

sequential sampling method. The objective is to estimate the state xt by calculating

the expectation with respect to the posterior probability.

Intuitively, markerless motion capture is constructed on the basis of the dynamic

system that explicitly characterises the causality (between the state and the obser-

vation) and the dependency (between the state and the prior state in the temporal

domain), given a pair of hidden states and an observation corresponding to a cer-

tain point in time. Provided a state is independent of the other states, the first-order

Hidden Markov Model [Baum et al. 1970] is sufficient to capture the sequential charac-

teristics of states. The first order Hidden Markov Model assumes only a dependency

between the current state and the previous state. All other states are ignored. There-

fore, estimating the current state no longer requires storing all historical states. On the

other hand, human motion can be considered as a sequence of states (human poses)

and signals (associated observations) emitted from these states. The above framework

can be reinterpreted as a dynamic system contextualised by human motion capture.

At a certain point in time t, there is an observation yt that is the observable evidence

of the human pose, and a hidden state xt that is an underlying true pose. The goal is

to find the true state, given current and historical observations.

In reality, where dynamic systems are often analytically intractable, it is impossi-

ble to determine the exact value of the true state xt. Hence, an approximate estimate
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x̂t is calculated instead. From the computer vision literature, a recursive Bayesian for-

mulation [Doucet et al. 2000; Arulampalam et al. 2002], which recursively calculates

the expectation of xt over the posterior p(xt|yt:1), has been proven to be a reliable esti-

mate and is widely employed. It starts with the previous posterior distribution, then

maximises it by considering the product of the observation likelihood and the prior

one in the sense of the Bayesian paradigm. The optimal estimate is found when the

posterior probability is maximised.

In working with the posterior probability, one of common methods uses a sam-

pling technique to approximate the posterior distribution. It is not practical to gener-

ate a large number of dense samples from the posterior distribution, but observation

indicates that any sample has a similar probability to its nearby samples, so apply-

ing the variance reduction1to a moderate number of samples does not compromise

the statistical significance of the original posterior distribution. With this idea, impor-

tance sampling [Denny 2001] can be used to approximate the posterior distribution by

introducing a relatively small number of samples and associated importance weights

{xi
t, wi

t}N
i=1. The empirical estimate of the posterior probability can then be given by

p(xt|y1:t) ≈ ∑N
j=1 w j

tδx j
t
(xt).

Figure 3.2 illustrates a procedure for estimating the state at time t and t + 1. Given

a posterior distribution {xi
t−1, wi

t−1}N
i=1 at time t − 1, samples are denoted by black

round symbols whose positions correspond to the values of states and sizes reflect

the values of weights. The first step is to redraw samples from the previous posterior

distribution where samples with larger weights are more likely to be drawn. Conse-

quently, samples with larger weights are more likely to be selected as new samples

than others. These new samples are subsequently perturbed by Gaussian random

noise in order to explore new positions. Weights are then updated by comparing

new positions with observations. For instance, wt = exp{−D(xt, yt)} can be used
1That is equating the probability of the sample to the probability of its nearby samples and normalis-

ing over all possibilities, provided its nearby samples have approximately the same probability. In other
words, overall the distribution has a smooth variation.
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Figure 3.2: Sequential Sampling Framework
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as an update equation, where D() is a metric. The above procedure is repeated un-

til samples converge on the optimal mode of the posterior distribution. Finally, the

expectation can then be calculated from E[xt] ≈ ∑N
i=1 wi

tx
i
t.

Through application of the temporal dynamical model, the posterior distribution

at time t evolves to the posterior distribution at time t + 1. The above procedure is

then repeated until samples converge on the optimal mode.

3.3 Particle Filter on Visual Tracking

Particle filter methods have become a very popular class of algorithms to solve these

estimation problems numerically in an online manner, i.e. recursively as observations

become available, and are now routinely used in fields as diverse as computer vision,

econometrics, robotics and navigation. Point masses or particles, with corresponding

weights, are used to form an approximation of a probability density function (PDF).

The particles are propagated over time by Monte Carlo simulation to obtain new par-

ticles and weights (usually as new information is received), thus forming a series of

PDF approximations over time. Particle filter methods allow the Bayesian estimation

to be carried out in an approximate but structured manner. This is clearly useful in

situations where some required posterior PDFs do not yield an analytical form. It is

based on a sequential Monte Carlo method used for Recursive Bayesian Filtering.

3.3.1 Recursive Bayesian Filtering

Figure 3.3: First-order Hidden Markov Model

Many real systems share a common underlying dynamic structure that consists of
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a sequence of states at successive times, with each state associated with observations

or measurements. In reality, the true states are usually unknown and hidden; only the

observations are accessible. Therefore the challenge of inferring the true states and

analysing the behaviour of the system, provided the a priori observations, appears

substantial. The first-order Hidden Markov Model is often used to model these dy-

namic and sequential properties of systems. It can be represented in the graphical

form illustrated in Figure 3.3. Given a set of sequential states {xt; t ∈ N} and its as-

sociated observations {yt; t ∈ N} (conforming in the sense of temporal propagation),

the causal relationships of state xt at time t and its predecessors x1:t−1 (x1:t−1 denotes

the set {xi; i = 1..t − 1}), and observations y1:t are characterised as the propagative

conditional probabilities accounting for the uncertainty of dependencies. Substan-

tially, the first-order Hidden Markov Model assumes the true state is conditionally

independent of all states prior to the immediately previous state, and the observation

is dependent solely upon the associated true state but is conditionally independent of

all states other than the current state. These are mathematically formulated as:

p(xt|x1:t−1) = p(xt|xt−1) (3.3.1)

p(yt|x1:t) = p(yt|xt) (3.3.2)

With the Hidden Markov Model, the useful posterior p(xt|y1:t) probability in the

Bayesian framework can be reformulated in the context of the state space model. Let’s

go through the induction by starting with a joint probability equation:

p(xt, y1:t) = p(xt, y1:t)

p(xt|y1:t)p(y1:y) = p(yt|y1:t−1, xt)p(y1:t−1, xt)

p(xt|y1:t) =
p(yt|y1:t−1, xt)p(xt|y1:t−1)p(y1:t−1)

p(y1:t)

p(xt|y1:t) =
p(yt|y1:t−1, xt)p(xt|y1:t−1)

p(yt|y1:t−1)
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With Markov assumptions 3.3.1 and 3.3.2 the equation can be rewritten:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(3.3.3)

By the Chapman Kolmogorov equation:

p(xt|y1:t−1) =
∫

p(xt|xt−1, y1:t−1)p(xt−1|y1:t−1)dxt−1

Again using Markov assumptions:

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3.3.4)

Combining 3.3.3 and 3.3.4, the recursive formula can be written as:

p(xt|y1:t) =
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

p(yt|y1:t−1)

And by removing the normalising constant p(yt|y1:t−1):

p(xt|y1:t) ∝ p(yt|xt)
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3.3.5)

This is called the recursive Bayesian filter formula. It actually states that the predictive

posterior is dependent upon the likelihood-weighted expectation of temporal dynam-

ics / transition priori p(xt|xt−1) with respect to the previous posterior p(xt−1|y1:t−1).

As the integral in the recursive Bayesian filter equation does not always have a

closed form solution, researchers have investigated various sampling techniques to

approximate the posterior calculation. The optimum way to explore search space is to

allocate evaluations on samples in proportion to their observation likelihood related

to the rest of the population. In this way, good candidates receive an exponentially

increasing number of evaluations in successive resampling. Sequential Importance
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Resampling is one of the Importance Sampling A.2 techniques which construct a set of

samples with associated weights (called importance weights) to approximate a prob-

ability distribution. Over time, it automatically updates and adjusts the samples and

weights according to current available observations so that the posterior distribution

at any time can be approximated by the samples and their weights.

Overall, a generic Particle Filter algorithm is summarised in Algorithm 4 and vi-

sually depicted in Figure 3.4.

Algorithm 4 A generic Particle Filter algorithm

for i = 1 to N do draw xi
t from π(xi

t|xi
t−1, yi

t) end for

for i = 1 to N do wi
t = wi

t−1
p(yi

t|xi
t)p(xi

t|xi
t−1)

π(xi
t|xi

t−1 ,yi
t)

end for

for i = 1 to N do compute the normalised importance weights wi
t = wi

t/∑N
j=1 w j

t
end for
Compute an estimate of the effective number of samples as N̂e f f = 1/∑N

i=1 (w
i
t)

2

if N̂e f f < Nthr then
Draw N samples from the current sample set with probabilities proportional to
their weights. Replace the current sample set with the new one.
for i = 1 to N do set wi

t = 1/N end for
end if
Use the temporal model to predict the next state xt+1 with Gaussian noise to simu-
late uncertainty

It is worth noting that step five of above Algorithm 4 is a resampling step. The pur-

pose of it is to deal with the degeneracy problem of the common importance sampling

algorithm. After a few iterations, all but one sample will have negligible normalised

weight. This has almost zero contribution to the estimate of the posterior p(xt|y1:t)

but reduces the effectiveness of the algorithm. It is sensible to eliminate samples when

their weights fall below a certain threshold. A measurement of the effectiveness of the

estimate, called the number of effective samples Ne f f , was proposed in [Liu, Jun S.

and Chen, Rong 1995; Liu and Chen 1998]. It was defined as:

Ne f f =
N

1 + Var(w∗it )
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where w∗it = p(xi
t|y1:t)/π(xi

t|xi
t−1, yt). Although Ne f f can not be evaluated exactly, an

estimate N̂e f f can be approximated by:

N̂e f f =
1

∑N
i=1 (w

i
t)

2
(3.3.6)

The number of effective samples indicates the degree of uniformness in spreading

the probability mass amongst all the samples. For instance, the even distribution of

probability mass has a large value of Ne f f , whereas the peaked distribution of prob-

ability mass has a small value of Ne f f which also indicates severe degeneracy. At

the fifth step of above Algorithm 4, when Ne f f is smaller than the threshold Nthr,

the resampling procedure is performed in order to eliminate samples that have small

weights and therefore concentrate on samples with large weights. Alternatively, se-

lecting a better importance distribution π(xi
t|xi

t−1, yi
t) also can minimise the variance

of w∗it , resulting in larger Ne f f . Theoretically, when π(xi
t|xi

t−1, yi
t) = p(xi

t|xi
t−1, yi

t), the

importance distribution is optimal with a minimum of variance. However, it is always

difficult to be resolved.

Figure 3.4: Particle Filter Algorithm (courtesy of [Gall et al. 2007])



Chapter 4

Subject Specific Body Shape
Modelling and Automatic
Initialisation

We start with a fundamental question: how much reliable information about the target

is available at the upper bounds of tracking accuracy, and is it possible to track with-

out knowing anything about the target? To some extent, the information acquired

offline is a fundamental prerequisite for guaranteeing successful tracking. Consider-

ing tracking as an inference process, the goal is to infer the current state of a subject

via available information which is often hidden in both observations and prior knowl-

edge. How much effort should be put into extracting information from observations

and prior knowledge is situationally dependent. Sometimes, it is easier to extract the

current state directly from observation even without prior knowledge. On the other

hand, if observations are entangled or information contained in prior knowledge is

easier to acquire, it is wise to put more effort into prior knowledge. We believe hu-

man tracking belongs to the later case in which the relationship between the current

posture and image observations is a complicated function in high dimensional space.

Thus, the incorporation of more prior knowledge, such as building a subject specific

appearance model for the tracking subject, is a sensible way to attack the problem.

The appearance model can be learned online and dynamically updated through

the tracking process. This is an ideal scenario for many tracking problems. However,

this scenario requires much more computational burden online, and tracking errors

51
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are easily accumulated in the appearance model, leading to compromised tracking

accuracy. On the other hand, subject specific modelling is a one-time effort that pre-

builds a high resemblance model of the tracking subject (possibly in a controlled envi-

ronment). The precision and details of subject specific modelling are guaranteed and

not achievable by the online learning method. One-time modelling shifts the expen-

sive online computations to the initialisation stage, as well as providing sound prior

knowledge so that tracking becomes more robust and more accurate. This chapter

begins with a review in some related works in human body modelling, and describes

general articulated human body skeleton and its 3D joint rotation parameterisation

in the form of Euler angles, the axis angle and the exponential map, as well as how

to avoid rotation parameterisation singularities in optimisation. Two body shape pa-

rameterisations, needle based and data-driven based, will be described to generate the

subject specific model. Finally, an automatic initialisation is proposed to simultane-

ously estimate the body shape and initial posture through a hierarchical optimisation

method.

4.1 Related Works

Tremendous efforts have been made to study how to model the human body so that

its digital version can be processed and utilised in different scenarios. In the computer

graphics community, for example, researchers are concerned with the automatic gen-

eration and animation of realistic human models. The applications of a system that

simultaneously models pose and body shape include crowd generation for movie or

game projects, creation of custom avatars for visual assistants, and usability testing of

virtual prototypes. The studies in this category [Allen et al. 2003; Magnenat-Thalmann

and Seo 2004; Anguelov et al. 2005a; Allen et al. 2006; Hasler et al. 2009] often use a

general data driven approach to build a parameterised template model. In this, hun-

dreds of high resolution 3D human body scans are fit with a template model mesh to
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register correspondences. Subsequently, the parameterisation is derived for non-rigid

surface deformation as a function of pose, body shape, or some combination, and

solved by a nonlinear optimiser under correspondence constraints. The established

parameterisation allows the template model to simulate a great variety of distinctive

individual shapes and poses in realistic details.

To model body shape variation across different people, Allen et al. [Allen et al.

2003] morph a generic template shape into 250 3D scans of different humans in the

same pose. The variability of human shape is captured by performing principal com-

ponent analysis (PCA) over displacements of the template points. The model is used

for hole-filling of scans and fitting a set of sparse markers for people captured in stan-

dard poses. A framework is introduced by Thalmann and Seo [Magnenat-Thalmann

and Seo 2004] for collecting and managing a set of range scan data to build a modeller

that synthesises the realistic appearance of the body model directly from the control

parameters. The developed tools are used to help annotate landmarks, automatically

estimate skeletal structures for animation, and establish correspondences within the

population of captured data. Their modeller then uses this structurally annotated

data and synthesises new body models, by blending different models in a way that

statistics are implicitly exploited. Consequently, their technique offers a time-saving

generation of realistic, animatable body models with high realism, primarily for real-

time applications. The SCAPE (Shape Completion and Animation of People) model

[Anguelov et al. 2005a] represents both articulated and non-rigid deformation of the

human body. The pose deformation model captures how the body shape of a per-

son varies as a function of their pose and is parameterised by a set of 3D rotations of

skeletal bones. The shape deformation model captures the variability in body shape

across different people by shape parameters–a coefficient vector corresponding to a

point in a low-dimensional shape space obtained by Principal Component Analysis.

More recently, Allen et al. in [Allen et al. 2006] presented a method that learns skin-

ning weights for corrective enveloping from 3D scans using a maximum a posteriori
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estimation for solving a highly nonlinear function which simultaneously describes the

pose, skinning weights, bone parameters, and vertex positions. The weight or height

of a character can be changed during the animation and muscle deformation looks

significantly more realistic than with linear blend skinning. Recently, a fully differen-

tial model describing the pose and shape has been presented by [Hasler et al. 2009].

The representation is uniform in pose and shape but involves solving two equation

systems to reconstruct one mesh. Since pose and shape variations are expressed by a

differential encoding invariant to rotation and translation, the main drawback of this

approach is that the pose and shape cannot be analysed independently.

On the other hand, template based human tracking or articulated pose estima-

tion in some relatively early studies of markerless motion capture focuses more on

modelling prior information about the tracking subject, avoiding complicated and ex-

pensive geometric computations. Many studies [Sminchisescu and Triggs 2003; Balan

and Black 2006; Kehl and Van Gool 2006; Sigal et al. 2004] use simple geometric prim-

itives (e.g. cylinders and boxes) to approximate the shape of the human body. With

the advancement of hardware computational capability, increased numbers of stud-

ies begin to utilise more complex and highly detailed template models to incorporate

more prior knowledge. Vlasic et al. [Vlasic et al. 2008] address the capture of details in

mesh animation from multi-view video recordings. Their approach performs fast pose

tracking with minor manual interaction, providing meshes readily usable for editing

operations including texturing, deformation transfer, and deformation model learn-

ing. In the work [Gall et al. 2009], Gall et al. recover the movement of the skeleton

as well as non-rigid temporal deformation of the 3D mesh, providing a laser scanned

3D mesh available. Balan et al. [Balan et al. 2007] extended Anguelov et al.’s SCAPE

[Anguelov et al. 2005a] deformation scheme to recover detailed human shape and

pose from images. Their results show the SCAPE model is 10% better at explaining

image foreground silhouettes than the cylindrical model and makes the likelihood

function better behaved. Corazza and Mundermann et al.’s work [Corazza et al. 2010]
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was also built on the development of the SCAPE model. This allows them to gener-

ate a subject specific model and employ a silhouette based and articulated ICP [Besl

and McKay 1992] method to register body segments with a sequence of visual hulls.

Meanwhile, high quality performance capture [de Aguiar et al. 2008] presented by de

Aguiar et al. proposes a new mesh-based framework which does not only capture

gestures of the subject, but also recovers small-scale shape details and handles com-

plex types of apparel including ones that are very difficult to handle by marker-based

techniques. A similar study [Starck and Hilton 2007a] from Starck and Hilton focuses

on highly realistic surface capture that recovers the detailed surface shape with high

fidelity texture. Their approach adapts a global optimisation process for smooth vol-

ume reconstruction and spherical parameterisations for texture remapping.

4.2 Generic Human Body Skeleton

To date, there are two primary standards to describe modelling of the human body in

computer animation, H-Anim (Humanoid Animation) 1.1 standard [Human Anima-

tion Working Group ] and Body Animation MPEG4 standard [ISO/IEC Moving Pic-

ture Experts Group 2008]. Three major motion capture data formats C3D, BVH/BVA,

ASF/AMC are used to store and retrieve the motion capture data. These two stan-

dards and three data formats have in common a way of defining a generic human

skeleton structure. This is not surprising since any simple and compact represen-

tation of the human body should naturally fit to the anatomy of the human body.

The proposed human body skeleton is also designed to conform to the H-Anim stan-

dard and the ASF/AMC format. This consideration enables natural integration of a

skeleton-based animation scheme with the computer animation standard.

From simple stick figures, boxes, spheres and articulated cylinders to complex

superquadric spheres, meshes and the more advanced deformable Laplacian mesh,

various human body models has been used in markerless motion capture studies. As
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Figure 4.1: Human Skeleton and Joint Angles

a consequence of such diversity of body models, outcomes from different research

groups become very difficult to analyse, evaluate and compare with each other. Al-

though it is still possible to compare the outcomes from different studies, it is a time-

consuming task to transform all output into a comparable format. Our approach em-

phasises on the establishment of a generic skeleton-based body model with a set of

changeable parameters. Any specific body shape and posture can be adapted by

adjusting the corresponding parameters without modifying the basic body skeleton

structure. This attempts to provide a universal template in markerless motion cap-

ture, allowing easy comparisons. The proposed framework is constructed bearing in

mind three considerations: I) the animation standard in computer graphics, II) the

motion capture data standard, and III) existing skeleton models in markerless motion

capture.

The human model used in this work is based on the skeleton illustrated in Figure

4.1, which has a total of 27 segments and 167 degrees of freedom (DOFs). To avoid

too complex a representation, only 10 articulated segments (ankle and wrist joints

are optional) and 25 DOFs are considered important and modelled for tracking. The

translation and orientation of the entire model are described by 6 DOFs. The rest of

the 19 DOFs are used to describe the joint angles of limbs. Thereby, any point bP in
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a local kinematic coordinate frame b can be transformed to the point wP in the world

coordinate frame w by:

wP =
N

∏
i

T(θi)
bP

where, N is the number of transformations. T(θi) is a homogeneous transformation

matrix specified by θi, a particular set of joint angles and a translation. As illustrated

in Figures (A.3, A.4, A.5, A.6, and A.7), human joint angles are limited in some move-

ment ranges according to anatomical structure. Enforcing these movement limits not

only guarantees the human model always presents sensible human poses, but also

reduces the configuration space of human poses, which is beneficial to acceleration of

the optimisation process.

The joint angle estimation involves the three DOF rotation parameterisation, which

is non-Euclidean in nature. In fact, the three DOF rotation forms the Special Orthog-

onal Group SO(3) which is a naturally occurring example of a manifold. In terms

of the manifold, the rotation parameterisation is a process of finding charts between

SO(3) and R3 to explain the rotation. Since SO(3) is diffeomorphic to RP3 (real pro-

jective space), and charts on SO(3) try to model a manifold using R3 [Jacobson 2009],

multiple-valued problems and singularities are inevitable. This explains why Euler

angles have multiple combinations representing a given 3D rotation and suffer from

gimbal lock, while the quaternion representation is always a double cover, with q and

−q giving the same rotation. Different parameterisations have their advantages and

disadvantages and using a particular parameterisation often depends on its perfor-

mance in an application of interest. Appendix A.4 describes the three basic rotation

parameterisations and a method that preserves smooth search space on Axis Angle

and maintains the single 3D rotation parameterisation as 3 DOF rather than 4 DOF.
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4.3 Human body shape

A skeleton alone may not be adequate to describe all the details of the human body

shape. In fact, a more human-like model not only improves the appearance of the

model, it also elevates the performance of markerless motion capture. However, it is a

common that markerless motion capture has to track people with different heights

and body shapes. The human-like model usually has to be built for a particular

person. If a particular model is designed into the implementation level, functional

methods often have tight dependencies on this particular model, and the entire ap-

proach becomes dependent on the model and has difficulty generalising. In the com-

puter graphics community, there already exists a skeletal animation scheme which

can move the human-like model design to a high level interface, so that the depen-

dencies between functional methods and the human-like model are decoupled. In

this skeletal animation scheme, the human body is represented in two parts: a sur-

face representation used to draw the human body (the skin), and a hierarchical set

of segments (or bones) used only for animation (the skeleton). In the most common

case of a polygonal mesh character, each segment in the skeleton is associated with a

group of vertices. The movements of segments control the transformations of vertices

and ultimately deform the skin. The skin does not explicitly depend on the skeleton,

and different skin types can be attached to different skeletons. This can be done in

most 3D graphics packages. The skeletal animation scheme is a natural framework

for skeleton based markerless motion capture.

As a result of conforming to the humanoid skeleton standard, rather than using

geometry primitives to approximate the skin, the skin can be imported from any 3D

object format. The 3D skin mesh can then be associated with the hierarchical skeleton

by assigning a group of vertices to each bone. This is sometimes referred to as rigging.

Each vertex in the mesh is associated and controlled by multiple bones with scaling
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factors called vertex weights1. As a result, portions of the skin can be deformed to

account for transformations of multiple bones. Instead of animating each vertex indi-

vidually, the skeleton is manipulated, and the skin is deformed automatically. In the

example illustrated in Figure 4.2, vertices are assigned to the bones according to geo-

metric distances. As the child bone is rotated, its associated vertices are transformed

with vertex weight scaling. Therefore, the vertices which are far from the parent bone

are transformed further. Conversely, the vertices close to the parent bone remain close

to their previous position.

This is formally stated in the Skeletal Subspace Deformation (SSD) algorithm [Magnenat-

Thalmann et al. 1988] which is based on the weighted blending of an affine transfor-

mation of each joint by:

vd = (
M

∑
i=1

wiT(θi))v0

where, M is the number of joints, vd is a vertex after deformation, wi is a vertex weight

and v0 is a vertex in the registered initial pose. Although SSD suffers from the inherent

limitations of linear blending [Lewis et al. 2000] (known as the “collapsing joints” and

“twisting elbow” problem, where in general, the mesh deformed by SSD loses volume

as the joint rotation increases), this simple algorithm still remains the most popular

deformation scheme because of its computational efficiency.

4.3.1 Needle based Body Shape Parameterisation

When silhouettes, image textures and other features are available, body shape esti-

mation is a problem that integrates information from disparate sources to obtain a

consistent solution. This is a process of information fusion which can be solved in

many different ways; recent trends are optimisation by GraphCut and the deformable

models technique. GraphCut constructs the fusion problem into a MRF framework

and solves it by maximum-flow/minimum-cut on a weighted graph where an exact

1Vertex weights are often assigned by the computer graphics software.
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Figure 4.2: Vertex blending. The bones are drawn as triangular solids, vertices are
drawn as circles. Vertices are shaded according to their associated bones. The move-
ments of bones drive the vertices to be transformed in a manner scaled by vertex
weights, ultimately leading to skin deformation.

global optimum is guaranteed to be found. For recent studies see [Tung et al. 2008;

Starck et al. 2006]. The deformable models technique is derived from a very classic

active contour model [Kass et al. 1988]. It builds on an energy minimisation frame-

work, where the energy of the system is controlled by internal and external forces. The

internal forces usually result in some constraint forces in the model itself (e.g smooth-

ness constraints), and the external forces represent some constraints coming from the

outside of the model, and attentional constraints, regularisation constraints, or high-

level integrations. Ultimately, deformation is ceased when the energy of the system

is minimised. This technique has also been extended to the model-based approach,

which has a number of important advantages: (i) the model can be designed for ren-

dering and manipulation as a standard computer graphics model; (ii) the model can

be fit with a kinematic structure for animation; (iii) the model provides prior shape

information to regularise multiple view reconstruction; and (iv) reconstruction then

provides a consistent structure for all surfaces. Considering the model surface v, the

initial surface v0 that may be defined according to a visual hull estimated by the shape-

from-silhouette method, the internal energy Esmooth, and the external energies enforc-

ing stereo consistency Estereo, silhouette information energy Esil , and user defined en-
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ergies Euser, the objective is to minimise the total energy Etotal :

Etotal(v) = Esmooth(v) + Estereo(v) + Esil(v) + Euser(v)

equivalently:

∇Etotal(vopt) = ∇Esmooth(vopt) +∇Estereo(vopt) +∇Esil(vopt) +∇Euser(vopt)

= Fsmooth(vopt) + Fstereo(vopt) + Fsil(vopt) + Fuser(vopt) = 0

By introducing a time variable t, the above equation can be solved via a differential

equation:

vt = Fsmooth(v) + Fstereo(v) + Fsil(v) + Fuser(v)

for the discrete case, it becomes:

vk+1 = vk + ∆t[Fsmooth(vk) + Fstereo(vk) + Fsil(vk) + Fuser(vk)]

Where k denotes the number of iterations, the key to solving the problem is to process

Esmooth(vk),Estereo(vk), Esil(vk) and Euser(vk) with respect to the parameterised human

body model. Esmooth is used to maintain the smoothness and the original shape of the

model. It is usually defined in each local reference frame for each vertex so that the

optimisation process also, to the some extent, conforms to the local geometric shape.

Estereo is defined as the error between a vertex of the model and the reconstructed loca-

tion obtained by stereo matching between adjacent cameras. Esil can be defined as the

error between the model generated silhouette and the original silhouette produced by

background subtraction. Alternatively, it can be defined as the error between a model

vertex position and the closest surface element on the visual hull. The use of Euser is

encouraged when the above energy terms are not able to provide adequate constraints

for optimisation. The exact feature locations and correspondences are specified by the
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Figure 4.3: Body Segments, Body shape parameterisation and Visual Hull

user interactively. Then the error is defined between each vertex position and its cor-

respondence.

The above framework and the study from [Sand et al. 2003] together inspire our

needle based body shape parameterisation. Considering the skin mesh shown in Fig-

ure 4.3.1, a vertex i is regarded as a node. The shortest line from the vertex i to the bone

axis is defined as the needle Li of length li. To ensure that sufficient anthropometric

details of the real human body shape are captured, a template human model con-

sists of 10 segments, including the torso segment, head & neck segment, upper arm

segment, forearm segment, hand segment, thigh segment, calf segment and foot seg-

ment, on both left and right sides. Since each segment has different dimensions, and

variations within one segment are not necessarily uniform, the surface mesh is repre-

sented by discrete points whose resolution is controlled by the number of disks and

slices. The needle lengths (shortest distance between vertices and their skeleton axis)

are adjusted to capture the shape of each part. Overall, the needle-like representation

(shown in Figure 4.3) well captures the variation in human body shape. Different con-

figurations of needle lengths define different human body shapes. The endpoints of

needles are triangulated to form the skin mesh which then can be deformed by SSD
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[Magnenat-Thalmann et al. 1988] mentioned in Section 4.3.

Given observed multiview images and silhouette images at a particular instant,

estimation of pose and body shape simultaneously is a very challenging problem. To

simplify the problem, we assume the pose of the articulated skeleton is known. Then,

the shape configuration parameters are the only variables that need to be estimated.

The straightforward energy function can be formulated as a data term which evalu-

ates the projection of a hypothesised shape configuration with the observed silhouette

image from multiviews for each needle, plus a regularisation term, which smooths the

surface mesh in the local region:

Etotal =
1

Nview

Nview

∑
i=1

∑
x,y

(Ii,x,y
sil − Ii,x,y

pro j (L))2 +α ∑
k,(i, j)∈Ladjacent

wk(li − l j)
2 (4.3.1)

subject to:

Cmin < L < Cmax

L < C′L

where L = {li, i = 1, 2, ..., n} represents needle lengths, and Ladjacent includes pairs of

adjacent neighbour indices. α is adjusted to weight importance of the local smooth-

ness, and wk is introduced to allowing the smoothness variation at different regions.

Ii,x,y
sil is the pixel intensity of the ith silhouette image at location (x, y) and Ii,x,y

pro j (L) is

the pixel intensity of the silhouette image at the location (x, y) generated by ith view

projection with a given needle length L. Cmin and Cmax are the vectors containing the

minimum and maximum values allowed for needle lengths. C′ is the sparse matrix

which imposes constraints on the needle lengths; for instance, the diameter of the

torso should be greater than the diameter of the arm. When the energy of the sys-

tem is minimised, the optimal value of all needle lengths should correspond to the
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Figure 4.4: Left diagram: The needle based skin mesh. Right diagram: The silhouette
contour consists of endpoints of needles which are orthogonal to the visual ray for a
particular perspective

desirable body shape configuration.

The first term of the equation (4.3.1) is discrete rather than continuous, and very

possibly has competitive local optimums. Moreover, the dimension of the shape con-

figuration is equal to the number of needles, which could be more than one hundred.

Consequently, optimisation of the equation (4.3.1) is often not well conditioned and

difficult to solve. To handle this, we assume that needles within the same disk have

uniform length, or equivalently that the edge of the disk is a circle with a given radius.

The energy of each disk becomes the minimum distance, among all views, between

the endpoint of the projected needle and its corresponding point on the contour of

the silhouette. We also assume that it is always possible to find a corresponding point

which is an intersecting point between the contour of the silhouette and the prolon-

gated projection of the needle. This corresponding point is relatively stable and can

be approximated by a fixed point on the contour of the silhouette. These assumptions

are beneficial for reformulating the problem in the sense of least squares, converting

the discrete image pixel-wise evaluation to continuous distance errors, and solving

efficiently. The continuous energy function can be formulated by replacing the first

term of the equation 4.3.1 with floating precision distance measurements (between
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projected needle endpoints and the ground truth silhouette contour).

Etotal =
Ndisk

∑
j=1

min
i∈View

dhuber(Pi, j
cor − Pi

pro j(l j)) +α ∑
k,(i, j)∈Ladjacent

wk(li − l j)
2 (4.3.2)

subject to:

Cmin < L < Cmax

L < C′L

where, Pi
pro j(l j) denotes the floating 2D position of projecting the endpoint of the nee-

dle l j in the ith camera view, and Pi, j
cor denotes the correspondence of l j’s endpoint on

the silhouette contour in the ith camera view. dhuber(δ) is the Huber distance, robust

to outliers. It is defined by:

dhuber(δ) =

 δ2 f or∥δ∥ < b

2b∥δ∥ − b2 f or∥δ∥ > b
(4.3.3)

where b is the outlier threshold.

When the pose does not change and cameras are static, Pi, j
cor can be easily derived

by intersecting the prolongated projection of the needle with the contour (i.e., we use

Bresenham’s line algorithm [Bresenham 1965] to search for the intersection point.),

provided Pi
pro j(l j) can be determined. The problem then becomes one of calculating

Pi
pro j(l j). In fact, it turns out Pi

pro j(l j) can be calculated in a similar way to the point

on the silhouette contour [Cipolla and Giblin 2000]. As in Figure 4.3.1, any point on

the silhouette contour can be obtained by finding the endpoint of the needle which is

orthogonal to the visual ray; more details will be given in the next section 4.3.1.1 .
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Figure 4.5: The silhouette contour (view dependent) of the human body often contains
self occlusions

4.3.1.1 Contour from Needle Projection

Given that there are an infinite number of needles on a complete disk, an immediate

question is raised: which of those needles contributes to the actual silhouette contour?

This relation has been analysed in the book [Cipolla and Giblin 2000] by Cipolla and

Giblin. For a bounded smooth surface, the silhouette contour (called the apparent

contour) is the projection of a particular space curve (called the contour generator) on

the image plane. It turns out there is a simple and powerful property: at every point

along the contour generator, the surface normal is orthogonal to the viewing ray. This

is illustrated in Figure 4.6.

An ideal camera model with a cylinder to simulate the needle based limb is shown

in Figure 4.7, where the left diagram shows the perspective view including a camera

and a cylinder with a disk centred at B, and the right diagram shows the perspective

view from the camera. The above property is interpreted as
←−−−−−
A(θ)OCT←−−−A(θ)B = 0.
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Figure 4.6: The visual ray is perpendicular to the apparent contour and the plane
formed by the contour generator and the normal crosses through the corresponding
point

However, there are some cases where none of the
←−−−
A(θ)B vectors are orthogonal to

the visual ray vector
←−−−−−
A(θ)OC, in which case the apparent contour of the disk consists

of the projection of all points on the disk circle. To check if there exists θ such that
←−−−−−
A(θ)OCT←−−−A(θ)B = 0, the optical centre OC is projected onto the plane of the disk

centred at B. The Euclidean distance between the projection OC′ and B is compared

with the radius of the disk. If ∥B−OC′∥2 is smaller than the radius, θ does not exist.

Otherwise, there are two possible cases. If ∥B − OC′∥2 is equal to the radius, there

is a unique θ∗ which is equal to the angle between BOC′ and the y axis. If ∥B −

OC′∥2 is greater than the radius, there are two solutions θ∗1 and θ∗2 . One solution

can be obtained by solving Equation 4.3.6 or minimising Equation 4.3.7 with the first

derivative shown in Equation (4.3.8). Assuming without loss of generality that the

first solution found is θ∗1 , the second θ∗2 can be gained by finding two intersection

points between the disk circle and the circle which is centred at OC′ with ∥B−OC′∥2

as the radius.
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Figure 4.7: The left diagram illustrates the perspective view outside the camera. The
right diagram illustrates the perspective view on the image plane. The disk centred
at B may have two possible points A(θ∗1) and A(θ∗2) on the contour depending on the
relationship between the distance ∥B−OC′∥2 and the radius of the disk.

←−
AB = A− B (4.3.4)

←−−
AOC = A−OC (4.3.5)

←−
ABT←−−AOC = (bx + r cos(θ)ux + r sin(θ)vx − ocx) (r cos(θ)ux + r sin(θ)vx)

+
(
by + r cos (θ) uy + r sin (θ) vy − ocy

) (
r cos (θ) uy + r sin (θ) vy

)
+ (bz + r cos (θ) uz + r sin (θ) vz − ocz) (r cos (θ) uz + r sin (θ) vz) (4.3.6)

The solution of
←−
ABT←−−AOC = 0 is equivalent to minimisation:

arg min
θ

(
←−
ABT←−−AOC)2, (0 6 θ < 2π) (4.3.7)
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The first derivative is given as follow:

d(
←−
ABT←−−AOC)2

dθ
=2 ((bx + r cos (θ) ux + r sin (θ) vx − ocx) (r cos (θ) ux + r sin (θ) vx)

+
(
by + r cos (θ) uy + r sin (θ) vy − ocy

) (
r cos (θ) uy + r sin (θ) vy

)
+ (bz + r cos (θ) uz + r sin (θ) vz − ocz) (r cos (θ) uz + r sin (θ) vz))

× ((−r sin (θ) ux + r cos (θ) vx) (r cos (θ) ux + r sin (θ) vx)

+ (bx + r cos (θ) ux + r sin (θ) vx − ocx) (−r sin (θ) ux + r cos (θ) vx)

+
(
−r sin (θ) uy + r cos (θ) vy

) (
r cos (θ) uy + r sin (θ) vy

)
+
(
by + r cos (θ) uy + r sin (θ) vy − ocy

) (
−r sin (θ) uy + r cos (θ) vy

)
+ (−r sin (θ) uz + r cos (θ) vz) (r cos (θ) uz + r sin (θ) vz)

+ (bz + r cos (θ) uz + r sin (θ) vz − ocz) (−r sin (θ) uz + r cos (θ) vz))

(4.3.8)

4.3.2 Data-Driven Body Shape Parameterisation

One popular data-driven method for characterising the variation between forms is the

technique of Principal Component Analysis (PCA). In the field of computer graph-

ics, PCA has been applied to sets of facial features [Blanz and Vetter 1999], human

head models [Xi et al. 2007], human body models [Azouz et al. 2006] and more. PCA

breaks down each example into a linear combination of orthonormal component vec-

tors. These component vectors are arranged such that the first component explains

as much of the variance in the examples as possible. The second vector explains as

much of the remaining variance as possible after factoring out the first component,

and so on. As a result, PCA serves two main purposes. First of all, it identifies cor-

related aspects of the examples within each component. Secondly, it gives us a way

to reduce the amount of data we need to store. If we were to throw away the compo-

nents above a certain threshold, we would still be able to reconstruct each example as

a linear combination of just the low-numbered components.
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The PCA based approach used in this section is similar to the method proposed

in [Allen et al. 2003]. The major difference between our approach and [Allen et al.

2003] is that we use software to generate a variety of synthesised human humanoids

as the dataset, rather than 3D body scan data. This allow us great flexibility in simulat-

ing variations in body shape and registering the mesh with the articulated skeleton.

The open source software packages MakeHuman [MakeHuman 2010] and Blender

[Blender 2010] are used to create the synthesised dataset. A script is used to generate

6561 models corresponding to different combinations of eight properties: gender, age,

muscle tone, height, weight, chest circumference, waist circumference and hip cir-

cumference. Each model is also associated with a feature vector f that defines height,

weight, muscle tone, gender, body shape and a flag component. All models have an

identical number of vertices nv, and the same posture. For each model, we put all of

the vertex positions into a single shape vector ai, which has 3nv elements in a single

column. The index i ranges from 1 to N, with N equal to 6561 in this case. To begin,

we calculate the mean ā of the example vectors, ā = 1
N ∑N

i=1 ai. Next, we define a

matrix A whose ith column is equal to ai − ā. To obtain the principal components, we

multiply A by the eigenvectors of ATA. Associated with each principal component is

a variance σ2
i , which is equal to the corresponding eigenvalue. We sort the eigenvec-

tors in order of decreasingσ2
i . Because we have subtracted the mean, there are at most

N − 1 components with variance greater than zero. It turns out that the overall shape

of the body can be captured reasonably well with as few as 25 components. Therefore,

we use only the 25 most significant components to represent the template model.

Principal component analysis is able to characterise the space of human body vari-

ation, but it does not provide a direct way to explore the range of bodies with intuitive

controls, which can be easily perceived by a human being (e.g. weight and height).

Blanz and Vetter [Blanz and Vetter 1999] devised such controls for single variables us-

ing linear regression. Below, several variables are mapped simultaneously by learning

linear regression between the controls and the PCA weights. If we have l such con-
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trols, the mapping can be represented as an (N − 1)× (l + 1) matrix (where l is 6 in

this case) denoted by M:

Mf = p

where fi are the feature values of an individual, and p are the corresponding PCA

weights. The last component 1 of the feature vector f enables M to include an offset;

without this parameter, setting the feature values to 0 would always result in a zero

p. Assembling all feature vectors for all models into an (l + 1)× N feature matrix F,

we solve for M as:

M = PF†

where F† is the pseudoinverse of F, and P is a matrix containing all of the PCA recon-

struction weights as a column for each individual. We can then create a new feature

vector, with a desired height and weight, and create an average-looking individual

with those characteristics. In this way, the user can edit features independently, or to-

gether. So far, we have shown how to synthesise generic models according to feature

values, but in addition, we can edit existing models by creating delta-feature vectors

of the form: ∆ = [∆ f1, ...,∆ fl , 0] where each ∆ fi is the difference between a target

feature value and the actual feature value for an individual. By adding ∆p = M∆f to

the PCA weights of that individual, we can edit their features, e.g., make them gain

or lose weight, and/or become taller or shorter. Some examples of body deformation

are shown in Figures 4.8, 4.9, 4.10, 4.11 and 4.12.

4.3.2.1 Dynamic Bone Length and Collision Bounding Box Adjustment

Another advantage of data-driven body shape parameterisation is that bone length

and collision bounding boxes can be associated directly to the body shape param-

eterisation. For instance, when height is increased, the forearm bone length is also

increased accordingly. When weight is increased, the breadth of the thigh is also in-

creased and so is the dimension of the bounding box. This is simply done by calculat-
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Figure 4.8: Gender Control: from left to right, male body shape is morphed to female
body shape.

Figure 4.9: Height Control: from left to right, the height of the body is increased with
other body parts changed accordingly.

Figure 4.10: Weight Control: from left to right, the body shape is changed correspond-
ing to weight gain.
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Figure 4.11: Shape Control: from left to right, the body shape is transformed from
triangular to inverse triangular.

Figure 4.12: Muscle Tone Control, from left to right, the body parts are changed to
reflect increasing muscle tone.
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Figure 4.13: Bone lengths and collision bounding boxes are adjusted dynamically re-
flecting the underlying body morphing and body dimension changes.

ing a joint centre as the mean point of a predefined set of vertices and a bounding box

of a set of vertices specifying a body segment.

4.4 Automatic Initialisation

Human centred applications like anthropometry, human factors design, ergonomics,

virtual reality and performance measurement have played an increasingly important

role in daily life. Many studies have shown successful achievements in parameteris-

ing human body shape and 3D modelling of the human body. Most of them require

dedicated hardware and the instructive posture as premises. In markerless motion

capture, the subject may change and clothing may vary frequently. Initialisation at

the early stage thus becomes very difficult and requires a great amount of manual in-

tervention. In this dynamic setting, automatically capturing appearance differences

and pose becomes very desirable and necessary. Some works [Corazza et al. 2009;

de Aguiar et al. 2005; Ahmed et al. 2005] demonstrate automatic subject modelling

and pose estimation, which is quite similar to our work.

We employ a template human body model described in Section 4.3 whose shape

and proportions can be customised. The articulated skeleton described in Section 4.2

comprises 10 segments, which provides 25 pose parameters in total. The surface ver-
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tices are registered to the skeleton via the SSD technique described in Section 4.3. A

silhouette-based analysis-by-synthesis approach is performed to search the optimal

anthropomorphic shape and pose parameters in order to maximise overlap between

the silhouette of the re-projected model and the image silhouette in all camera views.

The energy function that numerically assesses this overlap sums up the number of

pixels in binary XOR between the image and model silhouettes from all camera per-

spectives. In the following sections, we describe and compare two types of body shape

parameterisation models.

4.4.1 Using Needle based Body Parameterisation

An experiment has been conducted on the HumanEvaI 7-view dataset Subject 3. The

silhouettes are manually extracted from the images. The true pose of the skeleton is as-

sumed to be known. Then, we employ Powell’s method to optimise Equation (4.3.1)

and the Levenberg Marquardt method to optimise Equation (4.3.2). Both equations

have about 150 DOFs. It turns out that the the former approach allows for finding a

solution ten times faster than the latter approach. The latter approach is more prone

to local optimums, appearing as more non-overlapping areas in the bottom panel of

Figure 4.15. Results are shown visually in the initial shape configuration at the top

and the converged shape configuration at the bottom of Figures 4.14 and 4.15. Even

though the human body may be deformed dramatically in various gestures, the local

shape of the human body surface still preserves certain geometric structures. How-

ever both of the approaches above have a problem with capturing these geometric

structures. The data-driven based approach introduced in the next section is superior

to the above approaches, and is able to well capture the underlying invariant geomet-

ric structures of the human body.
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Figure 4.14: Experimental results on the HumanEvaI dataset with 7 perspective views
using discrete evaluation with respect to the bit mask silhouette. The top row shows
the overlapping images given the initial pose. The bottom row shows the converged
results.

Figure 4.15: Experimental results on the HumanEvaI dataset with 7 perspective views
using continuous evaluation with respect to the contour. The top row shows the
template model with the initial pose projected to the contour images. The bottom
row shows the converged results after applying the Levenberg Marquardt method.
The primary non-overlapping region is caused by the detail differences between the
real subject and the template model, since this needle based shape parameterisation
method can not capture small-scaled invariant geometric structures of the human
body
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4.4.2 Using Data-Driven Shape Parameterisation

Given a pose and shape configuration, we can model a corresponding data-driven

model (e.g. shown in Figure 4.16). The human pose space conforms to the hierar-

chical skeleton structure, with optimisation implicitly constrained to this hierarchical

order. For instance, before the torso position is reasonably estimated, estimating the

other pose parameters and shape parameters are meaningless efforts. To avoid the

curse of dimensionality and utilise these hierarchical constraints, we perform CMA-

Annealing optimisation (described in Section 5.4) to the articulated skeleton structure.

The hierarchical procedure begins with estimating the torso position. The silhouettes

are substituted with distance transformed silhouettes as in Figure 4.17 in order to

make the energy function better behaved. Consequently, the descent direction more

clearly points to the original silhouette, and optimisation has a lower chance of be-

coming trapped in local optimums. After the torso position has converged to a rea-

sonable degree, the position and rotation of the torso are optimised simultaneously.

The torso position is constrained to a smaller search range due to the fact that it is

already close to the optimal position. Once the torso has been posed into a reasonable

position and orientation, the optimisation procedure is applied to the body segments

in hierarchical order. The body segments used for re-projection also obey the hierar-

chical structure as shown in Figure 4.18. The head, left/right upper arms, left/right

thighs, left/right lower arms, and left/right calves can then be estimated in order.

The whole body model should then already be posed reasonably close to the optimal

posture. In the next stage, the shape configuration is estimated while the pose config-

uration is also adjusted but constrained to small search ranges. Finally, the shape and

pose configurations of each limb are re-estimated within small search ranges to refine

the converged result. The progress of convergence for the automatic initialisation are

demonstrated in Figure 4.19. The initial and converged poses in the 3D environment

are demonstrated in Figure 4.20.
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Figure 4.16: A typical customised model with a given pose and shape configuration

Figure 4.17: The left diagram is the silhouette. The right diagram is the distance trans-
formed silhouette, which helps the energy function be well behaved, making errors
progressively concentrate around the area of the silhouette.

Figure 4.18: Hierarchical optimisation: Optimisation begins with estimating the trans-
lation and rotation of the torso; only the torso segment is projected onto the image.
Subsequently the head, left/right upper arms, and left/right thighs are estimated one
by one. Finally the left/right lower arms and left/right calves are estimated one by
one. This approach partitions the original search space into several lower dimensional
subspaces so that we only need to solve easier optimisation problems.
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Figure 4.19: The sequence of images from four camera views illustrates progressive
convergence of results. The first column is the initial pose rendering. The second and
third columns show the results after estimating the torso’s translation and rotation
respectively. The fourth column gives results after positioning the head, left/right
upper arms, and left/right thighs. The fifth column shows estimates of height, weight,
gender, shape and muscular tone. The sixth column is after estimating left/right lower
arms, left/right calves and shape parameters. The last column shows the original
images.
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Figure 4.20: Top diagram: The initial body shape and “T” pose; Bottom diagram: the
morphed body shape and estimated pose



Chapter 5

Nature Inspired Global

Optimisation

Due to the diversity of nature, many practical problems reside in complex circum-

stances in which the problems are impacted by multiple factors. These competing

factors can result in multiple solutions to practical problems – so-called multimodal

problems. To find the “best” and “unique” solution in a multimodal problem requires

global optimisation. This is a process of exploring and exploiting global information

to find the optimal solution. Depending on the circumstances, global optimisation

may appear straightforward for some problems, but it has been very challenging and

even practically impossible for many others. For instance, if the problem has a convex

property – local shape is consistent with global shape – this can be utilised to reveal

global information, and global optimisation can be solved by relatively easy local op-

timisation. However, most examples of scientific and engineering problems are not

convex, but multimodal, and gathering global information is almost impossible due

to the complexity, which is multiplied by the number of factors. Fortunately, there

are plenty of similar problems which have occurred and been resolved very well in

nature. Notably, biological evolution has shed some light on this topic. Evolution

itself is a process of moving towards some kind of optimised state, where biological

species are favoured based on the how well they adapt to the environment. Variation

(a somewhat random process) of successive generations is introduced by reproduc-

81
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tion (e.g. trait inheritance, mutation, and genetic recombination). Progressively, the

environment and ecology as whole are improved and move towards a more adapted

biological state. This has inspired a great number of stochastic methodologies for

solving many practical problems in real life.

In the context of the markerless motion capture multimodal problem, global in-

formation is often unknown beforehand and there is no efficient way1 to explore and

exploit properties of global information. This problem is often regarded as a black

box, and solved by meta-heuristic stochastic optimisation. Stochastic optimisation not

only shows excellent scalability2, but it also overcomes the limitations of the learning

based approach which is only able to generalise activities similar to the training ac-

tions. Until better ways emerge to efficiently represent and exploit multimodal global

information in markerless motion capture, stochastic optimisation has many advan-

tages over other methods in terms of accuracy, robustness and generality to different

activities. In this chapter, we review three stochastic optimisation algorithms – Sim-

ulated Annealing, Particle Swarm Optimisation and Covariance Matrix Adaptation

Evolution Strategy – to solve global optimisation problems. Then we propose a novel

hybrid method, Covariance Matrix Adaptation Annealing, to attack a specific class

of problems. In this class of problems, our method is able to maintain high conver-

gence speed as well as robustness to multimodality. Its characteristics and properties

are validated through a series of benchmark multimodal functions. Its behaviour and

performance are compared with other stochastic methods.

5.1 Simulated Annealing

Simulated Annealing has an analogy with thermodynamics, specifically with the way

that metals, and some liquids, cool and crystallise. Initially, when the temperature is

1To the date, to the best of our knowledge, learning-based techniques still can not fully utilise global
information in markerless motion capture

2Stochastic optimisation is able to solve a multimodal problem in high dimensional search space even
on a personal computer.
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very high, particles are free to move and explore a large area, and as the temperature

decreases according to a cooling schedule, thermal mobility is gradually lost. Slowly

lowering the temperature allows thermal equilibrium to be attained at each stage.

Eventually, the particles tend to line themselves up in a stable crystalline structure,

which often is the state with the minimum energy.

Simulated Annealing as proposed by Kirkpatrick et al [Kirkpatrick et al. 1983]

opened a new perspective on combinatorial optimisation incorporating statistical me-

chanics. To quote: “There is a deep and useful connection between statistical mechan-

ics and multivariate or combinatorial optimisation.” [Kirkpatrick et al. 1983].

Statistical mechanics is the discipline of analysing the relationships between mi-

croscopic properties of individual particles and the macroscopic or aggregate prop-

erties of the entire system that can be observed in daily life. A central principle of

statistical mechanics is the Boltzmann theorem, which can be stated as follows: Con-

sider an isolated3 system that contains a large of number of particles at temperature

T. At any point in time, each particle is identified by its microstate (i.e., position and

velocity). Furthermore, an aggregation of all particles’ microstates at a point in time

identifies a unique macrostate si of the system. Each of these states is associated with

an energy E(si). It turns out that the probability the system is in the state si, with

energy E(si), is given by the Boltzmann distribution:

P(S = si) =
exp{−E(si)/(KBT)}

Z(T)

where Z(T) is a partition function and KB is known as the Boltzmann constant. The

probability of the system having energy e is given by:

P(E = e) =
g(e) exp{−e/(KBT)}

Z(T)

3The conservation law holds



84 Nature Inspired Global Optimisation

where g(e) is the number of states having the energy e. In the above equations, the

exponential form of the Boltzmann factor reflects that the number of states with a

similar energy exponentially decays when the energy is approaching a minima or

maxima. Intuitively, this is due to the exponential relationship of the entropy of the

system. The consequence of this relationship has been implicitly stated by the second

law of thermodynamics – an isolated system will tend toward equilibrium in which

the number of possible states is largest, and equivalently, the entropy of the system

is maximised. At a high temperature, the probability mass is distributed roughly

evenly among all macrostates. As the temperature decreases, the probability mass of

the Boltzmann distribution concentrates on the low energy states, and eventually the

lowest energy state, since high energy states become increasingly impossible.

Simulated Annealing is a generalisation of Metropolis et al’s algorithm [Metropo-

lis et al. 1953] which employs only a single fixed temperature. The Metropolis algo-

rithm is described as follows: Given a current state of the system with energy E0, a

new state is randomly chosen but accepted according to the Metropolis criterion. The

criterion is that if the new state has energy E, and E < E0, the system then moves

to the new state. However, if E > E0, the new state is accepted with a probability

equal to min{1, exp−(E− E0)/(KBT)}. When the procedure is repeated, the system

will reach a state of equilibrium in which it has a Boltzmann distribution.

Instead of fixing temperature, Simulated Annealing introduces an annealing sched-

ule to lower the temperature in phases. Beginning with very high temperature, where

every state has nearly the same probability, exp{−E/T} ≈ exp{0}, the Metropolis

algorithm is followed until equilibrium is achieved. The temperature is then lowered

and further iterations of the Metropolis algorithm followed according to the schedule.

This procedure is iterated until the system freezes. If the annealing schedule is suffi-

ciently slow, then the system will eventually freeze in the state with minimum energy.

The Metropolis criterion is crucial to the success of Simulated Annealing, because it
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allows probabilistic escape from local minima.

5.1.1 Simulated Annealing Particle Filter

Recalling Particle Filter, priori knowledge and the temporal model often are unknown

and difficult to acquire, many studies eliminate the temporal term p(xi
t|xi

t−1) in the up-

date equation A.2.3 by equating π(xi
t|xi

t−1, yi
t) to p(xi

t|xi
t−1) in order to simplify the cal-

culation. This type of the Importance Sampling Re-sampling algorithm is commonly

known as the bootstrap filter and condensation algorithm [Isard and Blake 1998b]. In

this form, the posterior probability is solely dependent upon likelihood, and the max-

imum a posteriori solution is equivalent to the maximum likelihood solution. As a

result, the problem is transferred from solving the maximum a posteriori to solving

the maximum likelihood, eventually estimating the true state via optimisation.

Simulated Annealing as proposed by Kirkpatrick et al. [Kirkpatrick et al. 1983]

serves as a general-purpose optimisation algorithm. Later, Deutscher et al [Deutscher

and Reid 2005] introduced it for estimating the maximising likelihood of particle fil-

tering in human motion tracking. Usually the likelihood probability p(yt|xt) is formu-

lated as an exponential function f (yt, xt) with respect to a metric of E(yt, xt) between

yt and xt.

f (yt, xt) = exp{−E(yt, xt)}

Adding annealing variable λ:

p(yt|xt) = f (yt, xt)
λ = exp{−λE(yt, xt)} (5.1.1)

When λ → ∞, the probability mass will concentrate on the minimum of E(yt, xt),

or equivalently, the maximum of f (yt, xt). To avoid being trapped in local minima,

λ is initially assigned a small value, and is gradually increased according to a prede-

fined set of values {λ = λm, ..., λ1}, where λm < λm−1 < ... < λ1, which is known
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Figure 5.1: As λ gradually increases, the observation likelihood distribution evolves
from flat (probably single mode) to peaked (multiple modes), and its probability mass
slowly concentrates on the maxima, equivalently, the minima of E(yt, xt). Particles
gradually move from low to high likelihood areas while their coverage shrinks from
large to small. Provided the annealing schedule is sufficiently slow and long enough,
particles will eventually concentrate on the global maximum mode.

as the annealing scheduling. Gradually increasing of λ introduces the evolution of

f (yt, xt) from a flat distribution (probably single mode) to a peaked distribution (mul-

tiple modes). In a typical process, the samples of the state xt are weighted by f (yt, xt),

re-sampled to concentrate on a better minimum and finally perturbed with Gaussian

noise. Theoretically, the Simulated Annealing Particle Filter should not be misled by

local minima, so it can converge to the global minimum within the search space. Fig-

ure 5.1 illustrates this evolving procedure.

Besides λm, another two important parameters are survival rate αm and a pertur-

bation covariance matrix Pm, which control and tune the pace at which samples are

superseded and perturbed to concentrate on the minimum of the energy function. The
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survival rate is given by:

αm =
Ne f f (m)

N

Ne f f (m) =
1

∑N
i=1 (w

i
t,m)

2

where, Ne f f (m) shares the same sense as equation 3.3.6, but has a different weight

definition wi
t,m = exp{−λmE(yi

t, xi
t)}. A high survival rate corresponds to a flat im-

portance distribution whose probability mass is uniformly distributed. Resampling

from this distribution ensures that good and bad particles are roughly equally likely

to be sampled, enabling a broad range of exploration. Conversely, a low survival rate

with a peaked importance distribution ensures good particles are more likely to be

sampled so that the exploration concentrates on highly likely areas in search space.

Instead of simply increasing annealling variables, the annealing schedule should be

determined by accounting for the shape of the importance distribution. This leads

to more effective resampling in the probabilistically important directions. Given the

survival rate αm of particles at the current phase, λm can be determined as suggested

in [Deutscher and Reid 2005] by:

αmN
N

∑
i=1

(wi
t,m)

2 =

(
N

∑
i=1

wi
t,m

)2

(5.1.2)

where, N is the number of particles, and wi
t,m = exp{−λmE(yi

t, xi
t,m)}.

The survival rate at any phase can be assigned the desired valueαdesired by adjust-

ing the annealing variable λm. Note survival rates are fixedαm = .. = α1 = αdesired and

λm is monotonically increasing, This implies that the perturbation covariance matrix

Pm contributes to increasing uniformness of the probability mass between phases. As

λm gradually increases, particles become closer and closer to the global minimum. Pm

is gradually scaled so that particles do not waste time exploring fruitless areas which

are far away from the global minimum. The current perturbation covariance matrix
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Pm can be scaled by assigning it to be proportional to the product of the survival rate

and the previous covariance matrix. Thus Pm can be given by:

Pm = αm × ...×α1 × P0 = (αdiresed)
m × Pm

This is analogous to the situation where as the temperature falls, the energy of parti-

cles decreases and therefore the range of movement of the particles is squeezed.

The Simulated Annealing Particle Filter can be regarded as a particle filter with

p(xt|xt−1) as the importance distribution, and extra optimisation steps. The optimisa-

tion process takes place after the weights have been updated, and completed before

the number of effective samples is evaluated. The Annealing Particle Filter is shown

in Algorithm 5.

Algorithm 5 Annealing Particle Filter for a typical frame at time t

Require: appropriateαm is defined, previous particles xt−1, observation yt, the num-
ber of phases M and the initial covariance matrix P0 are given
for m = 1 to M do

1: Initialise N particles xi
t from the previous phase or the temporal model

p(xi
t|xi

t−1).
2: Calculate the energy E(yt, xt) for all particles.
3: Find λm by solving an equation (5.1.2).
4: Update weights for all particles using equation (5.1.1).
5: Resample N particles from the importance distribution.
6: Perturb particles by Gaussian noise with covariance Pm = αmPm−1 and mean
µ = 0.

end for

5.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was introduced by Kennedy and Eberhart

[Kennedy and Eberhart 1995] in 1995 as a concept for the optimisation of continu-

ous nonlinear functions. It was discovered through simulation of simplified social

models and has roots in both artificial life and evolutionary computation. Because
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Algorithm 6 Basic Particle Swarm Optimisation

for each particle i = 1 to N do
Initialize the particle’s position with a uniformly distributed random vector: xi ∼
U(blo, bup), where blo and bup are the lower and upper boundaries of the search-
space.
Initialize the particle’s best known position to its initial position: x(lbest)

i = xi

if f (x(lbest)
i ) < f (x(gbest)) then

update the swarm’s best known position: x(gbest) = x(lbest)
i

end if
Initialize the particle’s velocity: vi ∼ U(−|bup− blo|, |bup− blo|)

end for
repeat

for each particle i = 1 to N do
Generate random numbers: rl , rg ∼ U(0, 1)

Update the particle’s velocity: vi = wvi + clrl(x
(lbest)
i − xi) + cgrg(x(gbest) − xi)

Update the particle’s position: xi = xi + vi

if f (xi) < f (x(lbest)
i ) then

Update the particle’s best known position: x(lbest)
i = xi

if f (x(lbest)
i ) < f (x(gbest)) then

update the swarm’s best known position: x(gbest) = x(lbest)
i

end if
end if

end for
until Termination criterion fulfilled (e.g. number of iterations performed, or ade-
quate fitness reached).
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of its simplicity and computational cheapness, PSO became an attractive population-

based optimisation algorithm. In recent years it has been applied to many kinds of

optimisation problems [Poli et al. 2007], [Poli 2008] and much research has been done

in this field, resulting in many different PSO strategies. The fundamental hypothesis

of PSO, however, has remained unchanged [Kennedy and Eberhart 1995]:

...social sharing of information among conspeciates offers an evolution-

ary advantage.

To a great extent PSO is inspired by nature and can be nicely described by an anal-

ogy. Consider a shoal looking for food. Each fish randomly swims around, hoping

to get something to eat. It will remember places where it has previously encountered

food, so it is drawn towards places with a high probability of success. But somehow

it also knows about the place with the highest food density found so far by any of

the other swarm members. So the fish is drawn towards that direction as well. Occa-

sionally, a fish finds a location with an even bigger food density. Quickly, the whole

shoal will be drawn to that location. With such a behaviour, the shoal explores the

territory. Fishes fly over locations with high food density, constantly checking if they

have found a better place before. Generally speaking, individuals gather and commu-

nicate. By sharing information, each individual increases its chance of survival. From

a technical point of view, PSO is based on the communication among swarm mem-

bers (particles) in order to find an optimal solution for a given optimisation problem.

On a meta-level, information flow between individuals contributes to a paradigm re-

ferred to as Swarm Intelligence. Following the definition of Millonas [Millonas 1994],

Swarm Intelligence is based on five principles. The Proximity Principle dictates that

the population should be able to carry out simple space and time computations. The

Quality Principle says the population should be able to respond to quality factors in

the environment. The Principle of Diverse Response is that the population should not

commit its activities along excessively narrow channels. The Principle of Stability says
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the population should not change its mode of behaviour every time the environment

changes. And finally, the Principle of Adaptability is that the population must be able

to change behaviour mode when it is worth the computational price.

5.2.1 Algorithm Description

A particle can be described by its position x and velocity v in a multi-dimensional,

problem-dependent search space (Rn). While moving through the problem space,

particles evaluate the given fitness (cost) function and update their velocity via an

update rule that not only follows local, but also incorporates global information. Each

particle keeps track of the best solution it has found so far (the position with the best

fitness function value), called local best and in the following denoted as x(lbest). And

it is also aware of the current global best position (x(gbest)), detected by any swarm

member. If xt denotes the particle position at time t, the velocity and position update

can be described by the following equations:

vt+1 = wvt + clrl(x(lbest) − xt) + cgrg(x(gbest) − xt)

xt+1 = xt + vt+1

The above equations have two main components: one is the attraction towards

the particle’s local best position, and the other the attraction towards the global best

position. rl and rg are uniform random numbers in the interval [0, 1], introducing a

stochastic factor to the algorithm to simulate the unpredictable component of natural

swarm behaviour. cl and cg are constants, defining how much local or global informa-

tion influences the particles’ movement, and are usually chosen as cl = cg = 2. This

makes the mean of the stochastic factor equal to 1. In other words, the particles “over-

fly” the target about half the time [Kennedy and Eberhart 1995]. w denotes an inertial

weight that controls the influence of the previous velocity. Because cl pulls the particle

toward its local best position, this factor is often called the “cognitive rate”, and cg, as
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it draws the particle towards the global best position found by any swarm member,

is called the “social rate”. The basic Particle Swarm Optimisation is summarised in

Algorithm 6.

The choice of PSO parameters can have a large impact on optimisation perfor-

mance. Selecting PSO parameters that yield good performance has therefore been

the subject of much research [Shi and Eberhart 1998; Ebe 2000]. PSO parameters

can also be tuned by using another overlaying optimiser, a concept known as meta-

optimisation, in which parameters are simultaneously tuned for various optimisation

scenarios [Pedersen and Chipperfield 2010].

5.3 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic, iterative

method for real-valued-parameter optimisation of non-linear, non-convex functions.

It is a powerful optimisation procedure and performs especially well in rugged search-

landscapes with discontinuities, noise, local optima, etc. CMA-ES employs Gaussian

adaptation to learn a second order model of the underlying objective function, analo-

gous to the approximation of the inverse Hessian matrix in a Quasi-Newton method.

In some sense, CMA-ES is a second order approach to estimating a positive definite

matrix, but unlike most second order methods, CMA-ES makes fewer assumptions

about the underlying objective function. Only the ranking between candidate so-

lutions is exploited for learning the sample distribution and neither derivatives nor

even the function values themselves are required. Additionally, a so-called evolution

path, containing information on the correlation between consecutive steps, is recorded

and used for the covariance matrix adaptation mechanism as well as for an auxiliary

step-size control.

CMA-ES was first introduced by Hansen and Ostermeier in 1996 [Hansen and

Ostermeier 1996]. Major improvements on the initial idea made CMA-ES a highly
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elaborate optimisation algorithm. In 2001, weighted recombination was introduced to

CMA-ES [Hansen and Ostermeier 2001]. Two years later, the so-called rank-µ-update

greatly reduced time complexity [Hansen et al. 2003]. Ongoing adjustments and mod-

ifications improved performance. It was found that global search characteristics can

be enhanced if the population size is increased [Hansen and Kern 2004]. A very recent

modification further reduces time and space complexity [Ros and Hansen 2008].

5.3.1 Evolution Strategy

The Evolution Strategy (ES) dates back to the mid 1960s when Bienert, Rechenberg,

and Schwefel [Rechenberg 1973; Rechenberg 1994], at the Technical University of

Berlin, Germany, developed the first bionics-inspired schemes for optimising the shape

of minimum drag bodies in a wind tunnel using Darwinian principles of evolution.

First of all, a population with a predefined number of individuals is initialised within

the given problem space (mostly at random). A selection mechanism chooses individ-

uals that will be considered parents of the next generation. Based on a recombination

mechanism, offspring from the selected parent population will be created. In anal-

ogy to the concept of variation inheritance, in evolutionary computation mutations

ensure that offspring resemble their parents, but are not identical. After creating the

offspring, the selection operator will again choose individuals to be the parents of the

next generation of offspring.

The canonical versions of ES, comma-selection and plus-selection, are denoted re-

spectively by:

(µ/ρ, λ)-ES and (µ/ρ+ λ)-ES

Here µ denotes the number of parents, ρ ≤ µ the mixing number (i.e., the number

of parents involved in the procreation of offspring), and λ the number of offspring.

The parents are deterministically selected (i.e., deterministic survivor selection) from

the (multi-)set of either the offspring, referred to as comma-selection (µ < λ must
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hold), or both the parents and offspring, referred to as plus-selection. Selection is

based on the ranking of the individuals’ fitness f (x) taking the λ best individuals

(also referred to as truncation selection). In general, an ES individual α = (x, s, f (x))

comprises the object parameter vector x to be optimized, a set of strategy parameters

s, needed especially in self-adaptive ESs, and the individual’s observed fitness f (x)

being equivalent to the objective function. The simplest evolution strategy operates

on a population of size two: the current point (parent) and the result of its mutation.

Only when the offspring’s fitness is at least as good as the parent one does it become a

parent of the next generation, otherwise the offspring is disregarded. This is a (1 + 1)-

ES. More generally, λ offspring can be generated and compete with the parent, called

(1 + λ)-ES. In (1, λ)-ES the best offspring becomes the parent of the next generation

while the current parent is always disregarded. The meta algorithm of the Evolution

Strategy is given in Algorithm 7.

Algorithm 7 Self-Adaptation-Evolution-Strategy

1. Initialize parent population Pµ = {α1, ...,αµ}.
2. Generate λ offspring α̂ forming the offspring population P̂λ = {α̂1, ..., α̂µ}where
each offspring α̂ is generated thusly:

1) Select (randomly) ρ parents from Pµ (if ρ = µ take all parental individuals
instead).
2) Recombine the ρ selected parentsα to form a recombinant individual r.
3) Mutate the strategy parameter set s of the recombinant r.
4) Mutate the objective parameter set x of the recombinant r using the mutated
strategy parameter set to control the statistical properties of the object parameter
mutation.

3. Select new parent population (using deterministic truncation selection) from

# either the offspring population P̂λ (this is referred to as comma-selection, usu-
ally denoted as “(µ, λ)-selection”),
# or the offspring P̂λ and parent Pµ population (this is referred to as plus-
selection, usually denoted as “(µ + λ)-selection”)

4. Goto 2. until termination criterion fulfilled.

Recombination and mutation play important roles in ES, and in the next section we

introduce the state-of-the-art evolutionary optimisation CMA-ES and describe how
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the recombination and mutation parameters for the search distribution are modelled.

5.3.2 Covariance Matrix Adaptation

As stated by the principle of maximum entropy, “the probability distribution which

best represents the current state of knowledge is the one with the largest remaining

uncertainty (maximum entropy) consistent with given constraints”. This principle

avoids additional assumptions and provides the least biased estimate possible for any

given information. Given a finite mean and variance (covariance), the (multivariate)

Gaussian distribution has maximum entropy relative to all probability distributions

covering the entire real line (−∞, ∞). The Gaussian Adaptation based CMA-ES is

motivated by two principles: first, maximising entropy minimises the amount of prior

information built into the distribution, preserving generality; second, many physical

systems tend to move towards maximum entropy configurations over time.

In CMA-ES [Hansen and Ostermeier 1996; Hansen and Ostermeier 2001; Hansen

and Kern 2004; Ros and Hansen 2008], the population of offspring for the next gener-

ation (g + 1) is generated by sampling a multivariate normal distribution with mean

m ∈ Rn and covariance C ∈ Rn×n. In addition, sampling is controlled by an over-

all standard deviation σ . Where x(g)
k denotes the kth individual at generation g, the

sampling is given as:

x(g)
k = m(g) +σ (g)N(0, C(g)) k = 1, ..., λ (5.3.1)

The obvious problems are how to calculate m, C and λ for the next generation (g + 1).

5.3.2.1 Selection and Recombination

From the k sampled points, µ points are selected and ranked in ascending order, ac-

cording to their fitness values. The new mean value can be calculated as a weighted
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intermediate recombination of the selected points:

m(g+1) =
µ

∑
i=1

wix
(g+1)
i:λ

µ

∑
i=1

wi = 1 w1 > w2 > ... > wµ > 0 (5.3.2)

where wi are positive weight coefficients for recombination and x(g+1)
i:λ denotes the

ith ranked individual of the λ sampling points x(g+1)
k . For example, selected sam-

ple points could be equally weighted (wi = 1/µ). A measure, the variance effective

selection mass, is defined as:

µe f f =

(∥w∥2
1

∥w∥2
2

)
=

(
µ

∑
i=1

w2
i

)−1

. (5.3.3)

Variance effective selection mass is in the range of 1 6 µe f f 6 µ, and µe f f = µ for

equal recombination weights, i.e. wi = 1/µ for all i = 1, ...,µ. Usually, µe f f ≈ λ/4

indicates a reasonable setting of wi. Typical settings could be wi ∝ µ − i + 1, and

µ ≈ λ/2.

5.3.2.2 Adapting the Covariance Matrix

In this section, the update of the covariance matrix, C, is derived. We will start out by

reviewing some properties of the covariance matrix, followed by constructing the co-

variance matrix from a single population of one generation. For small populations, the

estimation is unreliable and an adaptation procedure rank-µ-update is introduced. In

the limit case where only a single point can be used to update (adapt) the covariance

matrix at each generation, the rank-one-update is employed. Finally the adaptation

can be enhanced by exploiting dependencies between successive steps applied cumu-

latively via evolutionary paths.

Covariance Matrix Covariance Matrix is a symmetric, positive-definite matrix,

C ∈ Rn×n. All eigenvalues of C are positive, and eigenvectors of C are orthnormal
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and forming a basis. Particularly, C−1, C
1
2 and C−

1
2 can be derived as:

C−1 = (BD2BT)−1

= Bdiag(1/d2
1, ..., 1/d2

n)B
T

C
1
2 = BDBT

C−
1
2 = BD−1BT

= Bdiag(1/d1, ..., 1/dn)BT

where the column vectors of B are eigenvectors and the diagonal elements of D2 are

eigenvalues. A multivariate normal distribution, N(m, C) can be sampled in different

ways:

N(m, C) = m + N(0, C)

= m + C
1
2 N(0, I)

= m + BDBT N(0, I)

= m + BDN(0, I)

Hence, sampling from N(m, C) becomes easy, as N(0, I) is a vector of independent

(0, 1)-normally distributed numbers that can easily be determined computationally.

Considering a multivariate Gaussian random variable x with mean m and covari-

ance matrix C, the joint probability density function is given as:

p(x) =
1

(2π)n/2|C|1/2
exp−1

2
(x−m)TC−1(x−m)

The objective function can be defined as its negative logarithm:

f (x) = − ln(p(x)) =
n
2

ln 2π +
1
2

ln |C|+ 1
2
(x−m)TC−1(x−m)
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which is a quadratic function of the components in x. By 2nd-order partial deriva-

tives evaluated at x, we obtain that the Hessian matrix is equal to the inverse of the

covariance matrix, H = C−1. The optimal covariance matrix equals the inverse Hes-

sian matrix with a constant factor. Consequently, the objective of covariance matrix

adaptation is to approximate the inverse Hessian matrix, similar to a quasi-Newton

method. More generally, the objective is to fit the search distribution to the contour

lines of the objective function f .

Covariance Matrix From One Generation We assume that the population con-

tains enough information to reliably estimate a covariance matrix from the population

and σ = 1. The empirical covariance matrix is given as:

C(g+1)
emp =

1
λ− 1

λ

∑
i=1

(
x(g+1)

i − 1
λ

λ

∑
j=1

x(g+1)
j

)(
x(g+1)

i − 1
λ

λ

∑
j=1

x(g+1)
j

)T

The empirical covariance matrix C(g+1)
emp is an unbiased estimator of C(g). Instead of

taking the mean value of the actual samples for the covariance calculation, the true

mean value m(g) of the sample distribution serves as the reference point:

C(g+1)
λ =

1
λ

λ

∑
i=1

(
x(g+1)

i −m(g)
) (

x(g+1)
i −m(g)

)T

Also the matrix C(g+1)
λ is an unbiased estimator of C(g). Using only selected samples

and introducing weighting just as in Equation 5.3.3, the covariance matrix is calcu-

lated as:

C(g+1)
µ =

µ

∑
i=1

wi

(
x(g+1)

i:λ −m(g)
) (

x(g+1)
i:λ −m(g)

)T
(5.3.4)

where x(g+1)
i:λ is ith best individual out of x(g+1)

1 , ..., x(g+1)
λ and f (x(g+1)

1:λ ) 6 f (x(g+1)
2:λ ) 6

... 6 f (x(g+1)
λ:λ ). C(g+1)

µ can be interpreted as an estimator for the distribution of se-

lected steps. This means, that sampling from C(g+1)
µ tends to reproduce selected steps.

Comparing (5.3.4) with the Estimation of Multivariate Normal Algorithm (EMNA)
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[Lar 2001], the covariance matrix in EMNA is given as:

C(g+1)
EMNA =

1
µ

µ

∑
i=1

(
x(g+1)

i:λ −m(g+1)
) (

x(g+1)
i:λ −m(g+1)

)T
(5.3.5)

where m(g+1) = 1
µ ∑µi=1 x(g+1)

i:λ . Equation (5.3.5) estimates the variance within the

selected population while (5.3.4) estimates selected steps. Equation (5.3.5) always

reveals smaller variances than (5.3.4), because its reference mean value is the min-

imiser for the variances. Moreover, in most conceivable selection situations (5.3.5)

decreases the variances compared to C(g). Equation (5.3.4) geometrically increases

the expected variance in the direction of the gradient where the selection takes place,

while Equation (5.3.5) always decreases the variance in the gradient direction geo-

metrically. Therefore, (5.3.5) is highly susceptible to premature convergence4, in par-

ticular with small parent populations, where the population cannot be expected to

bracket the optimum at any time. With Equation (5.3.4), in order to ensure that C(g+1)
µ

is a reliable estimator, the variance effective selection mass µe f f must be large enough.

Getting condition numbers smaller than ten for C(g)
µ in fsphere(x) = ∑n

i=1 x2
i , requires

µe f f ≈ 10n.

Rank-µ-Update To achieve fast search (as opposed to more robust or more global

search), the population size λ must be small. µe f f also must be small (e.g. µe f f ≈ λ/4).

In this case it is not possible to get a reliable estimator for a good covariance matrix

from Equation (5.3.4). One possible remedy could be to use additional information

from previous generations. For example, after a sufficient number of generations, the

mean of the estimated covariance matrices from all generations,

C(g+1) =
1

g + 1

g

∑
i=0

1
σ (i)2 C(i+1)

µ

becomes a reliable estimator for the selected steps. To allow recent generations to

4However, for large values of µ in large populations with large initial variances, the impact of the
different reference mean value can become marginal.
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have stronger influences on the covariance matrix adaptation, exponential smoothing

is introduced to put more weight on recent generations. Given C(0) = I and a learning

rate cµ ∈ [0, 1], the iterative update is:

C(g+1) = (1− cµ)C(g) + cµ
1

σ (g)2 C(g+1)
µ

= (1− cµ)C(g) + cµ
µ

∑
i=1

wiy
(g+1)
i:λ y(g+1)T

i:λ (5.3.6)

= (1− cµ)g+1C(0) + cµ
g

∑
i=0

(1− cµ)g−i 1
σ (i)2 C(i+1)

µ (5.3.7)

where y(g+1)
i:λ = (x(g+1)

i:λ −m(g))/σ (g). The backward time horizon is defined by ∆g

where about 63% of the overall weight is summed up and

cµ
g

∑
i=g+1−∆g

(1− cµ)g−i ≈ 0.63 ≈ 1− e−1

Resolving the sum yields:

(1− cµ)∆g ≈ e−1

Using the Taylor approximation for the natural logarithm yields:

∆g ≈ c−1
µ

That is, approximately 37% of the information in C(g+1) is older than c−1
µ genera-

tions, and the original weight is reduced by a factor of 0.37 after approximately c−1
µ

generations. It turns out that cµ can be calculated by the first order approximation

cµ ≈ µe f f /n2. For a fixed number of function evaluations, a small population size λ

allows a larger number of generations and therefore usually leads to a faster adapta-

tion of the covariance matrix.

Rank-One-Update

The rank-one-update uses only a single selected step for the covariance matrix
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adaptation. Together with the concept of cumulation, correlations between consecu-

tive steps are exploited to give the so-called evolution path. Conceptually, the evolu-

tion path is the path that the strategy takes over a number of generations. The single

rank one covariance matrix update can be derived from Equation (5.3.6) as:

C(g+1) = (1− c1)C(g) + c1yg+1yT
g+1

where yg+1 =
x(g+1)

1:λ −m(g)

σ (g) . The second term of rank one c1yg+1yT
g+1 adds the maxi-

mum likelihood term for yg+1 into the covariance matrix C(g). Ideally, yg+1 is a fit

individual. Therefore the likelihood of generating the sample yg+1 in the next gen-

eration increases. However, since yyT = −y(−y)T, the sign of the step is irrelevant

for the update of the covariance matrix. To exploit the sign information, the evolution

path is introduced. This can be expressed as the sum over consecutive steps of the

mean value m. The recursive construction of the evolution path, p(g+1)
c ∈ Rn, with

exponential smoothing, with p(0)
c = 0, is refered to as cumulation:

p(g+1)
c = (1− cc)p

(g)
c +

√
cc(2− cc)µe f f

m(g+1) −m(g)

σ (g)
(5.3.8)

where
√

cc(2− cc)µe f f is a normalisation constant for pc, such that p(g+1)
c ∼ N(0, C).

A backward time horizon 1/cc between
√

n and n is reasonable. Then rank one update

of the covariance matrix C(g) via the evolution path p(g+1)
c is:

C(g+1) = (1− c1)C(g) + c1p(g+1)
c p(g+1)T

c (5.3.9)

Combining Rank-µ-Update and Rank-One-Update Combining the rank-µ-update

(5.3.6) and rank-one-update (5.3.9), the final covariance matrix update rule can be ex-

pressed as:

C(g+1) = (1− c1 − cµ)C(g) + c1p(g+1)
c p(g+1)T

c + cµ
µ

∑
i=1

wiy
(g+1)
i:λ y(g+1)T

i:λ (5.3.10)
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where c1 ≈ 2/n2 and cµ ≈ min(µe f f /n2, 1 − c1). On the one hand, the information

within the population of one generation is used efficiently by the rank-µ-update to

deal with large populations. On the other hand, information on correlations between

generations is exploited by using the evolution path for the rank-one-update to small

populations. The former is important in large populations, the latter is particularly

important in small populations.

5.3.2.3 Step-Size Control

In addition to the covariance matrix adaptation rule, a step-size control is introduced,

that adapts the overall scale of the distribution based on information obtained by the

evolution path. The following rationale is applied: If the evolution path is long and

single steps are pointing more or less to the same direction, the step-size should be

increased. On the other hand, if the evolution path is short and single steps cancel

each other out, the step-size should be decreased. Similar to Equation 5.3.9, the step-

size evolution path pσ is initialized with p(0)σ = 0 in generation 0 and in the subsequent

generations calculated as:

p(g+1)
σ = (1− cσ )p

(g)
σ +

√
cσ (2− cσ )µe f f C(g)−

1
2 m(g+1) −m(g)

σ (g)
(5.3.11)

with cσ < 1 again being the backward time horizon of the evolution path. When cσ

= 1, only the most recent step contributes to the cumulation. m(g+1) −m(g) gives the

current step and
√

cσ (2−cσ )µe f f

σ (g) is a normalisation constant. The main difference from

Equation (5.3.9) is the term C(g)−
1
2 , representing a transformation, which makes the

expected length of p(g+1)
σ independent of its direction.

Now a step-size adaptation rule can be formulated. Hansen reflects that selection

ideally does not bias the length of the evolution path, ∥p(g+1)
σ ∥, and that the length

is equal to its expected length under random selection, which is simply equal to the

expected length of a random normal vector, E∥N(0, I)∥. Comparing ∥p(g+1)
σ ∥ and
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E∥N(0, I)∥ results in the final step-size adaptation rule:

σ (g+1) = σ (g) exp

(
Cσ
dσ

(
∥p(g+1)

σ ∥
E∥N(0, I)∥ − 1

))
(5.3.12)

where dσ ≈ 1, a damping parameter, scales the change magnitude of lnσ (g). Overall,

CMA-ES is outlined in Algorithm 8.

Algorithm 8 Covariance Matrix Adaptation-Evolution Strategy

Require:
Selection and Recombination: λ = 4 + ⌊3 ln n⌋, µ = ⌊µ′⌋, µ′ = λ/2, wi =

w′i
∑µj=1 w′j

,

w′i = ln(µ′ + 0.5)− ln i for i = 1, ...,µ

Step-size control: cσ =
µe f f +2

n+µe f f +5 , dσ = 1 + 2 max
(

0,
√

µe f f−1
n+1 − 1

)
+ cσ

Covariance matrix adaptation: cc =
4+µe f f /n

n+4+2µe f f /n , c1 = 2
(n+1.3)2+µe f f

, cµ =

min
(

1− c1,αµ
µe f f−2+1/µe f f

(n+2)2+αµµe f f /2

)
withαµ = 2

Initialisation:
Set evolution paths pσ = 0, pc = 0, covariance matrix C = I, and g = 0. Choose
distribution mean m ∈ Rn and step-size σ ∈ R+ (problem dependent)
repeat

g = g + 1
Sample new population of search points, for k = 1, ..., λ

zk = N(0, I)
yk = BDzk
xk = m +σyk

Selection and recombination

ỹw = ∑µi=1 wiyi:λ where ∑µi=1 wi = 1, wi > 0
m = m +σ ỹw = ∑µi=1 wiyi:λ

Step size control

pσ = (1− cσ )pσ +
√

cσ (2− cσ )µe f f C−1/2ỹw

σ = σ exp
(

Cσ
dσ

(
∥pσ∥

E∥N(0,I)∥ − 1
))

Covariance matrix adaptation

pc = (1− cc)pc +
√

cc(2− cc)µe f f ỹw

C = (1− c1 − cµ)C + c1pcpT
c + cµ ∑µi=1 wiyi:λyT

i:λ

until termination criterion fulfilled.
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5.4 Covariance Matrix Adaptation Annealing

We propose a new global optimisation method, Covariance Matrix Adaptation An-

nealing, which is a hybrid of CMA-ES, Simulated Annealing and Particle Swarm

Optimisation. Generally, it is designated a generic black box optimisation, with no

analytical objective function required. Specifically, it is aimed at solving the multi-

modal problem in high dimensional space. It assumes that the initial position is close

enough to the global optimum that the small search space around the global optimum

can be reasonably densely sampled5. Comparing with Simulated Annealing, it has a

faster convergence speed, but a higher chance of missing the global optimum. On the

other hand, compared with CMA-ES, it has relatively slow convergence speed on a lo-

cally consistent landscape, but is more robust to multimodal landscapes. Therefore, it

suits a well-defined specific category of problems to be solved. Following this section,

we describe the category of problems can be solved efficiently by Covariance Matrix

Adaptation Annealing.

5.4.1 Problems in Dynamic Settings

Covariance Matrix Adaptation Annealing is specifically suited to solving global opti-

misation in a dynamic setting. In a dynamic setting, optimisation at each point in time

has very strong temporal coherence. On the other hand, for many practical problems,

the global optimum has major influence on the entire landscape of the energy func-

tion. To avoid overcomplicated energy functions with golf-course-like landscapes, we

impose smoothness constraints near the global optimum, allowing faster and more

robust convergence. These together reveal three characteristics of problems in this

category:

1. The optimisation problems for consecutive times have similar landscapes. In

fact, the landscape from the current time is some evolution of the landscape
5The density of sampling and the size of the search space are determined by the distance between the

initial position and the global optimum.
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Figure 5.2: In the multimodal landscape situation, if a good initial position can be ob-
tained from the previous time and there is a roughly consistent landscape with respect
to the global optimum, the global optimum can be efficiently found by Covariance
Matrix Adaptation Annealing.

from the previous time.

2. The optimal solutions from consecutive times also appear relatively close to each

other. The previous solution can be used as a good initial position for current

optimisation.

3. Within the small space (with respect to the search space) around the global opti-

mum, the landscape is roughly consistent with the shape of the global optimum.

This means that on the whole this small space forms a rough convex shape that

leads to the global optimum, as illustrated in Figure 5.2.

5.4.2 Covariance Matrix Adaptation Annealing Algorithm

The proposed algorithm has the several advantages: 1) It drives the landscape tran-

sition of the energy function from roughly convex to the original peaked shape. This

allows particles to gradually move towards to the global mode; 2) The perturbation

is not isotropic in all directions, but tends to perturb the samples along the weighted
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directions conforming to the observation likelihood; 3) The accumulative path simi-

lar to the evolution path of CMA-ES is incorporated into the perturbation matrix to

maintain the primary trend. This prevents the perturbation directions from chang-

ing dramatically and reduces the chance of oscillating successive perturbations which

cancel out each other; and 4) It is inspired by human social behaviour, where indi-

viduals are attracted by the combined behaviour of both successful individuals and

majority interests. This extra influence is introduced, allowing each sample to move

closer to better fit samples, or the mean sample. All samples are expected to move

towards to the centre and gradually concentrate. The algorithm preserves the major

features of Simulated Annealing; the major differences only exist in the perturbation

matrix update.

Initially, a series of survive rates α1, ...,αM for M phases are defined. A large sur-

vival rate suggests slow convergence and is often used with a large number of phases.

Conversely, a small survive rate creates a sharply shaped importance distribution,

resulting in fast convergence, and is suitable for a small number of phases. In our ex-

perience, it is recommended thatα be varied from 0.3 to 1. The perturbation matrix P0

is initialised to account for maximum perturbation according to the specific context.

If the perturbation matrix from the previous time is available, P0,t is initialised by:

P0,t = βP0,t−1 + (1−β)P0

where β controls the balance between the dynamic part P0,t−1 from the previous time

and the stable part P0 as a hard constraint. Otherwise, P0,t = P0. If the previous N

samples/particles xt−1 are available, the N particles xi
t can be initialised with the tem-

poral model. Otherwise, particles xi
t are initialised by applying Gaussian perturbation

with covariance P0,t and mean µ = 0 to the given initial position.

Then, for all particles xi
t, we evaluate the energy function E(yt, xi

t) to obtain the

corresponding energy ei. The global optimum is obtained when this energy function
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is minimised. It is assumed to be positive. As the evaluation of the energy function

forms the computational bottleneck, it is desirable to design the energy function to be

quickly computed. After determining the energy for all particles, we want to form the

importance distribution which has the specific survive rate αm. This is done by solv-

ing Equation (5.1.2) to find λm such that the importance distribution has the desired

shape. We use the resulting λm to update the weights for all particles. Therefore, all

particles associated with weights can be regarded as an approximation of the impor-

tance distribution. When N particles are resampled from the importance distribution,

the offspring have a higher chance of coming from better parent particles. Roughly

speaking, 100 · λm percent of particles will have offspring, and other particles will be

obsoleted. This is how survive rate shapes the importance distribution, influences

particle selection and eventually controls the convergence speed.

5.4.2.1 Perturbation Matrix and Particle Velocity Update

The new particles are derived from three major factors: 1) direct resampling from the

importance distribution x̂i, 2) Gaussian perturbation with adaptive covariance δi, and

3) the particle velocity imposed by attraction from superior individuals vi. This is

formulated by:

xi = x̂i + (1− cv)δ
i + cvvi

x̂i is similar to the resampled particle in Simulated Annealing and δi is Gaussian per-

turbation generated by N(0, (∏m
i=1αi)Pm). The covariance Pm is learned adaptively

throughout the course of optimisation and progressively scaled by the survive rate

to simulate cooling and freezing of the particles’ movement. Different from Gaussian

perturbation in many aspects, the particle velocity vi drives the particle to move in the

direction approaching the global best and mean particles. This is similar to the PSO

algorithm. cv ∈ [0, 1] is a parameter used to control the contributions from Gaussian

perturbation and particle velocity. cv > 0.5 favours fast convergence in the roughly
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convex situation. Conversely, cv < 0.5 favours broader exploration of the multimodal

landscape.

In the Gaussian perturbation, the covariance matrix Pm is calculated adaptively,

similar to Rank-µ-Update and Rank-One-Update in CMA-ES, which can be mathe-

matically represented as:

x =
N

∑
i=1

wixi

pc = (1− cc)pc + cc(xm − xm−1)

Pm = (1− c1 − cµ)Pi
m−1 + c1pcpT

c + cµ
N

∑
i=1

wi(xi − xm)(xi − xm)
T

where Rank-µ-Update cµ ∑N
i=1 wi(xi− xm)(xi− xm)T is observation likelihood weighted

covariance to shape the perturbation direction, expected to help push the next particle

perturbations towards the exploration of more favourable regions. Rank-One-Update

c1pcpT
c incorporates historical information to smooth the perturbation directions. This

is done by enforcing that particles move along the accumulative path of the mean par-

ticle x without excessive oscillations. The parameters cc, cµ and c1 are used to control

the contributions of Rank-µ-Update and Rank-One-Update, as well as control expo-

nential smoothing between phases. In our experience, with cc = 0.5, cµ = 1/3 and

c1 = 1/3 we obtain reasonable results for general cases.

The particle velocity is perturbed to simulate social behaviour and interaction be-

tween particles, through attraction to the best individual and the mean individual, as

addressed in the formulation below:

vi = (1− rb)
xm − x̂i

∥xm − x̂i∥2
2
+ rb

x(best) − x̂i

∥x(best) − x̂i∥2
2

where rb denotes a uniform random variable in [1, 0]. Thus, vi is a vector originating

at x̂i and pointing to the range between xm and x(best). The squared L2 denominator is

designed to simulate weakening influence caused by increasing the distance. This is
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also consistent with the influence weakening in a social network where the physical

distance between two individuals is increasing. Therefore, if x̂i is far away from both

xm and x(best), the particle velocity has a very small magnitude and Gaussian pertur-

bation δi will dominate the new position of the particle. If x̂i is far from xm and close

to x(best), the particle velocity will be dominated by x(best) − x̂i. Conversely, if x̂i is far

from x(best) and close to xm, the particle velocity will drive x̂i to move more towards

xm.

To summarise, Covariance Matrix Adaptation Annealing is given in Algorithm 9.

Algorithm 9 Covariance Matrix Adaptation Annealing at time t

Require: a sequence of αm for every phase is defined, previous particles xt−1, obser-
vation yt, the number of phases M and the initial covariance matrix P0 and P0,t are
given
for m = 1 to M do

1: Initialise N particles xi
t from the previous phase or the temporal model

p(xi
t|xi

t−1).
2: Calculate the energy E(yt, xi

t) for all particles.
3: Find λm by solving the equationαmN ∑N

i=1 (w
i
t,m)

2 =
(
∑N

i=1 wi
t,m
)2

.
4: Update weights for all particles using the equation wi = p(yt|xi

t) =
exp{−λE(yt, xi

t)}.
5: Resample N particles x̂i from the importance distribution.
6: Update the perturbation matrix.

x = ∑N
i=1 wixi

pc = (1− cc)pc + cc(xm − xm−1)

Pm,t = (1− c1 − cµ)Pm−1,t + c1pcpT
c + cµ ∑N

i=1 wi(xi − xm)(xi − xm)T

7: Generate N random perturbations δi by Gaussian noise with covariance
(∏m

i=1αi)Pm,t and mean µ = 0.
8: Compute particle velocities imposed by the majority force from xm and attrac-
tion to the current global best x(best), vi = (1− rb)

xm−x̂i

∥xm−x̂i∥2
2
+ rb

x(best)−x̂i

∥x(best)−x̂i∥2
2
.

9: Compute the final N particles with xi = x̂i + (1− cv)δi + cvvi

end for
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5.4.3 Experiments with Benchmark Optimisation Problems

To compare the efficiency of the Covariance Matrix Adaption Annealing algorithm

with the three optimisation methods mentioned in this chapter, we conduct experi-

ments against four benchmark optimisation problems in high dimensional space, in-

cluding some difficult multimodal and non-separable problems. All methods have

been allocated equivalent initial conditions. An equal number of evaluations and the

average minimum function value together are used to measure how fast the algo-

rithms converge.

5.4.3.1 Ackley Problem

The original Ackley problem [Ackley 1987] was defined for two dimensions, but the

problem has been generalised to N dimensions [Bäck 1996]. Formally, this generalised

problem can be described as finding an N dimensional vector x = {x1, x2, . . . , xN},

with xi ∈ (−32.768, 32.768), that minimises the following equation:

f (x) = −20 exp(−0.2

√
1
n

n

∑
i=1

x2
i )− exp(

1
n

n

∑
i=1

cos(2πxi)) + 20 + exp(1) (5.4.1)

The Ackley problem is multimodal. There are competitive local minima around the

global minimum. However, the attraction from the global minimum is still dominant

within the domain (−32.768, 32.768), as illustrated in Figure 5.3. The global mini-

mum is located at x = 0 with f (x) = 0.

The four methods–Covariance Matrix Adaptation (CMA), Particle Swarm Opti-

misation (PSO), Simulated Annealing and Covariance Matrix Adaptation Annealing

(CMA-Annealing) have been used to optimise the 30 dimensional Ackley function

from the same initial position. The average results from 100 executions have been

plotted in Figure 5.4. Simulated Annealing has a very slow convergence compared

with the other methods. The average minimum value slowly converges from an ini-

tial value above 10 to roughly zero during the course of 4000 evaluations. Since Sim-
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Figure 5.3: The Ackley function at two different zoom ratios. The graph on the left
side employs the whole definition area of the function from -30 to 30. The graph on
the right side shows the area of the global minimum giving a better impression of the
properties of the function.

ulated Annealing uses nearly isotropic Gaussian perturbation for each particle, the

overall exploration direction is undetermined or stochastic. Therefore, its conver-

gence speed is slow for a roughly consistent structure like the Ackley function. In

comparison, CMA, PSO, and CMA-Annealing have relatively sharper convergence

rates. After 1600 evaluations, these three methods have reached the average mini-

mum value close to zero. CMA-Annealing and CMA have very similar performance;

the two graphs are effectively intertwined all the way through the end of 4000 evalua-

tions. Due to the consistent overall structure of the Ackley function, PSO has slightly

lower performance than the CMA-based methods. This consistent structure favours

the Hessian-based approximation used in the CMA-based methods.

5.4.3.2 Rastrigin Problem

The Rastrigin problem, first proposed by Rastrigin [Törn and Zilinskas 1989] as a

2-dimensional function, has been generalised by Mühlenbein et al in [Mühlenbein

et al. 1991]. This is a fairly difficult multimodal problem due to its large search space

and large number of local minima. The highly multimodal surface of the function is

generated by the cosine modulation variables A andω, which control the amplitude

and frequency modulation respectively. It is usually recommended to set A = 10,

and ω = 2π . The problem is defined as finding an N dimensional vector x, where
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Figure 5.4: Four different methods are applied to Ackley function. Simulated An-
nealing shows slower convergence than the other methods. The CMA-based methods
(CMA and CMA-Annealing) have better convergence than PSO due to the fact that
that Ackley function has roughly consistent structure.

xi ∈ [−5.12, 5.12], which minimises the equation below:

f (x) = AN +
N

∑
i=1

x2
i − A cos(ωxi) (5.4.2)

The Rastrigin function has a complexity of O(N ln(N)). Its global minimum is also

located at x = 0. The two dimensional Rastrigin function is plotted in Figure 5.5.

The 30 dimensional Rastrigin function (Figure 5.6) is difficult to optimise using

the four methods mentioned. All of them with 4000 evaluations failed to converge

close to the global minimum. The major reason is the initial position is far from the

global minimum and local minima easily trap the algorithms. The perturbation range

is scaled down before the samples can find the major basin.
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Figure 5.5: The two dimensional Rastrigin function. It has a cosine modulation to
produce many local minima. However, the locations of the minima on the highly
multimodal surface are regularly distributed.

Figure 5.6: Algorithm comparison with 4000 evaluations on the 30 dimensional Rast-
rigin function show that the four different methods fail to converge close to the global
minimum. This is due to the large search space and number of local minima with
respect to the limited number of evaluations.
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5.4.3.3 Griewank Problem

The Griewank problem [Griewank 1981] is similar to the Rastrigin problem. It has

many widespread local minima that are regularly distributed. The one-dimension

Griewank function has 191 local minima; as its dimension increases, the Griewank

problem has an exponentially increasing number of local minima. To find the global

minimum is a very challenging task, especially in high dimensional space. The prob-

lem can be described as finding an N dimensional vector x, with xi ∈ (−600, 600),

that minimises the following equation:

f (x) = 1 +
n

∑
i=1

x2
i

4000
−

N

∏
i=1

cos(
xi√

i
) (5.4.3)

Its global minimum is located at x = 0 with f (x) = 0. Figure 5.7 shows the 2D

Griewank function.

The experimental results on the 30 dimensional Griewank function with 4000 eval-

uations using the four different methods are shown in Figure 5.8. Although the Griewank

problem has an exponentially increasing number of local minima with respect to di-

mensionality, it still has a roughly consistent local structure, similar to the Ackley

function. CMA based methods are able to converge very quickly. In particular, CMA-

Annealing performs better than the original CMA, reaching 10−7 accuracy compared

with 10−6 for CMA after 4000 evaluations. PSO has an encouraging convergence rate

up to 1800 evaluations, where it converges more quickly than CMA. However, it be-

comes trapped in a local minimum after 1800 evaluations. Simulated Annealing has

the slowest convergence speed, but it obtains a better average minimum value than

PSO after 3600 evaluations. CMA-Annealing demonstrates appealing performance

overall, achieving reasonable accuracy after only 1400 evaluations.
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Figure 5.7: The interpretation of the Griewank function changes with scale. A general
overview suggests a convex function; a medium-scale view suggests the existence of
local extrema, and the fine details indicate a complex structure with numerous local
extrema.

Figure 5.8: Algorithm comparison with 4000 evaluations on the 30 dimensional
Griewank function shows CMA-Annealing achieves the fastest convergence, followed
by PSO and CMA. Although Simulated Annealing converges slower than the other
methods, it avoids being trapped in local minima unlike PSO.
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5.4.3.4 Rosenbrock Problem

The Rosenbrock problem [Rosenbrock 1960] is a classic optimisation problem, also

known as the banana function. It is non-separable problem. The global optimum

lays inside a long, narrow, relatively flat parabolic valley. To find the valley is trivial,

however convergence to the global optimum is difficult. The N dimensional problem

can be defined as finding a vector x that minimises the equation:

f (x) =
N−1

∑
i=1

(
100(xi

2 − xi+1)
2 + (1− xi)

2
)

(5.4.4)

Many researchers take the high-dimensional Rosenbrock function as a unimodal func-

tion by instinct. However, the Rosenbrock function has been shown [Shang and Qiu

2006] to have exactly one minimum for N = 3 (at (1, 1, 1)) and exactly two minima

for 4 6 N 6 30–the global minimum of all ones and a local minimum nearby. Figure

5.9 illustrates the Rosenbrock valley in two dimensions.

The four methods have the expected result of optimising the 30 dimensional Rosen-

brock function as shown in Figure 5.10. Simulated Annealing converges relatively

slowly, but it is more capable of escaping from the attraction of local minima. The

other three methods have better convergence rates, however, they are trapped after

2000 evaluations. While CMA-Anealing has better convergence than CMA and PSO,

its improvements in accuracy after 2000 evaluations are minor. It is difficult for the

CMA based method to move along the Rosenbrock valley. Thus it is easy for CMA-

Annealing to be trapped in local minima.
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Figure 5.9: The two dimensional Rosenbrock function. Although it is a unimodal
problem, finding the global minimum is very difficult. For instance, if an optimisation
method starts at the initial point located at (-1.2, 1), it has to find its way to the other
side of a flat, curved valley to find the optimal point.

Figure 5.10: With the exception of Simulated Annealing, the methods become trapped
in local minima. However, Simulated Annealing has the slowest convergence rate.
Overall, none of the four methods are able to converge reasonably close to the global
minimum after 4000 evaluations.
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Chapter 6

Robust Evaluation Model

A general failure of tracking using the Annealing Particle Filter like optimisation

method may indicate two possibilities: 1) The number of particles or layers is in-

adequate to cover large enough search space to guarantee finding reasonably good

solutions. This often requires increasing the computational time or effectively reduc-

ing the computational complexity to expand coverage in search space. 2) The opti-

misation process is converged to the global minimum, but it does not correspond to

the true gesture. This is the consequence of the evaluation being modelled inaccu-

rately. For instance, the converged estimate may correspond to the global minimum

of corrupted data rather than the true posture. In this chapter, we propose several im-

provements on the evaluation model. Incremental Relaxation by Fast March Method

aims to avoid premature convergence; Colour and Texture Incorporation attempts to

introduce extra information to resolve ambiguities and improve robustness to light

variations. Maximisation of Mutual Information and Gradual Sampling together al-

low the evaluations to concentrate on large errors (caused by misalignments of the

tracking subject), and therefore be robust to other noise errors as well as being com-

putationally efficient.

119
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6.1 Incremental Relaxation by Fast March Method

The silhouette1 is often used in markerless human motion capture to describe the

shape of the human body. However, when lacking colour and texture information, the

silhouette essentially describes an image as no more than a contour line which only

contains partial information from the original image. Shape ambiguities can occur

along the depth direction. This can result in multiple solutions when one attempts to

fit the original human body to the visual hull computed by the shape-from-silhouette

technique [Laurentini 1994]. The parameterised human pose usually resides in high

dimensional space, and it turns out that the solution of human motion capture is sub-

ject to non-convex and multi-modal optimisation in high dimensional space.

Many different approaches have attempted to breach this non-convex and multi-

modal high dimensional problem. One of these ideas that is particularly intriguing,

Graduated Optimisation, assumes that we can convert the original problem to a se-

quence of designed problems which are ordered from simple to complex (equivalent

to the original problem). Since those solutions can be progressively obtained and used

as the initialisation for each successive problem, solving this sequence of problems is

much simplified compared with solving the original problem. Take the example of a

continuous multi-modal problem shown in Figure 6.1. Here the original optimisation

problem is transformed into a sequence of optimisation problems, such that the first

problem in the sequence is convex (or nearly convex), the solution to each problem

gives a good starting point for the next problem in the sequence, and the last problem

in the sequence is the difficult optimisation problem that it ultimately seeks to solve.

If each problem in the sequence is locally convex around the optimal value and the so-

lutions are good enough inside the the local convex region, then, it can be guaranteed

that the optimal solution to the final problem in the sequence will be found.

Simulated Annealing [Kirkpatrick et al. 1983] has similar behaviour when the
1The silhouette is more robust to illumination variation and easier to match than colour and texture

features.
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annealling variable is gradually evaluated, causing the energy function to be trans-

formed from a single peak to the multiple peaks in the landscape of the global opti-

mum. In Chapter 7 of [Blake and Zisserman 1987], the authors introduce the Grad-

uated Non-Convexity Algorithm. The algorithm first constructs a convex approxi-

mation to the non-convex energy function, and then proceeds to find its minimum.

In order to achieve the objective of a convex approximation, several constraints on

line process interactions in the form of penalties levied on broken contours, etc., are

added. The energy function becomes a function of the penalty intensities and a control

parameter. In successive steps a sequence of energy functions generated by varying

this control parameter are minimized, starting from the initial convex stage. Such a

procedure is certainly intuitively appealing. It is unlikely that very general statements

can be made about its effectiveness for an arbitrary non-convex cost function. But in

the case of the energy functions that describe the weak string and membrane mod-

els2, the algorithm can be shown to be correct for significant class of signals [Blake

and Zisserman 1987].

An incremental method introduced in this section shares a similar spirit, but it

works on the data domain. Although this approach is designed for our particular

problem, its insight is generally applicable to any contexts and applications. The

coarse-to-fine operation is performed incrementally on the data. The coarse and fine

data correspond to a simple energy function (ideally with roughly convex shape)

and a complex energy function (the original energy function). The proposed method

seamlessly incorporates a control parameter for an isotropic distance map to APF, al-

lowing incremental data relaxation to work consistently with the annealling schedule.

The basic idea is that the fitness test criteria are relaxed to allow a large number of

particles to survive at an early stage and encourage broad exploration. The complete

fitness test is delayed until adequate information is gathered. This method enables

2The weak string, however, preserves discontinuities without any prior information about their exis-
tence or location.
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Figure 6.1: Graduated Optimisation for a continuous multi-modal problem: the multi-
modal problem is reshaped and simplified as a sequence of easier subproblems. The
solution of the current problem provides a good initial position to the successive prob-
lem, which simplifies optimisation dramatically. (courtesy of [Wikipedia 2011])

a better chance than APF to escape the attraction of local minima and converge to

the global minimum. As shown in Figure 6.2, the contour of the distance map is

relaxed (thickened), allowing a larger number of particles to survive and explore a

larger search space. As it proceeds, the contour is gradually contracted to approach

the original silhouette shape. Probabilistically, it selects better fit particles, and grad-

ually concentrates them on the region which contains the global minimum.

(a) (b) (c) (d) (e)

Figure 6.2: Level Set and Silhouette Images: (a) the original silhouette, (b) outwards
relaxed silhouette, (c) outwards and inwards fixed silhouette, (d) outwards/inwards
relaxed contour, and (e) the original contour

On the basis of this idea, an extra term Dc(rel(yt, m), xt) is introduced for the pur-

pose of relaxing the fitness test criteria. The energy function E(yt, xt) is then given by:
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1
Nv

Nv

∑
i=1

Ds(yt, xt) +αDc(rel(yt, m), xt) (6.1.1)

where Nv is the number of views. Ds(yt, xt) measures differences between the ob-

served silhouette yt and the silhouette generated by the particle xt. Dc(rel(yt, m), xt)

measures how well the contour (generated by the particle xt) fits the relaxed contour

of the isotropic distance map. α is a factor3 to adjust the influence of the relaxing term

on the energy function. m controls the degree of relaxation. As the annealing schedule

proceeds, the contour of the isotropic distance map is changed from the thick curve

(corresponding to the loosest criteria) at the beginning to the original thin curve (cor-

responding to the original criteria) at the end shown in Figures 6.2d and 6.2e, respec-

tively. The relaxing operation rel(yt, m) is computed by Fast March Method, whose

details are described in the next section. Furthermore, noisy silhouette images can

be smoothed by marching Fast March Method outwards and then inwards as shown

in Figures 6.2a, 6.2b and 6.2c, respectively. Overall, the relaxed APF algorithm in a

typical annealing phase is outlined in Algorithm 10.

6.1.1 Fast March Method

The Fast March Method [Sethian 1999] is a technique for tracking the evolution of an

expanding front. In this context, a front is a closed surface in 3D (or a closed curve

in 2D) which separates an interior and an exterior region. The Fast March Method is

simply a technique for computing the arrival time of a front at the points of a discrete

lattice. If the front is simply a closed curve in 2D, and the lattice is a pixel raster, the

Fast March Method assigns to each pixel the time at which the expanding curve hits

the pixel. The method applies only to cases where the front is uniformly expanding

since the arrival time of the front is uniquely defined only in these cases. The front

evolves by motion in the normal direction of the curve. The speed does not have to be

3It can be learned from the cross-validation method at the training stage.
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the same everywhere, but the speed must always be non-negative. At a given point,

the motion of the front is described by the equation known as the Eikonal equation:

∥∇T(x)∥F(x) = 1

where T is the arrival time of the front at point x and F > 0 is the speed of the front

at point x. Because the front can only expand, the arrival time T is single valued.

Although the Fast March Method is more general, for simplicity, we will restrict our

attention to 2D lattices of the usual sort, e.g. isotropic, rectangular 2D lattices. We will

generally assume that F = 1 everywhere. In this case, the fast march method simply

propagates the shortest distance to the boundary to all other points in the lattice.

Algorithm 10 Relaxed Annealed Particle Filter

Initialise N particles xi
t from the previous phase or the temporal model

p(xi
t|xi

t−1, yi
t).

Calculate the energy E(yt, xt) for all particles using equation (6.1.1).
Set an appropriate αm, find λm by solving the equation αmN ∑N

i=1 (w
i
t,m)

2 =(
∑N

i=1 wi
t,m
)2

Update particle weights using the equation p(yt|xt) = exp{−λE(yt, xt)}
Resample N particles from the importance distribution.
Perturb particles by Gaussian noise with covariance Pm = αmPm−1 and mean 0.

The Fast March Method works outwards from an initial condition. To define the

initial condition, a set of pixels in the image are labelled as frozen, and we compute

distances to their neighbours. The vertices that have computed distances but are not

yet frozen are said to be narrow band pixels. For each iteration of the central loop of

the algorithm, the narrow band pixel having the smallest distance value is frozen, and

distances are computed from its neighbours. Frozen pixels are used to compute the

values of other pixels but are never computed again. Thus we can see the method itself

as a front of narrow band pixels that propagates from the initial condition, freezing

pixels as it moves along.

Distances are computed by solving the Eikonal equation. In this way we find a dis-
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Algorithm 11 Fast March Method

Require: A list of pixels L containing pixels whose distancess are known and thus
form the initial condition, and a binary heap H that is initially empty.
for each pixel p in L do

Freeze p
for each neighbour pn of p do

Compute distance d at pn
if vn is not in narrow band then

Label pn as narrow band
Insert (d, pn) into H

else
Decrease key of pn in H to d

end if
end for

end for
while H is not empty do

Extract p from top of H
Freeze p
for each neighbour pn of p do

if pn is not frozen then
Compute distance d at pn
if pn is not in narrow band then

Label pn as narrow band
Insert (d, pn) into H

else
Decrease key of pn in H to d

end if
end if

end for
end while
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tance value for the narrow band pixel so that the estimated magnitude of the gradient

∥∇T∥ is equal to = 1/F. Sethian [Sethian 1999] suggested a gradient approximation

borrowed from the field of hyperbolic conservation laws:

max(d−x
i j T,−d+x

i j T, 0)2 + max(d−y
i j T,−d+y

i j T, 0)2 = 1/F2
i j (6.1.2)

where d−x
i j stands for the difference between the distances of the points (i, j) and (i−

1, j). The Fast March Method is summarised in Algorithm 11. Figure 6.3 shows the

results from the Fast March Method applied to the human hand contour. Considering

in reverse order, the shape details of the contour are transformed from blurred to

highly detailed. This is in agreement with the coarse-to-fine strategy in the anneal

schedule.

(a) (b) (c) (d) (e) (f)

Figure 6.3: Progressive Results of the Fast March Method on Hand Contour

6.1.2 Experiments

The dataset from [Balan et al. 2005], which contains multi-view images, calibrated

cameras and ground truth data from motion capture, was used. The first experiment

compared the accuracy of the proposed method (relaxed AFP) with standard AFP

using 200 particles and a 10-phase schedule. The results in Figure 1 show the av-

erage joint angle error (absolute values over 28 joint angles) and the position error

(measured in Euclidean distance). Despite the fact that fewer particles were used in

this experiment than in [Deutscher and Reid 2005], the outcome of relaxed AFP still

appears encouraging. However, we make the important observation that the global



§6.1 Incremental Relaxation by Fast March Method 127

0 100 200 300 400 500 600
0

5

10

15
Joint Angle Error

Number of Frames

A
ve

ra
ge

 A
ng

le
 E

rr
or

s 
(d

eg
re

e)

 

 

APF
Relaxed APF

0 100 200 300 400 500 600
0

0.5

1

1.5
Position Error

Number of FramesE
uc

lid
ea

n 
D

is
ta

nc
e 

(1
0 

ce
nt

im
et

er
s)

 

 
APF
Relaxed APF

Figure 6.4: Comparison of AFP and Relaxed AFP: Relaxed AFP has slightly better per-
formance in terms of the joint angle errors, showing less than 10 degrees on average.
The torso position errors for Relaxed AFP appear more stable at about 5cm on average
after frame 200, whereas AFP suffers from the relatively greater fluctuation.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.5: Figures (c), (d) and (e) show mistracking of the arm occurs in APF after
self-occlusions appear, whereas relaxed APF can still obtain correct tracking results.
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minimum of the energy function is often a mismatch for the true pose since the sil-

houette images are contaminated by noise. In this case, even though an optimisation

method is able to find the global minimum, it may still miss the true pose and intro-

duce a large error. The second experiment was conducted by using a different human

body model which has a higher resemblance between the body shape and the real

performer. The outcomes of APF and relaxed APF are listed in the second column

and the third column of Figure 6.5, respectively. Figures 6.5c, 6.5d and 6.5e show that

the arm of the performer is sometimes mistracked in APF after self-occlusions appear

in certain views. In contrast, relaxed APF can still perform normal tracking.

6.2 Colour and Texture Incorporation

Figure 6.6: Silhouette Ambiguities (courtesy of [Kitaoka 2007])

Figure 6.7: Texture and colour encode a considerable amount of information due to
the absorption and scattering properties of the surface and material being different
from that of the incoming wavelengths of light that illuminate it.

There is a simple phenomenon whereby the human eye can not infer the posture

of a human body from one single silhouette image, but can easily recognise the pos-

ture from one colour image. This is related to the Silhouette Illusion [Kitaoka 2007].
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Some examples of ambiguities are illustrated in Figure 6.6 and 6.7. In fact, a silhou-

ette is a less informative, weak descriptor which is very likely to lead to ambiguities.

In contrast, a textured silhouette is a much richer and stronger descriptor. Colour

and texture is a consequence of the different configuration of atoms and electrons that

objects that have, and of the incoming light. These differences eventually cause re-

flection, scattering, absorbtion, transmission and refraction of the light. Colour and

texture encodes very rich information, including information directly related to what

we are interested in, for instance, the distance between the object and viewer, and

normals on the surface. Current ray tracing techniques are already able to simulate

realistic light travel and generate high-colour and fine-textured models such as seen

in Figure 6.7.

To recover distances and normals from colour and texture is sophisticated and

beyond of this work. Nevertheless, colour and texture contains much richer informa-

tion than silhouettes. Incorporating colour and texture information into the evalua-

tion model undoubtedly improves robustness and distinction. Incorporating colour

and texture information for markerless motion capture requires a surface model of

the human body that describes the colour and texture information of clothes or skin.

Real deformation of this surface model is quite a complex process because it involves

various factors (e.g. gravity, bones’ transformation, skin, clothes). Excellent works

from Starck et al’s [Starck and Hilton 2007b; Starck and Hilton 2006; Starck et al. 2006;

Starck and Hilton 2005a; Starck et al. 2005; Starck and Hilton 2005b; Starck and Hilton

2003a] and Theobalt et al’s [Ahmed et al. 2008; Carranza et al. 2003; Ahmed et al. 2007;

Theobalt et al. 2005; Eisemann et al. 2008; de Aguiar et al. 2008; de Aguiar et al. 2007a]

studies have demonstrated that texture incorporation is able to improve tracking ac-

curacy. Compared with their works, the method proposed below is rather lightweight

and can be efficiently implemented. To simplify the problem, we adopt a mature tech-

nology of texture mapping from the computer graphics community. We emphasise

how to generate and incorporate a mesh texture of the body model in markerless mo-
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tion capture.

Silhouettes and the body meshes can be roughly registered to input multiview im-

ages (the method described in Section 4.4 is one of possible solutions). We can incor-

porate the appearance of material by parameterising a surface mesh (termed texture

mapping), and blending multiview images into the mesh texture. Texture mapping

is a well-studied problem in computer graphics. In general, it is often represented as

the mapping from 3D vertex coordinates on a mesh to 2D uv texture coordinates in a

texture image. Borrowing terminology from mathematics, this is often referred to as

creating an atlas of charts for a given surface. Modern graphics hardware is capable

of rendering a highly realistic model with a large mesh texture in real time. The auto-

matic generation of high quality texture parameterisations has become a widely sup-

ported functionality in many graphics software packages. We use Blender [Blender

2010] to generate patch-based texture parameterisation for the body mesh.

After creating the patch-based texture parameterisation for the body mesh, we re-

sample the texture mesh from the input images that have been registered with the

mesh. We show how to blend multiview images using the body model. First, we per-

form a vertex-to-image binding for all vertices of the body mesh. Each mesh vertex v

is assigned a set of valid images, which is defined as the subset of the input images

where v is visible in each image and v is a non-silhouette vertex. A vertex v is visible

in an image, if the projection of v on the image plane is contained in the image, the

normal vector of v is directed towards the viewpoint and there are no other intersec-

tions of the face mesh with the line that connects v and the viewpoint. A vertex v is

called a silhouette vertex, if at least one of the triangles in the triangle fan around v

are oriented opposite to the viewpoint. Note, the set of valid images for a vertex may

be empty.

Theoretically, this is enough for classifying vertices. However, there may be some

error because of registration or numerical errors, especially in the neighbourhood of
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silhouettes. Some of the vertices can be bound to background pixels of the input

images. Such vertices should be classified as unbound vertices. We detect this regis-

tration error by comparing the colour value with the background colour of the input

image. First we calculate the projection coordinate of a vertex to its bound image.

Then, we sample the pixel value and calculate the distance between this pixel value

and the background colour. To avoid mis-detection, we reduce the noise in the in-

put images by applying a normal median filter and do not just compare with a single

sample pixel, but perform Gaussian convolution with a 3x3 subimage mask. If the

distance is larger than a given threshold value, then the vertex is re-classified as an

unbound vertex.

Let △ = {v1, v2, v3} denote a triangle of the body mesh and △̃ = {ṽ1, ṽ2, ṽ3} be

the corresponding triangle in the texture mesh. For each triangle△, exactly one of the

following situations might occur:

1. There exists at least one common image in the sets of valid images of the three

vertices {v1, v2, v3} of△.

2. All of the vertices of △ are bound to at least one image, but no common image

can be found for all three vertices.

3. At least one vertex of△ is not bound to any image.

In the first case, we rasterise △̃ in texture space. For each texel T, we determine

its barycentric coordinates ρ,σ , τ with respect to △̃ and compute the corresponding

normal N by interpolating the vertex normals of△: N = ρN(v1) +σN(v2) + τN(v3).

For each common image i in the sets of valid images of all vertices of△, we compute

the dot product between N and the viewing direction Vi for the pixel Pi that corre-

sponds to T. Finally, we colour T with the colour obtained by the weighted sum of

pixel colours ∑i⟨N, Vi⟩Ċolour(Pi)/∑i⟨N, Vi⟩.

In the second case, we colour each vertex ṽ j of △̃ individually by summing up the
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weighted pixel colours of the corresponding pixels in all valid images i of ṽ j similar

to the first case: Colour(ṽ j) = ∑i⟨N(v j), Vi⟩Ċolour(Pi)/∑i⟨N(v j), Vi⟩. The texels of

the rasterisation of △̃ are then coloured by barycentric interpolation of the colours of

the vertices ṽ1, ṽ2, ṽ3. Alternatively, we tried to use as much information as possible

from the input images if, for instance, the vertices v1, v2 of △ share an image and the

vertices v2, v3 share another image. However, this situation always happens near the

silhouette of an object and the extrapolation of a missing vertex on the image will be

unstable. Colour interpolation from reliable vertices is used to cope with this issue,

producing reasonable results.

Since the set of valid images for a vertex may be empty, there might exist some

vertices that cannot be coloured by any of the previously described schemes. We ad-

dress this problem in a two-stage process: First, we iteratively assign an interpolated

colour to each unbound vertex. Next, we perform the colour interpolation scheme

from the second case for the remaining triangles of△ that have not yet been coloured.

The first step iteratively loops over all unbound and uncoloured vertices of the face

mesh. For each unbound vertex v, we check if at least p = 80% of the vertices in the

one-ring around v are coloured (either by being bound to an image or by having an in-

terpolated colour). If this is true, we assign to v the average colour of all the coloured

vertices around v, otherwise we continue with the next unbound vertex. We repeat

this procedure until there are no further vertex updates. Next, we start the same pro-

cedure again, but this time we only require p = 60% of the vertices in the one-ring

around v to be coloured. As soon as there are no more updates, we repeat this step

twice again with p = 40% and p = 20%. Finally, we update each unbound vertex that

has at least one coloured neighbour. Upon termination of this last step, all vertices of

the face mesh are either bound or coloured and the remaining triangles of △ can be

coloured.

This colour interpolation method is fast and easy to implement, and it can fill all
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missing pixels. But the texture details can not be reconstructed by this scheme. More

sophisticated pixel filling methods are able to more accurately reconstruct the texture,

for example, image inpainting [Bertalmı́o et al. 2000] and texture synthesis [Igehy and

Pereira 1997]. The output model is imported in graphics software for minor manual

refinement. Nevertheless, the texture quality reconstructed by our method is good

enough and suitable for tracking purposes.

Figure 6.8: Reconstructed mesh texture for three different subjects

6.2.1 Illumination Invariant Colour Difference

It is easy for the human eye to pick up differences in the colour of clothing, because

the colour of clothing conforms comfortably to human perception. The CIELab colour

space is ideally designed to approximate perceptual uniformity of human perception



134 Robust Evaluation Model

and capture colour differences uniformly. So, the difference computed between two

arbitrary colour values is consistent with the differences perceived by the human eye.

Intuitively, the likelihood evaluation involving the colour of clothing should be per-

formed in the CIELab colour space. However, it turns out that perceptual colour uni-

formity in the CIELab colour space still has room to improve. The numerical values of

the CIELab colour heavily depend on both the region of colour space and the direction

of the colour differences. Several standards have been designed to address this issue.

The CIE94 colour difference formula [McDonald and Smith 1995] proposes weight

coefficients to an ellipsoid equation for compensating visual tolerances in lightness

L, chroma C and hue h differences so that there is always a uniform single-number

tolerance, regardless of the colour centre and direction of differences from it.

C =
√

a2 + b2 h = arctan
b
a

∆E94 =

√(
L2 − L1

KL

)2

+

(
C2 − C1

1 + K1C1

)2

+

(
h2 − h1

1 + K2C1

)2

(6.2.1)

where KL = 1, K1 = 0.045 and K2 = 0.015 for graphic arts. More recently, the latest

proposal of CIEDE2000 [Luo et al. 2001] includes not only lightness, chroma, and hue

weighting functions, but also an interactive term between chroma and hue differences

for improving the performance for blue colours, and a scaling factor for the CIELab a

scale for improving the performance for gray colours. It can be given by:
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∆E∗00 =

√(
∆L′

kLSL

)2

+

(
∆C′

kCSC

)2

+

(
∆H′

kH SH

)2

+ RT
∆C′

kCSC

∆H′

kH SH

∆L′ = L2 − L1 L̄ =
L1 + L2

2
C̄ =

C1 + C2

2

a′1 = a1 +
a1

2

1−

√
C̄7

C̄7 + 257

 a′2 = a2 +
a2

2

1−

√
C̄7

C̄7 + 257


C̄′ =

C′1 + C′2
2

and ∆C′ = C′1 − C′2 where C′1 =
√

a′21 + b2

1 C′2 =
√

a′22 + b2

2

h′1 = tan−1(b1/a′1) mod 2π , h′2 = tan−1(b2/a′2) mod 2π

∆h′ =



h′2 − h′1 |h′1 − h′2| ≤ π

h′2 − h′1 + 2π |h′1 − h′2| π , h′2 ≤ h′1

h′2 − h′1 − 2π |h′1 − h′2| π , h′2 > h′1

∆H̄′ = 2
√

C′1C′2 sin(∆h′/2), H̄′ =


(h′1 + h′2 + 2π)/2 |h′1 − h′2| π

(h′1 + h′2)/2 |h′1 − h′2| ≤ π

T = 1− 0.17 cos(H̄′ − π/6)) + 0.24 cos(2H̄′) + 0.32 cos(3H̄′ + π/30)− 0.20 cos(4H̄′ − 21π/60)

SL = 1 +
1 + 0.015 (L̄− 50)2√

20 + (L̄− 50)2
SC = 1 + 0.045C̄′ SH = 1 + 0.015C̄′T

RT = −2

√
C̄′7

C̄′7 + 257 sin

[
π

6
exp

(
−
[

H̄′ − 275◦

25

]2
)]

where RT denotes a hue rotation term to deal with the problematic blue region

(hue angles in the neighbourhood of 275), RT
∆C′
SC

∆H′
SH

is the compensation for neutral

colours (the primed values in the L C h differences), and SL, SC and SH are weighting

functions for lightness, chroma and hue, respectively. The kL, kC, and kH values are

the parametric factors for the lightness, chroma, and hue components, respectively.

They should be adjusted according to different viewing parameters such as textures,

backgrounds, separations, etc. For more details, please refer to APPENDIX 1 in [Luo

et al. 2001]. The conversion from RGB to CIELab is given by:
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k ∈ {R/255, G/255, B/255} (6.2.2)

R′, G′, B′ =


k/4.5 0 6 k < 0.081

( k+0.099
1.099 )2.4 0.081 6 k 6 1

(6.2.3)


X

Y

Z

 =


0.412391 0.357584 0.180481

0.212639 0.715169 0.072192

0.019331 0.119195 0.950532




R′

G′

B′

 (6.2.4)

L = 116 f (Y)− 16 (6.2.5)

a = 500[ f (X/0.950456)− f (Y)] (6.2.6)

b = 200[ f (Y)− f (Z/1.089058)] (6.2.7)

f (t) =


t1/3 t > 0.008856

7.78t + 16/116 t 6 0.008856
(6.2.8)

6.2.2 Experiments

Experiments are performed on the HumanEvaI dataset [Sigal and Black 2006a] that

contains 4 grayscale and 3 colour calibrated video streams synchronised with Mocap

data at 60Hz. There are 4 subjects performing 6 common actions (e.g. walking, jog-

ging, gesturing, etc.) in HumanEvaI. Our experiments are conducted on the subject

3 validate-walking sequence (trail 1) which has 443 frames. The tracking results are

evaluated against the Mocap groundtruth data to obtain mean Euclidean joint posi-

tion errors and standard deviations. Note that the ground truth data is corrupted at

frames 91-108 and 163-176.

In the first experiment, we compare the proposed method with the SIR method

and the silhouette based APF method. The proposed method uses only 3 colour

videos, 50 particles and 10 temperature phases. The Sampling Importance Resam-



§6.2 Colour and Texture Incorporation 137

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 443
0

50

100

150

200

250

300

350

400

450

Number of Frame

M
ea

n 
E

uc
lid

ea
n 

Jo
in

t P
os

is
tio

n 
E

rr
or

s 
(in

 M
ill

im
et

er
s)

HumanEvaI Subject 3 Walking Sequence Using Different Methods

 

 

CIELab based APF with CIEDE2000
Silhouette Based APF
SIR Method

0 50 100 150 200 250 300 350 400
45

50

55

60

65

70

75

80

85

90

95

Number of Frame

M
ea

n 
E

uc
lid

ea
n 

Jo
in

t P
os

iti
on

 E
rr

or
s 

(in
 M

ill
im

et
er

s)

HumanEvaI Subject 3 Walking Sequence Using Different Colour formulas

 

 

CIELab with CIEDE2000
CIELab with L2 Norm
CIELab With CIE94

Figure 6.9: Experimental Results from HumanEvaI Subject 3 using different methods
and different colour formulas: With different methods, the CIELab based APF with
CIEDE2000 has superior accuracy over the other two methods. The SIR method suf-
fers severe mistracking. Using the same APF framework but with different colour
formulas, CIEDE2000 appears more robust and accurate over CIE94 and L2 Norm.
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Figure 6.10: Visual tracking results from HumanEvaI show the visual human model
overlapped with the real tracking subject
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pling (SIR) method uses 7 videos with 500 particles4. The silhouette based APF method

uses 7 videos, 50 particles and 10 temperature phases. As illustrated in the top of Fig-

ure 6.9, the results show the SIR method does not perform well and errors are over

100mm. On the other hand, the silhouette based APF is able to track relatively well

and maintain errors within 79.1± 11.3mm. The proposed CIELab based method with

CIEDE2000 outperforms both methods, achieving 60.2± 4.7mm. In the second exper-

iment, we compare the CIELab based method using different colour formulas, the L2

norm, CIE94 and CIEDE2000 formula. All of them employ 50 particles and 10 tem-

perature phases. In the bottom of Figure 6.9, the experimental results show CIELab

CIEDE2000 has the most stable performance at 60.2 ± 4.7mm, while CIELab CIE94

maintains 64.6 ± 7.3mm which is better than the 69.9 ± 9.3mm achieved by CIELab

with L2 norm. The method using CIELab L2 norm occasionally fails to track the right

arm when the right arm is occluded with the body. Thus it appears to have a more

fluctuating trend. Overall, the CIELab based APF methods are generally superior to

the SIR and silhouette-based method in terms of robustness and accuracy.

In summary, the SIR method is unable to scale well in high dimensional space.

The silhouette based APF method has much better behaviour in high dimensional

space owing to the fact that it focuses on approximating the global mode of the pos-

terior distribution, but it can suffer from noise from silhouette segmentation. The

proposed method overcomes both issues and achieves robust performance. Particu-

larly, with the CIEDE2000 formula our method demonstrates more robust behaviour

in the moderately illumination varied environment. More visual tracking results are

shown in Figure 6.10.
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Figure 6.11: From left to right: an observed image and a synthesised image

6.3 Maximisation of Mutual Information

Given multi-view image observations, the estimated pose, and the pre-built template

human model, the likelihood evaluation is performed by comparing the observed im-

ages against the synthesised images. A synthesised image is obtained by projecting

the template human model onto a mean static background image based on camera cal-

ibration parameters and a given pose configuration. Figure 6.11 shows an observed

image and a synthesised image from a tracked example in the HumanEvaII dataset

[Sigal and Black 2006a]. A direct comparison of the two images in the commonly used

RGB colour space will not be robust and is often affected by lighting conditions and

appearance differences between the template model and the real subject. In this work,

we employ robust image similarity metrics developed in the literature to overcome

this problem. Particularly, the work by Viola et al [Viola and Wells 1997] suggests that

Mutual Information (MI) metrics are reliable for evaluating models with substantially

different appearances and are even robust with respect to variations in illumination.

Mutual Information relies on the entropy of the images’ underlying probability densi-

ties. This reliance on the probability densities of the two images enables the metric to

transcend many constraints that bind other systems. For example, MI handles match-

ing sample A with the negative of sample B as easily as simply matching A and B.

Also, MI can often handle non-functional relationships between A and B, as occurs

when the same object is viewed under two different spectra.

4The equivalent number of evaluations as the APF method
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Mutual Information depends upon the entropy and joint entropy of two random

variables. In the stereo case, the random variables are the image pixels we take from

each image in a stereo pair. If we assume the pixel values Ψ are discrete random

variables with density p(Ψ), then we can define the entropy H:

H(X) = −E [log(p(Ψ))] (6.3.1)

An intuitive description of entropy is that it measures the randomness of a random

variable. A low entropy means that the average probability over the support set for

a given random variable is low. For example, a constant region in an image has a

lower entropy than highly textured region. The joint entropy is defined similarly for

two random variables Ψ and Ω, replacing the univariate p with the joint probabil-

ity function p(Ψ, Ω). Joint entropy can be used to measure alignment, or similarity,

because it describes the “crispness” of a joint probability function. Two identical sam-

ples will have a lower joint entropy when aligned than when they are misaligned.

However, two constant regions will have a low joint entropy as well. To avoid such

spurious matches, we want to maximise the entropy in the individual samples that

we are comparing. For this reason, we use Mutual Information. Mutual Information

is a quantity that measures the mutual dependence of two variables. Considering two

images Ψ, Ω, and their pixels ψ, ω as random variables, Mutual Information can be

expressed in terms of entropy as:

I(Ψ; Ω) = H(Ψ) + H(Ω)− H(Ω, Ψ)

= − ∑
ψ∈Ψ

p(ψ) log p(ψ)− ∑
ω∈Ω

p(ω) log p(ω) + ∑
ω∈Ω

∑
ψ∈Ψ

p(ψ,ω) log p(ψ,ω)

= ∑
ω∈Ω

∑
ψ∈Ψ

p(ψ,ω) log
(

p(ψ,ω)

p(ψ) p(ω)

)

where H(Ψ) and H(Ω) denote the marginal entropies, H(Ψ, Ω) the joint entropy,

and p() the probability density function. Mutual Information is bounded, so 0 6
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MI(Ψ, Ω) 6 min (MI(Ψ, Ψ), MI(Ω, Ω)). The minimum value occurs when Ψ and Ω

are identical or there is a one-to-one mapping g between the two, since MI(Ψ, g(Ψ)) =

MI(Ψ, Ψ). These last points deserve special attention: they help to justify the perfor-

mance of mutual information as a similarity metric. Mutual Information measures

similarity, but it is also invariant to one-to-one transformations of the data. This in-

variance enables MI to measure similarity in more situations than many traditional

similarity metrics. It also explains MI’s limitations: when a transformation is not one-

to-one, MI has difficulty measuring similarity. In these cases, a large sample size often

alleviates the problem. In our case, p() is approximated by using the Parzen Window

method with the Gaussian functions:

p(ψ) ≈ 1
N ∑
ψi∈W

1√
2πσ2

exp
(
− (ψ−ψi)

2

2σ2

)

p(ψ,ω) ≈ 1
N ∑
ψi∈Wψ ,ωi∈Wω

1
2π
√
|Σ|

exp

−1
2

ψ−ψi

ω−ωi


T

Σ−1

ψ−ψi

ω−ωi




where N denotes the number of samples in the window W or Wψ, Wω. Σ is assumed

as a diagonal covariance matrix. To be more robust to lighting conditions, MI is com-

puted in the CIELab colour space in our work. Overall, the energy function E(yt, xt)

can be summarised as:

E(yt, xt) =
1

Nview

Nview

∑
i=1

1
kL IL(IMi

yt
; IMi

xt
) + ka Ia(IMi

yt
; IMi

xt
) + kb Ib(IMi

yt
; IMi

xt
)

(6.3.2)

where IMi
yt

denotes the ith view observed image yt at time t, IMi
xt

the ith view synthe-

sised image produced by projecting the estimate state xt at time t, and IL(), Ia() and

Ib() the MI criterion values calculated in the channels L, a and b, respectively. Also,

kL, ka and kb denote the coefficients that control the weights of the L, a and b channels.

Usually, kL is set to be small in order to suppress the illumination influence.
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6.4 Gradual Sampling for Annealed Particle Filter

Figure 6.12: Error oriented pixel selection with 6 layers

Figure 6.13: Large errors (shaded in red) among 200 particles gradually concentrate
on the tracking subject during the course of optimisation

APF works in an iterative process in which the current exploration is built upon

the exploitation of historical information. However, at the early stage, explorations

are prone to being misled by strong local minima because of a lack of information

about the global shape of the energy function. A sufficiently slow annealing schedule

is usually taken as a measure to rescue particles from the attraction of local minima.

With such an annealing schedule, the initial energy function is shaped in a way that

local minima are flattened out whereas the global minimum becomes relatively more

pronounced. Also, particles will have more evaluations and random perturbations

to move into the neighbourhood of the global mode. However, a sufficiently slow

annealing schedule is usually computationally intractable in practice.

We address the above issues by proposing a gradual sampling scheme. The key

ideas are that 1) The precision of the energy function evaluations changes adaptively

with the process of annealing. We blur the observed images and the synthesized im-
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ages at the early stage and use these blurred versions to evaluate the energy function.

We observe that blurred images are able to flatten the shape of the energy function, al-

lowing a large number of particles to survive and encouraging a broader exploration.

Then we gradually increase the resolution of the observed images and the synthe-

sized images and use them to evaluate the energy function at the later stages. This

will provide more precise information for the algorithms to better discriminate the

surviving particles and correctly identify those close to the global optimum of the en-

ergy function; 2) With the increase of layers in the APF, the majority of large errors will

progressively concentrate on the tracking subject and only on some body areas where

the observed and synthesised images have not been well aligned with each other. Tak-

ing this situation into account, we propose a ”smart” selection of the image areas (or

extremely, the pixels) that will be used in the evaluation of the energy function.

This special selection has a very strong connection with the weighted mutual in-

formation in [Guiasu 1977]. It addresses the fact that in some situations certain objects

or events are more significant than others, or that certain patterns of association are

more semantically important than others. [Rodrguez-Carranza et al. 1999] proposed a

weighted mutual information method to attack the image registration problem. They

found that normalized mutual information (for 2D image registration) provides a

larger capture range and is more robust, with respect to the optimisation parame-

ters, than the non-normalized measure. In this work, weighted mutual information

is intuitively incorporated to the APF frame by Gradual Sampling. In detail, different

image areas are weighted based on the magnitude of the error from them in the last

layer. Two criteria are used to weight each image area: i) if the magnitude of the error

in an area is small (meaning that the observed and the synthesized have been well

aligned in this region), then its weight will be lowered; ii) if the image area is far from

the centre of the projection of the human body, its weight will be lowered. This is be-

cause, as mentioned above, the majority of large errors will progressively concentrate

on the tracking subject with the increase of layers in APF. This case is shown in Fig-
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ure 6.13 which plots the error distribution evolving through optimisation. For an area

with lower weight, fewer pixels will be sampled for inclusion in the energy function

evaluation. This is where the name ”Gradual Sampling” comes from.

In this work, we partition the synthesized and observed images into a number of

small-sized non-overlapping blocks, and compute the distribution of error over these

blocks. Then the error-oriented block selection and pixel sampling use the block-based

error distribution from the last exploration to guide the current evaluation. This al-

lows the evaluation to focus more on the large-error area and at the same time reduce

the number of pixels involved in function evaluation. The whole process relies on a

measurement called Number of Effective Pixels 5 (NEP) defined for the ith block. For

the layer m and each view, it is expressed as:

NEPm,i =


Ni · ηm,i ||ci − Cbo||2 < σ

Ni · ηm,i · 1√
2πσ2 exp

(
− ∥ci−Cbo∥2

2
2σ2

)
||ci − Cbo||2 > σ .

(6.4.1)

This definition is explained as follows. ηm,i is one factor controlling the percentage of

pixels sampled from the ith block. It is proportional to the ratio of the average error

from the ith block (denoted by errm,i) to the maximal average error recorded over all

of the blocks (denoted by maxi[errm,i]). In doing so, NEPi for the block with smaller

errors will decrease more quickly, whereas NEPi for the block with greater errors will

maintain relatively larger and decrease at a slower pace. This helps to gradually con-

centrate misalignments. Also, during the course of the annealing schedule, consid-

ering the fact that misalignments between the template model and real subject are

gradually decreasing, we will progressively decrease the total number of pixels in-

volved in function evaluation. This speeds up function evaluation and the tracking

speed in turn. To realize this, ηm,i is proportional to βm, which decreases with the

5Pixels with large errors often correspond to misalignments of the subject, and they contribute to
“effective” measurements.
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layer number, m. Therefore, ηm,i is mathematically expressed as

ηm,i = βm ·
·errm,i

maxi(errm,i)
. (6.4.2)

Equation (6.4.1) also takes the distance of the ith block from the tracking subject into

account. We use a Gaussian distribution based weighting scheme to exponentially de-

cay the importance of the ith block. The farther the centroid of the i block (denoted by

ci) from the centroid of the human body template projected onto the image plane (de-

noted by Cbo), the less important this block is and the lower the number of sampled

pixels. This makes the energy function evaluation concentrate on the error around the

tracking subject. σ denotes the standard deviation of this Gaussian distribution. It

will be empirically set at the beginning of the tracking based on the scattering radius

of the projection of the human body template in a “T” gesture.

We illustrate a typical procedure of the error-oriented pixel sampling in Figure

6.12. At the first layer, the blurred images are used, and all pixels of the blurred images

are selected for evaluating the energy function. At the second layer, NEPi is calculated

for each block based on Equation (6.4.1) and NEPi pixels are randomly selected from

the ith block for function evaluations, and the obtained error distribution is used to

infer the NEPi values for the third layer. At the fourth layer, the blurred images are

replaced with the original images to achieve more accurate evaluation. Each block in

the first three layers is now subdivided into many smaller-sized blocks and the NEPi

value for each sub-block is computed according to its parent block’s NEP statistics.

Then the same procedure is repeated. In summary, our gradual sampling scheme

shapes the energy function by carefully manipulating the image data and can achieve

a similar effect to a sufficiently slow annealing schedule without incurring intractable

computational load. It provides a better chance for the particles in the APF-based

tracking framework to escape from local minima and thus increases the possibility

of convergence to the global optimum. Our gradual sampling procedure at time t is
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outlined in Algorithm 12.

Algorithm 12 Gradual Sampling for a typical frame at time t

Require: The survive rate αm in APF [Deutscher et al. 2000], a set of predefined βm,
observation yt, the total number of layers M, and the initial covariance matrix P0.
for m = 1 to M do

1: Initialise N particles x1
t , · · · , xN

t from the last layer or the temporal model;
2: Evaluate E(yt, xt) for each particle with the NEPi pixels sampled from each
block of blurred/original images. Average the error statistics over all particles;
3: Compute NEPi for each block with the error statistics and equation (6.4.1)
4: Calculate λm by solving αmN ∑N

i=1 (w
i
t,m)

2 =
(
∑N

i=1 wi
t,m
)2

where wi
t,m =

exp{−λmE(yt, xi
t,m)} and N is the number of particles;

5: Update weights for all particles using exp{−λmE(yt, xt)}.
6: Resample N particles from the updated importance weight distribution.
7: Perturb particles by Gaussian noise with covariance Pm = Pm−1αm.

end for

6.4.1 Connection between Gradual Sampling and Annealing Variable

Image scaling and the error oriented pixel selection used in gradual sampling are not

arbitrary choices. They actually have a strong connection to the annealing variable of

Simulated Annealing. Considering a pixel-wise homogeneity metric d() that satisfies

d(ax, ay) = |a|d(x, y), the likelihood probability p(yt|xt) can be given as:

p(yt|xt) = exp{−λE(yt, xt)}

= exp

{
−λ

Nview

Nview

∑
i=1

∑
k∈w

∑
l∈h

d(IMi
yt
(l, k), IMi

xt
(l, k))

}

= exp{ −1
Nview

}
Nview

∏
i=1

∏
k∈w

∏
l∈h

exp{λd(IMi
yt
(l, k), IMi

xt
(l, k))}

(6.4.3)

From the above equation, as λ gradually increases, the big error terms are magni-

fied exponentially in the form of the Boltzmann distribution. Therefore, the annealing

schedule pays exponentially increasing attention to eliminate large errors which usu-

ally correspond to the global mode. Since λ is strictly positive and because of the
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homogeneity of d(), we can have:

p(yt|xt) = exp{ −1
Nview

}
Nview

∏
i=1

∏
k∈w

∏
l∈h

exp{d(λIMi
yt
(l, k), λIMi

xt
(l, k))} (6.4.4)

Weighting each pixel by λ (e.g. λIMi
yt
(l, k)) can be theoretically simulated by a uni-

form image scaling on “continuous” images. In other words, d(λIMi
yt
(l, k), λIMi

xt
(l, k))

can be replaced by d(IMi,(λ)
yt (l, k), IMi,(λ)

xt (l, k)). Then, let us define a λ-factor scaled

image IM(λ) that always has λ weighted pixels. Assuming that the image is contin-

uous6 and the intensity in the sub-pixel level is uniformly distributed, more general

λ-factor pixel scaling can be defined by:

λIM(l, k) = IM(λ)(l, k) =


IM(λ)sub(l, k) 0 < λ < 1

IM(λ)sup(l, k) λ > 1

where IM(λ)sup(l, k) denotes a super-pixel with respect to the λ-factor equal to
∫ λ

0 IM(l, k)dx,

and IM(λ)sub(l, k) denotes a sub-pixel with respect to the λ-factor satisfying:

IM(l, k) =
∫ 1

λ

0
IM(λ)sub(l, k)dx 0 < λ < 1

An example of the λ-factor image scaling is graphically displayed in Figure 6.14. The

large image can be regarded as the λ = 9-factor scaled image of the small image.

Assuming the pixel colours are identical for neighbours, each pixel is duplicated 9

times which produces the 9 times upsampled large image. Vice versa, the small image

can be regarded as the λ = 1/9-factor scaled image of the large image. In practice,

there are limitations to using uniform image scaling to simulate arbitrary λ – when

λ is too large or small, the actual image does not exist at all. Since λ is bound to

(0, 1) [Deutscher et al. 2000] and λ’s increasing trend is relatively steady, our gradual

sampling technique can produce reasonable results. In short, the effect of increasing

6It ideally has infinite resolution
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Figure 6.14: The λ-factor uniformly scaled image. From top to bottom, upsampling is
equivalent to multiplying by the λ = 9-factor. Vice versa, downsampling is equivalent
to multiplying by the λ = 1/9-factor.

λ from small to large has two effects: 1) a uniform coarse-to-fine operation, 2) and

gradual manifestation of big error terms. These are consistent with the image scaling

and error oriented pixel selection used in our gradual sampling.

6.4.2 Experiments and Discussion

Experiments are performed on the benchmark dataset HumanEvaI [Sigal and Black

2006a] that contains 4 grayscale and 3 colour calibrated video streams synchronised

Study Particles Layers Errors(ave± std)mm comments
[Gall et al. 2010] 250 15 32± 4.5 two-pass optimisation with smoothing

Ours 200 10 54.6± 5.2 MI and Gradual sampling
[Bandouch and Beetz 2009] 800 10 50-100 hierarchical approach

[Sigal et al. 2010] 200 5 80± 5 Bi-directional silhouette-based
[Cheng and Trivedi 2007] N/A N/A over 170 mixed learning and tracking

Table 6.1: Absolute mean joint position errors on HumanEvaII Subject 4 from different
research groups
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Figure 6.15: Accurate tracking results from HumanEvaII Subject 4. The average Eu-
clidean error of 3D joint positions is less than 55mm.

with Mocap data at 60Hz, and HumanEvaII that contains 4 colour calibrated image

sequences synchronised with Mocap data at 60Hz. The tracking results are evaluated

against the groundtruth Mocap data to obtain the absolute mean joint centre posi-

tion errors and standard deviations. The experimental results with 50 particles and

10 layers on the 443-frame trail 1 of the subject 3 walking sequence in HumanEvaI

is plotted in the top of Figure 6.16. The proposed method using only 3 colour video

streams is able to maintain 64.5± 8.2mm (using both MI and GS), 69.4± 9.9mm (with-

out using MI) and 68.6 ± 8.0mm (without using GS). The differences among them

demonstrate the effects of incorporating MI and GS in human motion tracking. All

of the three methods outperform the silhouette-based method7 which only maintains

78± 12.8mm using 7 video streams.

Another experiment uses 200 particles and 10 layers for the longer 1257-frame

combination sequence of subject 4 in HumanEvaII. The ground truth Mocap data is

withheld by the data set owner and is only available for online evaluation. We sub-

mitted our tracking result and obtained the online evaluation results as follows. As

shown, in the middle of Figure 6.16 the proposed method is able to achieve 54.6 ±

5.2mm. Without the support of MI and GS, errors rise to 64.3± 12.2mm and 59.38±

5.5mm, respectively. In contrast, the silhouette-based method with the same settings

7The silhouette based method uses only the silhouette feature.
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can only achieve 90.7± 16.7mm and the maximum error reaches about 170mm. This

shows the advantage of our appearance-based likelihood evaluation function over a

silhouette-based one. Although the jogging from frames 400 to 800 is more difficult

to track than the slow movements of walking and balancing, the proposed method

using MI can still track stably whereas the other two methods without MI experi-

ence drastic fluctuations. As illustrated in Table 6.1, several research groups [Gall

et al. 2010; Bandouch and Beetz 2009; Sigal et al. 2010; Cheng and Trivedi 2007] have

evaluated their results against subject 4 of HumanEvaII. Our results achieved the sec-

ond best performance overall. The work in [Cheng and Trivedi 2007] proposed a

learning based approach with errors over 170mm, which is relatively inaccurate when

compared with APF based approaches. The work in [Sigal et al. 2010] utilised bi-

directional silhouette-based evaluation and achieved 80 ± 5mm. However, it relies

on the quality of silhouette segmentation. The work in [Bandouch and Beetz 2009]

proposed a hierarchical approach that employs a relatively large number of evalua-

tions to achieve errors within 50 − 100mm. The method in [Gall et al. 2010] can be

expected to perform better than ours because they utilise two-pass optimisation. In

the second pass, a smoothing process with respect to future frames is used. These

are not undertaken in our approach because two-pass optimisation incurs more com-

putational overhead and limits its applicability to real-time tracking. Moreover, as

pointed out in [Bandouch and Beetz 2009; Corazza et al. 2010; Cheng and Trivedi

2007], when the error is less than 50mm, the actual tracking error will not be measur-

able because of the limited precision of the joint centres’ positions estimated from the

Mocap data, which is considered as ground truth, and the intrinsic error between the

human model and the real subject8. Therefore, considering this context, our perfor-

mance of 54.6 ± 5.2mm is almost the best possible. Also, this context explains why

there is approximately 50mm error for our initial pose even though it is accurately set.

8Note that there are no markers corresponding to actual joint centres in the Mocap data. As a result,
the joint centres’ positions cannot be recovered very accurately from the Mocap data.
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More results are presented in Figure 7.6.

The performance experiment is set up on a dual core Windows system with a

2.8GHz CPU and 4GB RAM. The average computational time per frame is compared

with that of the baseline algorithm benchmark9 [Sigal et al. 2010] which is the only

publicly available implementation for the HumanEva dataset. We run both algorithms

in different combinations of layers and particles and the results are shown in the bot-

tom of Figure 6.16. Despite the extra computational overhead due to the use of Mutual

Information criterion, our method with gradual sampling can still achieve almost 10

times faster calculation than the baseline algorithm in [Sigal et al. 2010].

9Available online via http://vision.cs.brown.edu/humaneva/baseline.html
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Figure 6.16: From the top to bottom, 1) tracking results on the HumanEvaI Subject 3
Walking Sequence, 2) the HumanEvaII Subject 4 Combo Sequence, 3) computational
time comparison for the proposed and baseline methods with the different number
of particles and layers, and 4) the convergence speed of Gradual Sampling versus the
Common APF method. Note that the ground truth data is corrupted at frames 91-108
and 163-176 in HumanEvaI and at frames 298-335 in HumanEvaII.
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Chapter 7

Compressive Evaluation

Compressive sensing (CS) reconstructs compressible signals from a small number of

non-adaptive linear random measurements by combining the steps of sampling and

compression [Candes and Tao 2005; Candès et al. 2006; Candès et al. ; Candes and

Romberg 2007]. It enables the design of new kinds of compressive imaging sys-

tems, including a single pixel camera [Duarte et al. 2008], with some attractive fea-

tures: simplicity, low power consumption, universality, robustness, and scalability.

Recently, there has been a growing interest in compressive sensing in computer vi-

sion and it has been successfully applied to face recognition, background subtraction,

object tracking and other problems. Wright et al [Wright et al. 2009] represented a

test face image as a linear combination of training face images. Their representation

is naturally sparse, involving only a small fraction of the overall training database.

The problem of classifying multiple linear regression models can be then solved effi-

ciently via L1-minimisation which seeks the sparsest representation and automatically

discriminates between the various classes presented in the training set. Cevher et al

[Cevher et al. 2008] cast the background subtraction problem as a sparse signal recov-

ery problem and solved it by greedy methods as well as total variation minimisation

of convex objectives to process field data. They showed that it is possible to recover

the silhouettes of foreground objects by learning a low-dimensional compressed rep-

resentation of the background image, without learning the background itself, and to

sense changes in the foreground objects. Mei et al [Mei and Ling 2009] formulated the

155
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tracking problem similarly to [Wright et al. 2009]. In order to find the tracking target

at a new frame, each target candidate is sparsely represented in the space spanned

by target templates and trivial templates. The sparse representation is obtained by

solving an L1-regularised least squares problem to find good target templates. Then

the candidate with the smallest projection error is taken as the tracking target. Sub-

sequent tracking is continued using a Bayesian state inference framework in which a

particle filter is used for propagating sample distributions over time.

Unlike above works, many data acquisition/processing applications do not re-

quire obtaining a precise reconstruction, but rather are only interested in making some

kind of evaluation of the objective function. Particularly, human motion tracking es-

sentially attempts to find the optimal value of the observation likelihood function.

Therefore, we propose a new framework, called Compressive Annealed Particle Filter,

for such a situation that bypasses the reconstruction and performs evaluations solely

on compressive measurements. It has been proven [Candes and Tao 2005] that ran-

dom projections can approximately preserve isometry and pairwise distances, when

the number of linear measurements is large enough (still much smaller than the orig-

inal dimension of the signal). Moreover, noticing the annealing schedule is a coarse-

to-fine process, we introduce the staged wavelet decomposition with respect to each

annealling layer so that the additional annealling variable is absorbed into the wavelet

decomposition. As a result, the number of compressive measurements is progres-

sively increased to gain computational efficiency.

7.1 Compressive Sensing

The classic approach of reconstructing signals or images from measured data satisfies

the well-known Nyquist-Shannon sampling criterion [Shannon 1949], which states

that the sampling rate must be at least twice that of the highest frequency. Similarly,

the fundamental theorem of linear algebra suggests that the number of collected sam-
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ples (measurements) of a discrete finite-dimensional signal should be at least as large

as its length (dimension) in order to ensure reconstruction. This principle underlies

most current technological devices such as analog to digital converters, medical im-

agers and audio/video electronics. The novel theory of Compressive Sensing (CS)

provides a fundamentally new approach to data acquisition which provides a stricter

sampling condition when the underlying signal is known to be sparse or compress-

ible, yielding a sub-Nyquist sampling criterion.

7.1.1 Signal Sparse Representation

Considering a signal f ∈ RN that may contain considerable redundant and irrelevant

information, a transformation is performed by left multiplying an N × N orthogonal

matrix ΨT with f:

f′ = ΨTf

The inverse transformation recovers the original signal from f′:

f = Ψf′

The Ψ is constructed such that the correlation between any entries and the signifi-

cant entries of f′ are minimised, so that insignificant entries can be discarded without

much perceptual loss. Then, f′ can be well approximated by f′K that is constructed

by selecting the most significant (largest) K entries of f′, keeping only the largest K

entries unchanged and setting all remaining N − K entries to zero. The signal can be

recovered by f′K which has only a small number of non-vanishing entries:

fK = Ψf′K

This is the so called K-sparse representation. Since Ψ is an orthogonal matrix, ∥f −

fK∥2 = ∥f′ − f′K∥2, and if f′ is sparse or compressible in the sense that the sorted
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magnitudes of the xi decay quickly, then f′ is well approximated by f′K, the error ∥f′ −

f′K∥2 is small, and the relative error ∥f−fK∥2
∥f∥2

is also small. Therefore, the perceptual loss

of recovery is hardly noticeable.

This principle reveals what underlies most modern lossy coding schemes: com-

pute f′ from f via f = Ψf′, then adaptively encode the locations and values of the K

significant entries, and finally in the decoding stage put the locations and values back

into f′K and recover fK via fK = Ψf′K. Such a process requires knowledge of all N en-

tries of f′, as the locations of the significant pieces of information may not be known

in advance (they are signal dependent). Therefore, this process has to be adaptive.

7.1.2 L1 Minimisation and Reconstruction

The above outlined adaptive strategy of compressing a signal f by only keeping its

largest coefficients is valid when complete information about f is available. One may

ask whether it is possible to more directly obtain a compressed version of the signal by

taking only a small amount of linear and nonadaptive measurements. Compressive

sensing surprisingly predicts that reconstruction from vastly undersampled nonadap-

tive measurements is possible–even by using efficient recovery algorithms. Taking M

linear measurements of a signal f corresponds to applying the measurement/sensing

M× N matrix Φ, where, M << N.

z = Φf

The main interest is to recover f from z, called the measurement vector. Since the

linear system is highly underdetermined, without further information the recovery

is impossible and therefore has infinitely many solutions. If, however, the additional

assumption is imposed that the vector f has sparse representation, then the recovery

can be realised by searching for the sparsest vector f′∗ which is consistent with the

measurement vector z = ΦΨf′. The finest recovery f∗ = Ψf′∗ is achieved when the
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sparsest vector f′∗ is found. This leads to solving the L0-minimisation problem:

min ∥f′∥0 subject to z = ΦΨf′ (7.1.1)

Unfortunately, the combinatorial L0-minimisation problem is NP hard in general [Natara-

jan 1995] as it contains the subset sum problem, and so is computationally infeasible

for all but the tiniest data sets. The work of Candes et al [Candès et al. 2006], in which

it was shown that the L1 norm is equivalent the L0 norm under some conditions, leads

one to solve an easier linear program, for which efficient methods already exist. The

L1-minimisation approach considers the solution of

min ∥f′∥1 subject to z = ΦΨf′ (7.1.2)

which fortunately is a convex optimisation problem and can be seen as a convex re-

laxation of Equation (7.1.1). Various efficient convex optimisation techniques can be

applied to solve this problem [Boyd and Vandenberghe 2004]. In the real-valued case,

Equation (7.1.2) is equivalent to a linear program and in the complex-valued case it is

equivalent to a second order cone program. Two practical approaches have been pro-

posed in the literature: 1) convex relaxation leading to L1-minimisation, also called

basis pursuit [Chen et al. 1999], and greedy algorithms, for example various matching

pursuits [Tropp and Gilbert 2005].

7.1.3 Incoherence Sampling

Equation (7.1.2) does not provide unconditional recovery in all cases. The recovery

ability actually depends on the properties of the measurement/sensing matrix Φ.

This is characterised by the coherence between the sensing basis Φ and the repre-
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sentation basis Ψ given by:

µ(Φ, Ψ) =
√

N max
l,k∈[1,N]

|⟨ϕl ,ψk⟩|

where, ϕl is a row of Φ, and ψk is a column of Ψ. To simplify the notation, ϕl can

be concatenated as the basis with N elements so that ⟨ϕl ,ψk⟩ is always computable.

The coherence measures the largest correlation between any two elements of Φ and

Ψ. If Φ and Ψ contain correlated elements, the coherence is large. Otherwise, it is

small. In this definition, the coherence has a range µ(Φ, Ψ) ∈ [1,
√

N]. The work in

[Candes and Romberg 2007] demonstrates a strong theorem that asserts that when f

is sufficiently sparse, the recovery via L1-minimisation is provably exact.

Theorem 7.1.1. Fix f ∈ RN and suppose that the sequence f′ of f in the basis Ψ is K-sparse.

Select M measurements in the Φ domain uniformly at random. Then if

M > Cµ2(Φ, Ψ)K log N

for some positive constant C, the solution to Equation (7.1.2) is exact with overwhelming

probability.

[Candes and Romberg 2007] also shows that the probability of success exceeds 1−

δ if M > Cµ2(Φ, Ψ)K log N. In addition, the result is only guaranteed for nearly all

sign sequences f ′ with a fixed support. The smaller the coherence, the fewer samples

are needed, hence Compressive Sensing is mainly concerned with low coherence. If

the coherence µ(Φ, Ψ) is equal or close to one, then on the order of K log N samples

suffice instead of N. The signal f can be exactly recovered, regardless of any prior

knowledge about the number of nonzero coordinates of f′, their locations, or their

amplitudes which are assumed all completely unknown a priori.
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7.1.4 Restricted Isometry Property

To simplify the notation and representation of the problem, we discuss the abstract

problem (derived from the above section) of recovering a vector f′ ∈ RN from the

data:

z = Af′ + η (7.1.3)

where A is an M× N matrix giving us information about f′, and η is a stochastic or

deterministic unknown error term. A can be defined as A = ΦΨ. Then the more gen-

eral tool for studying the robustness of Compressive Sensing, the Restricted Isometry

Property [Candes and Tao 2005] (RIP) can be defined as follows:

For each integer K = 1, 2, ..., define the isometry constant δK of a matrix A as the

smallest number such that

(1− δK) ≤
∥Af′∥2

2

∥f′∥2
2
≤ (1 + δK)

holds for all K-sparse vectors f′.

A matrix A obeys the RIP of order K if δK is not too close to one. When this prop-

erty holds, A approximately preserves the Euclidean length of the K-sparse signals.

This implies that the K-sparse vectors cannot be in the null space of A and so Equation

(7.1.3) has a solution. An equivalent description of the RIP is to say that all subsets

of K columns taken from A are in fact nearly orthogonal. if the RIP holds, the linear

program

min ∥f′∥1 subject to z = Af′ (7.1.4)

recovers f′ accurately. A stronger theorem expressed in [Candès et al. ] deals with not

only K-sparse signals, but all signals.

Theorem 7.1.2. Assuming that δ2K <
√

3− 1, then the solution f′∗ to Equation 7.1.4 obeys

∥f′∗ − f′∥2 ≤ C0
∥f′ − f′K∥1√

K
and ∥f′∗ − f′∥1 ≤ C0∥f′ − f′K∥1
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for some constant C0, where f′K is the vector f′ with all but the largest K components set to 0.

If f′ is not K-sparse, the above theorem asserts that the quality of the recovered sig-

nal is determined by the degree to which the locations of the K largest values of f′ are

known in advance and those K values can be measured directly. What is more, if the

matrix A obeys the hypothesis of the theorem, there will be recovery of all sparse K-

vectors exactly, and essentially the K largest entries of all vectors, with no probability

of failure.

When noisy data is involved in Equation (7.1.3), L1-minimisation with inequality

constraints is used to recover f′:

min ∥f′∥1 subject to ∥Af′ − z∥2 ≤ ϵ (7.1.5)

where ϵ bounds the amount of noise in the data. This can be efficiently solved by a

second-order cone program [Candès et al. ]. The equivalent theorem for noisy data is

then outlined by:

Theorem 7.1.3. Assuming that δ2K <
√

3 − 1, then the solution f′∗ to Equation (7.1.5)

obeys

∥f′∗ − f′∥2 ≤ C0
∥f′ − f′K∥1√

K
+ C1ϵ

for some constants C0 and C1.

This shows that small perturbations in the data only cause small perturbations in

the reconstruction. Therefore Compressive Sensing is robust to noisy data and can be

applied in practical settings.

7.1.5 RIP Random Sensing

One of the most powerful results from Compressive Sensing is that sensing matrices

obeying the RIP with values of K close to M can be determined in a random manner.

Consider the following sensing matrices: i) A formed by sampling n column vectors
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uniformly at random on the unit sphere of RM; ii) A formed by sampling i.i.d. en-

tries from the normal distribution with mean 0 and variance 1/m; iii) A formed by

sampling a random projection P normalised by A = P
√

N/M; and iv) A formed by

sampling i.i.d. entries from a symmetric Bernoulli distribution (P(Ai, j = ±1) = 1/2)

or other sub-Gaussian distribution. With overwhelming probability, all these matrices

obey the RIP provided that

M ≥ CK log N/K (7.1.6)

where C is some constant depending on the instance. In all the above cases i)-iv),

the probability of sampling a matrix not obeying the RIP when (7.1.6) holds is expo-

nentially small in M. Therefore, if fixing Φ and populating Ψ as in i)-iv), then with

overwhelming probability, the matrix A = ΦΨ obeys the RIP provided that (7.1.6) is

satisfied, where again C is some constant depending on the instance. These random

measurement matrices Φ are in a sense universal [Baraniuk et al. 2008] and the spar-

sity basis need not even be known when designing the measurement system. In some

encoding/decoding applications, the sparse basis Ψ may be unknown at the encoder

or impractical to implement for data compression. A randomly designed Φ can be

considered a universal encoding strategy, as it need not be designed with regards to

the structure of Ψ. The knowledge and ability to implement Ψ are required only for

the recovery of f at the decoding side. This universality may be particularly helpful

for distributed source coding in multi-signal settings such as sensor networks.

7.2 Discrete Wavelet Transform

While the field of Discrete Wavelet Transforms (DWT) is too large to present in its

entirety, below we give a very brief review on DWT in order to help reveal an intu-

itive connection between multilevel/multiresolution wavelets and the coarse-to-fine

nature of the annealing schedule in the next section. For more details and information,

the reader is encouraged to refer to [Mallat 1989; Mallat 1999].
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A wavelet, in the sense of the Discrete Wavelet Transform, is an orthogonal func-

tion which can be applied to a finite group of data. Functionally, it is very much like

the Discrete Fourier Transform, in that the transforming function is orthogonal, a sig-

nal passed twice through the transformation is unchanged, and the input signal is

assumed to be a set of discrete-time samples. Both transforms are convolutions. The

DWT of a signal x is recursively calculated by passing it through a series of filters. Fil-

tering a signal corresponds to the mathematical operation of convolution of the signal

with the impulse response f of the filter. Let us suppose that x[n] is the original signal,

spanning a frequency band of 0 to π radians. The convolution operation in discrete

time is defined as follows:

y[n] = (x ∗ g)[n] = ∑
k

x[k] f [n− x]

The DWT analyses the signal at different frequency bands with different resolutions

by decomposing the signal into a coarse approximation and information on the de-

tails. DWT employs two sets of functions, called scaling functions and wavelet func-

tions, which are associated with low- and highpass filters, respectively. The decom-

position of the signal into different frequency bands is simply obtained by successive

high- and lowpass filtering of the time domain signal. The original signal x[n] is first

passed through a halfband highpass filter g[n] and a lowpass filter h[n]. After the

filtering, half of the samples can be eliminated according to Nyquist’s rule, since the

signal now has a highest frequency of π/2 radians instead of π . The signal can there-

fore be subsampled by 2, simply by discarding every other sample. Note, however,

that the subsampling operation after filtering does not affect the resolution, since re-

moving half of the spectral components from the signal makes half of the samples

redundant and they can be discarded without any loss of information. This consti-
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Figure 7.1: Block diagram of one level of DWT decomposition, with the subsampling
operator ↓ (courtesy of Wikipedia [Wikipedia 2011])

tutes one level of decomposition and can mathematically be expressed as follows:

yhigh[n] = ∑
k

x[k]g[2n− k]

ylow[n] = ∑
k

x[k]h[2n− k]

where yhigh[n] and ylow[n] are approximation and detail coefficients – the outputs of

the highpass and lowpass filters, respectively – after subsampling by 2. As illustrated

in Figure 7.1, the 1D-DWT produces a pyramidal decomposition of a given input sig-

nal into different resolution bands. Each level generates a pair of approximation and

detail signals from the approximation band of the previous level. As their names sug-

gest, approximation is a coarse-grained representation of its predecessor, and detail

contains the high-frequency details that have been removed. Both of them have half

the resolution of their predecessor. This procedure can be repeated for processing the

next level of the decomposition.

The 2D-DWT is usually obtained by applying a separate 1D transform along each

dimension. The most common approach, known as the square decomposition, alter-

nates between computations on image rows and columns. This process is applied

recursively to the quadrant containing the coarse scale approximation in both direc-

tions. This way, the data on which computations are performed is reduced to a quarter

in each step. As shown in Figure 7.2, at each step we decompose the j− 1 level ap-

proximation coefficients A j−1 (for j > 0 – the original image is regarded as level 0)

into four wavelet subbands A j, D j,1, D j,2, and D j,3. We first convolve the rows of A j
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Figure 7.2: The Pyramid structure of DWT decomposition of a 2D image signal

with a one dimensional lowpass h[n] and highpass g[n] filter, subsample by 2, con-

volve the columns of the resulting signals with another one dimensional lowpass h[n]

and highpass g[n] filter and subsample by 2. We compute the wavelet transform of an

image A0 by repeating this process until the desired level is reached.

The Haar wavelet decomposition is the simplest of the wavelet decompositions.

Each step in the Haar decomposition calculates a set of wavelet difference coefficients

and a set of average coefficients. If a data set s0, s1, ...sN−1 contains N elements, there

will be N/2 averages and N/2 coefficient values. The averages are stored in the lower

half of the N element array and the coefficients are stored in the upper half. The aver-

ages become the input for the next step in the wavelet calculation, where for iteration

i + 1, Ni+1 = Ni/2. The recursive iterations continue until a single average and a

single difference coefficient are calculated. This replaces the original data set of N el-

ements with an average, followed by a set of difference coefficients whose size is an

increasing power of two (e.g., 20, 21, 22...N/2).

7.3 Compressive Annealed Particle Filter

Recalling the APF Framework proposed in Chapter 3, the pose space model needs to

be optimised in a dynamic structure that consists of a sequence of estimate poses xt at
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successive times t = 1, 2, ..., where each pose is associated with an image observation

yobs
t . In this section, we derive an observation likelihood in the compressive domain.

At time t, the compressive measurement zd
t can be defined by:

zd
t = ΦΨyd

t

= ΦΨ(yobs
t − ybg

t )

= zobs
t − zbg

t (7.3.1)

where Ψ denotes the wavelet basis. In particular, yd
t is the difference image generated

by subtracting the background image ybg
t from the original observation image yobs

t .

It is known that images acquired from natural scenes have highly sparse representa-

tions in the wavelet domain. The difference image calculated by subtracting the static

background from the observation image has more pixel values close to zero, hence,

the difference image Ψyd
t is also highly sparse and compressible in general.

On the other hand, given the estimate state xt, the estimate compressive measure-

ment ẑd
t of the difference image can be calculated by subtracting the background im-

age ybg
t from a synthetic foreground image s f g(xt), which is generated by projecting a

human model with pose xt and camera parameters onto the image plane. This differ-

ence image is also compressible in the wavelet domain, and it can be defined by:

ŷd
t,i = sili(xt) ∗ (s f g

i (xt)− ybg
t,i ) i = 1, ..., N

ẑd
t = ΦΨŷd

t (7.3.2)

where, sil(xt) is a synthetic silhouette mask generated by the estimate state xt which

has 0s on all background entries and 1s on all the foreground entries. This mask

operation is used to make the synthetic difference image comparable to the original

difference image.
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7.3.1 Restricted Isometry Property and Pairwise Distance Preservation

Another important result of CS is the Restricted Isometry Property (RIP) [Candes and

Tao 2005] which characterises the stability of nearly orthonormal measurement matri-

ces. A matrix Φ satisfies RIP of order K if there exists an isometry constantσK ∈ (0, 1)

as the smallest number, such that (1−σK)∥f′∥2
2 ≤ ∥Φf′∥2

2 ≤ (1 +σK)∥f′∥2
2 holds for

all f′ ∈ ΣK = {f′ ∈ RN : ∥f′∥0 ≤ K}. In other words, Φ is an approximate isom-

etry for signals restricted to be K-sparse and approximately preserves the Euclidean

length, interior angles and inner products between the K-sparse signals. This reveals

the reason why CS recovery is possible because Φ embeds the sparse signal set ΣK in

RM while no two sparse signals in RN are mapped to the same point in RM. Recently,

Baron et al. in [Baron et al. 2009] have revealed how the relationship between the

sparsity level K and the number of measurements M affects the approximate isome-

try properties of Φ. One of the important theorems gives conditions that guarantee

isometry properties of Φ:

Theorem 7.3.1. [Baron et al. 2009] If Φ has i.i.d. Gaussian entries and M ≥ 2K, then, with

probability one, there always exists σ2K ∈ (0, 1) such that all pair-wise distances between

K-sparse signals are well preserved:

(1−σ2K) ≤
∥Φf′i −Φf′j∥2

2

∥f′i − f′j∥2
2
≤ (1 +σ2K). (7.3.3)

Straightforward proof [Baron et al. 2009] can be outlined as follows:

First, if K > N/2, then with probability one, the matrix Φ has rank N, and there is

a unique projection for the specific signal. Thus we assume that K < N/2. With prob-

ability one, all subsets of up to 2K columns drawn from Φ are linearly independent.

Assuming this holds, we construct two arbitrary K-column subsets Φ1 and Φ2, where

Φ1 ̸= Φ2. Then we form a subspace Ω by colpan(Φ1) ∩ colpan(Φ2), which has di-

mension equal to the number of columns common to both Φ1 and Φ2. A K-sparse

signal f′ projects to this common space, only if its coefficients are nonzero on exactly
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these (fewer than K) common columns; Since ∥f′∥0 = K, this does not occur. Thus

every K-sparse signal projects to a unique point in RM. When K < M < 2K, there

will necessarily exist K-sparse signals that cannot be uniquely projected, However,

these signals form a set of measure zero within the set of all K-sparse signals and can

safely be avoided with high probability if Φ is randomly generated independently of

f′. When M 6 K, K-sparse signals projected can not be uniquely identified in RM.

On the other hand, the classic Johnson-Lindenstrauss (JL) lemma [Johnson and

Lindenstrauss 1984] asserts that any set of n points in d-dimensional Euclidean space

can be embedded into k-dimensional Euclidean space, where k is logarithmic in n,

O(log n/ϵ2) and independent of d–so that all pairwise distances are maintained by a

factor of 1±ϵ, for any 0 < ϵ < 1. In [Baraniuk and Wakin 2009], Baraniuk and Wakin

present a JL lemma formulation with stable embedding of a finite point cloud under

a random orthogonal projection, which has a tighter lower bound for M:

Lemma 7.3.2. [Baraniuk and Wakin 2009] Let Q be a finite collection of points in RN . Fix

0 < σ < 1 and β > 0. Let Φ ∈ RM×N be a random orthogonal matrix and

M ≥
(

4 + 2β
σ2/2 +σ3/3

)
ln(#Q)

If M ≤ N, then, with probability exceeding 1− (#Q)−β, the following statement holds: for

every f′i , f′j ∈ Q and i ̸= j

(1−σ)
√

M
N
≤
∥Φf′i −Φf′j∥2

∥f′i − f′j∥2
≤ (1 +σ)

√
M
N

where a random orthogonal matrix can be constructed by performing the House-

holder transformation [Householder 1958] on M random length-N vectors having

i.i.d. Gaussian entries, assuming the vectors are linearly independent.
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7.3.2 Multilevel Wavelet Likelihood Evaluation on Compressive Measure-

ments

Figure 7.3: The number of wavelet coefficients is progressively elevated in the wavelet
decomposition process so that details are gradually enhanced through the annealling
schedule. At the top fo the figure, we show 4 levels of wavelet decomposition coef-
ficients, from left to right: 1) At level 4, using only the K4 = 2805 largest coefficients
(about 18.39% of all level 4 coefficients), 2) K3 = 4345 (7.18%) at level 3, 3) K2 = 12086
(5.01%) at level 2 and 4) K1 = 30000 (3.11%) at level 1. The observation images at the
bottom are reconstructed by using corresponding Kg sparse wavelet coefficients.

Theorem (7.3.1), Lemma (7.3.2) and orthonormality of Ψ guarantee pairwise dis-

tance to be approximately preserved provided that M is sufficient large. Therefore CS

recovery is not necessary to evaluate the observation likelihood. Instead, the observa-

tion likelihood can be directly calculated via distances in compressive measurements

using Equations (7.3.1) and (7.3.2).

p(yt|xt) = exp{−λ∥zd
t − ẑd

t ∥1} (7.3.4)
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Notice for λ > 0, the above equation can be transformed:

p(yt|xt) = exp{−∥λzd
t − λẑd

t ∥1}

= exp{−∥Φλ(Ψyd
t −Ψŷd

t )∥1} (7.3.5)

where Ψyd
t and Ψŷd

t are wavelet coefficients. The ultimate purpose is to substitute

λ(Ψyd
t −Ψŷd

t ) by a series of coarse-to-fine wavelet coefficient images, which conform

to gradually elevating λ in the annealling schedule, so that the computation of the

observation likelihood is effectively reduced and data modification is intuitively inte-

grated with the annealing schedule. More concretely, we expect to construct a series

of Ψl(yd
t ) and Ψl(ŷd

t ):

p(yt|xt) = exp{−∥Φl(Ψl(yd
t )−Ψl(ŷd

t ))∥1} (7.3.6)

where Ψl(yd
t ) represents the wavelet coefficients of yd

t at the l layer associated with

the level g decomposition, having Nl wavelet coefficients. Where l is increasing, g is

decreasing and more details encoded in the wavelet coefficients Ψl(yd
t ) are used. Φl

is an Ml ×Nl sub-matrix of Φ. Ml = 2Kg is determined according to the sparsity level

Kg of the g level wavelet coefficients.

7.3.2.1 Construct Increasing Wavelet Coefficient Image

According to the multilevel wavelet decomposition in Section 7.2, any image can be

DWT decomposed to wavelet coefficients (e.g. shown in the top of Figure 7.3. To

simplify the following procedure, we add a large positive constant ζ to the wavelet

coefficients such that all wavelet coefficients are always positive. This is possible due

to the fact that the image pixel value is bounded and the wavelet decomposition can

be finished in a finite number of steps, and the positive constant ζ is maintained. Note

that adding a large positive constant ζ to both Ψyd
t and Ψŷd

t in Equation (7.3.5) does
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not change the value of the observation likelihood evaluation. The overall optimisa-

tion remains valid.

We begin by constructing two wavelet coefficient sequences C = {ci|ci > 0, i =

1, 2...} and Ĉ = {ĉi|ĉi > 0, i = 1, 2...} for Ψyd
t and Ψŷd

t in Equation (7.3.5). Sequence

C is the sub-quarter iteration of the multilevel wavelet decomposition as shown in the

top of Figure 7.3 from left to right. The current level wavelet coefficients are always

a subset of the super level wavelet coefficients, ci ⊂ ci+1. Hence, ∥ci∥1 < ∥ci+1∥1

and C is considered a monotonically increasing sequence in terms of magnitude (the

same can be applied to Ĉ). Since the components of C and Ĉ are positive and mono-

tonically increasing in their magnitude, it is easy to induce that C∆ = C− Ĉ has the

same monotonically increasing property ∥c∆i ∥1 < ∥c∆i+1∥1. If we define an increas-

ing sequence of variables as {λi|λi = ∥c∆i+1∥1/∥c∆1 ∥1, λi < λi+1, i = 1, 2, ...}, then the

monotonically increasing sequence C∆ can be described by C∆ = {c∆1 , λ1c∆1 , λ2c∆1 , ....}.

In other words, we can always construct a monotonically increasing wavelet coeffi-

cient sequence C∆ that can absorb the counterpart series of λ and simulate the λ effect

on the data domain directly. The direct consequence of this is that Equation (7.3.6) is

valid. The precise value of λ for each annealling layer is not critical, since λ is only

used to roughly control the optimisation convergence rate. Therefore, we design di-

rect evaluation of the coarse-to-fine wavelet coefficients in different levels to simulate

increasing λl at each layer l.

7.4 Experiments

Experiments were conducted on the benchmark dataset HumanEvaII [Sigal and Black

2006a] that contains two 1260-frame image sequences from 4 calibrated colour cam-

eras synchronised with Mocap data at 60Hz. The tracking subjects perform three

different actions: walking, jogging and balancing. To generate compressive mea-

surements, we apply the 8-level Haar wavelet 2D decomposition [Daubechies 1992]
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Figure 7.4: Wavelet Coefficient Histogram (left) close-up view (right) showing that
95% of coefficients have very small values close to zero.

to all observation images. The wavelet coefficients appear highly sparse, most of

them close to zero as illustrated in Figure 7.4. For instance, using solely the 30000

largest wavelet coefficients we have been able to reconstruct the 964320 colour com-

ponents of a 656× 490 RGB image with scarcely noticeable perceptual loss. For the

multilevel evaluation (Equation 7.3.6), the four sparsity levels K1 = 30000, K2 =

12086, K3 = 4345 and K4 = 2805 are evenly allocated in the 10 anneal layers1. The

Ml = 2Kg rows of Φ are drawn i.i.d. from the normal distribution N(0, 1/Ml) to

approximately preserve isometry as shown in Equation (7.3.3). On the other hand,

the single level evaluation Equation (7.3.4) is used with the tight lower bound for

M shown in Lemma (7.3.2). We presume there is one observation image and maxi-

mum 20002 synthetic images generated in the evaluation of each view and each frame.

Then, for the 1260-frame sequence, there are a total of 2521260 unique compressive

measurements required for tracking. Let σ = 0.1, β = 1 and #Q = 2521260, so

M =
(

4+2β
σ2/2+σ3/3

)
ln(#Q) = 16583. Moreover, the M rows of Φ are constructed by

drawing i.i.d. entries from the normal distribution N(0, 1/M) and performing the

Householder transformation to orthogonalise Φ. Therefore, with high probability

1− 1/2521260, Φ approximately preserves the pairwise distances. We also verified

the performance of the number of compressive measurements in cases of M = 10000

and M = 5000.

1using M1 = 2 × 2805, M2 = 2 × 2805, M3 = 2 × 2805, M4 = 2 × 4345, M5 = 2 × 4345, M6 =
2× 4345, M7 = 2× 12086, M8 = 2× 12086, M9 = 2× 30000, M10 = 2× 30000

2Given 10 layers and 200 particles as the maximum
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Figure 7.5: From top to bottom, 1) tracking results of HumanEvaII Subject 2, 2) track-
ing results of HumanEvaII Subject 4 (note that the ground truth data is corrupted in
frames 298-335) and 3) computational time for one frame using different numbers of
compressive measurements.
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As illustrated in the experimental results of HumanEvaII Subject 2 (the top of Fig-

ure 7.5), the evaluation using the original images as input obtains 54.5837± 4.7516mm3.

The multilevel evaluation achieves the stable result 56.9442 ± 4.4581mm which is

comparable with the result using original images. When using single level evalua-

tion with M = 16583 compressive measurements, the tracking performance appears

poorer than with multilevel evaluation but still maintains within 65.7548± 5.4351mm.

When the number of compressive measurements are further reduced to M = 10000

and M = 5000, the performance is degraded dramatically and we obtain 70.4249±

7.5613mm and 68.2124± 11.6153mm, respectively. The middle of Figure 7.5 shows the

experimental results with HumanEvaII Subject 4. The evaluation using original im-

ages achieves 54.2207± 4.9250mm which is slightly better than 57.1705± 6.0227mm

achieved by the multilevel evaluation. Using M = 16583 compressive measure-

ments results in slightly more fluctuations compared with the results of Subject 2.

When the number of compressive measurements is decreased to M = 10000 and

M = 5000, there are significant mistrackings and drifts with larger errors, giving

71.6053 ± 15.4005mm and 96.3663 ± 32.8075mm. More visual tracking results are

shown in Figure 7.6.

The computational performance is also evaluated via the computational time for

one frame using the different numbers of compressive measurements shown in the

bottom of Figure 7.5. As expected, computational times ranging from 40 to 75 sec-

onds roughly correspond to increasing the number of the compressive measurements

M. On the other hand, the multilevel evaluation is able to reach a level of com-

putational speed similar to using fewer compressive measurements. Overall, the

utilisation of progressive coarse-to-fine multilevel evaluation allows our approach to

achieve a computational efficiency comparable to using only M = 10000 compres-

sive measurements, maintaining tracking accuracy comparable to using the original

images.

3The results are statistically presented by mean± standard deviation in millimetres
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Figure 7.6: HumanEvaII visual tracking results of Subject 4 and 2 are depicted in the
top four rows and the bottom four rows, respectively. A transparent visual model is
overlaid on the tracking subject.



Chapter 8

Conclusion

To summarise, this work begins with a comprehensive literature review on the gen-

erative approach, learning based approaches and tracking via graphic based image

segmentation. Then it outlines a general architecture with basic components compris-

ing the human body model, observation likelihood, temporal dynamical model and

optimisation on pose estimation, as well as how these components are incorporated

into the sequential dynamical framework to realise a human motion capture system.

The work is then unfolded based on these primary components: In Chapter 4, the

generic articulated skeleton is described as well as how to parameterise and optimise

3D rotation joints. Two shape parametrisations, needle based and data driven, are

then described. The chapter ends with the novel automatic initialisation method for

markerless motion capture. In Chapter 5, the focus is put on nature-inspired methods:

Simulated Annealing, Particle Swarm Optimisation and Covariance Matrix Adapta-

tion Evolution Strategy as well as our novel Covariance Matrix Adaptation Anneal-

ing. Subsequent experiments with four benchmark optimisation problems demon-

strate the efficiency of our approach compared to other methods. Chapter 6 describes

several strategies to improve the robustness of the observation likelihood evaluation,

including Incremental Relaxation by Fast March Method, Colour and Texture Incor-

poration, Maximisation of Mutual Information and Gradual Sampling for Annealed

Particle Filter. In Chapter 7, a novel compressive sensing technique with multilevel

wavelet decomposition is seamlessly integrated into Simulated Annealing to exploit

the sparsity level in observed images in the coarse-to-fine fashion.

177
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We have presented a pretty comprehensive study on markerless motion capture

from a broad perspective. Methods presented in this work have many advantages but

also have limitations and conditions on their use. These are outlined as follows:

1. Subject Specific Body Shape Modelling and Automatic Initialisation: In general,

more information gathered results in more accurate tracking, and this method

serves this purpose very well. The most accurate tracking requires a reason-

able amount of initial calibrations. Our approach favours the standard graphics

skeleton parameterisation and dimensionality reduced data-driven shape pa-

rameterisation. This is very flexible and suitable for most circumstances, but

places a high demand on the accuracy of input data. For instance, it requires rel-

atively precise silhouettes and synchronised multiview images covering most

perspectives. If these early calibrations can not be accomplished reasonably

well, subsequent tracking may suffer mistracking.

2. Nature Inspired Global Optimisation: This is a very general and powerful method

for solving high dimensional and multimodal optimisation problems in mark-

erless motion capture. This kind of approach is recognised as a good way, pos-

sibly because markerless motion capture is too complex for researchers to de-

velop regular patterns and principles, and therefore cannot be efficiently solved

by existing/common methods. However, this kind of approach may just be

a temporary good solution. The major drawback of such stochastic optimisa-

tion is the convergence speed. This drawback severely limits its practical usage

in real world settings. Nevertheless, with the exponential growth of computa-

tional power, there is an increasing possibility to apply stochastic optimisation

to medium sized practical problems in the near future.

3. Robust Evaluation and Compressive Evaluation: From our experience, robust

evaluation leads optimisation to converge to the desired global optimum. How-

ever, optimisation could end up with local optimums or a corrupted global op-
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timum. Thus, modelling the energy function is crucial for successful tracking.

This evaluation is often the main computational bottleneck, and an overly so-

phisticated evaluation will undoubtedly damage overall tracking performance.

Our approach used a coarse-to-fine order in the annealing schedule to avoid

wasting computations on premature convergence. The price of this approach is

that it requires extra processing on the input data.
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Appendix A

Appendix

A.1 Perspective Projection

Considering a three dimensional coordinate system as shown in Figure A.1, the origin

is at the centre of projection and the Z axis is along the optical axis. This coordinate

system is called the standard coordinate system of the camera. A point M on an ob-

ject with coordinates (X, Y, Z) will be imaged at some point m = (x, y) on the image

plane. The coordinate of m is with respect to a coordinate system whose origin is

at the intersection of the optical axis and the image plane, and the x and y axes are

parallel to the X and Y axes. For an ideal camera model without radial distortions,

providing the intrinsic and extrinsic parameters of the camera calibration are known,

the camera frame rotation R, the camera frame translation t, the focal length ( fx, fy) in

both orientations and the principle point (uc, vc), the pipeline of the camera perspec-

tive projection can be formulated as:

s

m

1

 =


fx 0 uc

0 fy vc

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


R t

0 1


M

1



= K


1 0 0 0

0 1 0 0

0 0 1 0

T

M

1
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Figure A.1: Camera Calibration Coordinate System
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where, s is the scale factor of the homogeneous pixel coordinate, having value Z. K

contains the intrinsic parameters, and T contains the transformation parameters.

For the camera model with lens distortions Dc and skew coefficient αc defin-

ing the angle between the x and y pixel, the point M is first transformed into the

camera reference frame by Mc = T(M, 1)T. Then the Mc is normalised to obtain

Mn = (Xc/Zc, Yc/Zc)T. The distorted point Md is calculated by:

Md = (1 + Dc(1)r2 + Dc(2)r4 + Dc(5)r6)Mn +

2Dc(3)XnYn + Dc(4)(r2 + 2X2
n)

2Dc(4)XnYn + Dc(3)(r2 + 2Y2
n)


where, r2 = X2

n +Y2
n . Finally, the point m on the image can be calculated by m = KMd.

However, the distorted K matrix should be modified as:

K =


fx αc fx uc

0 fy vc

0 0 1


For more details on camera calibration, readers are recommended to refer to the book

[Hartley and Zisserman 2004] by Hartley and Zisserman.

A.2 Importance Resampling

Figure A.2: Importance Sampling

The ultimate goal of all importance sampling techniques is to evaluate the expec-
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tation of some function f (x) with respect to a probability distribution p(x). However,

it is often difficult to sample directly from the probability distribution p(x), a sim-

pler/known distribution - the importance distribution π(x) - is thus introduced to

sample from, and the corresponding terms are adjusted by the importance weights

w = p(x)
π(x) . Moreover, using importance distributions also allows easy incorporation of

domain knowledge and assumptions.

Let {xi
t, wi

t}N
i=1 denotes a set of N random samples xi

t with associated normalised

importance weights wi
t (∑N

i=1 wi
t = 1) at time t. Provided that the number of samples

N is reasonably large with respect to the dimensions of the state vector x, an empirical

estimate of posterior p(xt|y1:t) at time t can be approximated as:

p(xt|y1:t) ≈
N

∑
j=1

w j
tδx j

t
(xt)

Further, the state x̂t can be estimated by the expectation of the posterior probability:

x̂t = E[xt]p(xt|y1:t) =
∫

xt p(xt|y1:t)dxt ≈
N

∑
i=1

wi
tx

i
t

When the number of samples N is fixed, the performance of the algorithm is dom-

inated by the estimation of importance weights wi
t. Further, the importance distri-

bution should allow recursive evaluations in time of the importance weights as suc-

cessive observations become available. It should therefore satisfy (for simplicity of

notation, i superscripts are dropped):

π(xt−1:t|y1:t) = π(xt|xt−1, y1:t)π(xt−1|y1:t−1) (A.2.1)

The posterior equation can be derived in terms of the immediately previous state and

available observations:

p(xt−1:t|y1:t) =
p(yt|xt−1:t, y1:t−1)p(xt|xt−1, y1:t−1)p(xt−1|y1:t−1)

p(yt|y1:t−1)
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By applying Markov assumptions:

p(xt−1:t|y1:t) =
p(yt|xt)p(xt|xt−1)p(xt−1|y1:t−1)

p(yt|y1:t−1)
(A.2.2)

With equations A.2.1 and A.2.2, the importance weights can be defined as:

wi
t =

p(xi
t−1:t|y1:t)

π(xi
t−1:t|y1:t)

=
p(xt−1|y1:t−1)

π(xt−1|y1:t−1)
·

p(yi
t|xi

t)p(xi
t|xi

t−1)

π(xi
t|xi

t−1, yi
1:t)p(yi

t|yi
1:t−1)

= wi
t−1

p(yi
t|xi

t)p(xi
t|xi

t−1)

π(xi
t|xi

t−1, yi
1:t)p(yi

t|yi
1:t−1)

Removing the normalised constant p(yi
t|yi

1:t−1):

wi
t ∝ wi

t−1
p(yi

t|xi
t)p(xi

t|xi
t−1)

π(xi
t|xi

t−1, yi
1:t)

Assuming that the current state and observation are dependent solely upon the im-

mediately previous state and current observation, the update equation can be refor-

mulated as:

wi
t ∝ wi

t−1
p(yi

t|xi
t)p(xi

t|xi
t−1)

π(xi
t|xi

t−1, yi
t)

(A.2.3)

A.3 Human Body Segments and Joint Angle Ranges

A.4 Parameterisations of Three DOF Rotations

A.4.1 Rotation Matrices

Each rotation can be represented as a 3 by 3 orthogonal matrix whose determinant

is equal to 1. The set of all such matrices forms the special group SO(3). It is also

a closed set under matrix multiplication. Whenever a rotation matrix multiples with

another rotation matrix, the product remains a rotation matrix. Because of the linearity

of matrices, directly optimising the rotation matrix often leads to well-defined linear

objective functions. However, in order to ensure the matrix remains in SO(3), there

are six non-linear constraints that need to be enforced. Three constraints are to restrict
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Figure A.3: Joint Angle Ranges
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Figure A.4: Joint Angle Ranges
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Figure A.5: Joint Angle Ranges
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Figure A.6: Joint Angle Ranges
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Figure A.7: Joint Angle Ranges
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column vectors to unit length, and three to keep them mutually orthogonal.

A.4.2 Euler Angles

Euler angles define an arbitrary rotation by composition of three coordinate axis-angle

rotations. They are widely used in various areas, owing to the fact that they are a more

intuitive representation of rotation, being similar to human perception. However, the

composition of rotations (matrix multiplication) is not commutative – the Euler angle

representation of a rotation is not unique. Different axis orders yield different sets of

Euler angles, even if these sets of Euler angles have the same effect on the object. In a

right hand coordinate system, the three coordinate axis x, y and z rotation is given by:

Rx(ψ) =


1 0 0

0 cosψ − sinψ

0 sinψ cosψ



Ry(θ) =


cosθ 0 sinθ

0 1 0

− sinθ 0 cosθ



Rz(ϕ) =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1



The final rotation matrix R can be composed in the XYZ order by:

R = RzRyRx

=


cosθ cosϕ sinψ sinθ cosϕ− cosψ sinϕ cosψ sinθ cosϕ+ sinψ sinϕ

cosθ sinϕ sinψ sinθ sinϕ+ cosψ cosϕ cosψ sinθ sinϕ− sinψ cosϕ

− sinθ sinψ cosθ cosψ cosθ





192 Appendix

Conversely, given a rotation matrix R, Euler angles can be decomposed in the XYZ

order by:


θ = − arcsin R31 ψ = arctan

(
R32
cosθ
R33
cosθ

)
ϕ = arctan

(
R21
cosθ
R11
cosθ

)
if R31 ̸= ±1

ϕ = 0 θ = ∓π2 ψ = ∓ arctan
(

R12
R13

)
if R31 = ±1

A.4.3 Axis Angle

The axis angle is established on the basis that any rotation or sequence of rotations in

three-dimensional space is equivalent to a pure rotation about a single fixed axis. It

parameterises a rotation by a unit vectorω indicating the direction of an axis and an

angle θ describing the magnitude of the rotation about the axis. It is often given as a

4-element vector by:

⟨axis, angle⟩ =



ωx

ωy

ωz

 ,θ


This can also be merged into one 3-element vector with magnitude θ as:

⟨axis, angle⟩ =



ωx

ωy

ωz

 ,θ

 =


ωxθ

ωyθ

ωzθ

 (A.4.1)

The exponential map is used as a transformation from the axis angle to the rotation

matrix representation.

R = exp(ω̂θ) =
∞
∑
k=0

(ω̂θ)k

k!
= I + ω̂θ+

1
2
(ω̂θ)2 +

1
6
(ω̂θ)3 + · · ·

R = I + ω̂
(
θ− θ

3

3!
+
θ5

5!
− · · ·

)
+ ω̂2

(
θ2

2!
− θ

4

4!
+
θ6

6!
− · · ·

)
R = I + ω̂ sin(θ) + ω̂2(1− cos(θ))
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This is the so-called Rodrigues’ rotation formula, where R is a rotation matrix and ω̂

is a skew-symmetric (or antisymmetric) matrix:

ω̂ =


0 −ωz ωy

ωz 0 −ωz

−ωy ωx 0


Conversely, to retrieve the axis angle from the rotation matrix, the log map can be

outlined as below:

θ = arccos
(

trace(R)− 1
2

)

ω =
1

2 sin(θ)


R(3, 2)− R(2, 3)

R(1, 3)− R(3, 1)

R(2, 1)− R(1, 2)


Note that there are singularities around θ = 0 and ∥θ∥ = π which need to be man-

aged. Alternatively, the eigen-decomposition of R yields the three eigenvalues 1 and

cosθ ± i sinθ. The axis ω is the eigenvector corresponding to the eigenvalue 1. The

angle θ can now be calculated from one of the remaining Eigenvalues. The consis-

tency of the direction of the axis and angle should be checked. The quaternion rep-

resentation has similar transformations although extra steps are needed to maintain

normalisation of quaternions.

A.4.4 Optimisation on Axis Angle

In motion capture, 3D rotations are optimised in a temporal manner. The 3D rotation

parameterisation is expected to be continuous over the entire space, thus smooth mo-

tion can be represented as the accumulative 3D rotations. Euler angles do not satisfy

this expectation. When a motion is near the gimbal lock singularities, two Euler angle

axes tend to be overlapped, and two axis rotations are rotated along the roughly same
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direction. This implies degeneration (or even loss) of one degree of freedom. The axis

angle and quaternions have better behaviour. However optimisation of the axis an-

gle or quaternions introduces one additional degree of freedom compared with Euler

angles. Although the axis angle has 3-element vector representation as in Equation

(A.4.1), it has difficulties in imposing optimisation constraints on the rotation axis and

angle separately. In fact, separation of these constraints is desired in motion capture.

In motion capture, the joint rotations change slowly between successive frames.

It is safe to assume the current rotation is a small incremental adjustment of the pre-

vious one, so we can restrict the search space to the small neighbourhood around

the previous joint rotation. In addition, when variation of the rotational increment is

very small, this increment in a particular direction could become negligible, and the

increment will only manifest in the other two orthogonal directions. This inspired

an efficient optimisation method for 3D rotation, proposed by Schmidt and Niemann

in [Schmidt and Niemann 2001]. As illustrated in Figure A.8, given an initial rota-

tion P0, the tangent hyperplane through P0 can be formed by finding two arbitrary

orthonormal bases u, v that are perpendicular to the normal through P0. A pair of

orthonormal bases can be established by Gram-Schmidt Orthogonalisation or Singu-

lar Value Decomposition (SVD). Subsequently, any rotation p can be projected onto

the tangential hyperplane, then perturbed along these two bases. Finally, it can be

recovered to the unit hypersphere (the original rotation space). This approach avoids

gimbal lock in the Euler angles and maintains the single 3D rotation parameterisation

as 3 DOF rather than 4 DOF. It also provides a sensible way to constrain search space

in the optimisation procedure.
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Figure A.8: Optimising 3D rotation in the tangential HyperPlane



196 Appendix



Bibliography

2000. Comparing inertia weights and constriction factors in particle swarm optimization,

Volume 1 (2000). (p. 92)

2001. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation

(Genetic Algorithms and Evolutionary Computation). Springer. (p. 99)

ACKLEY, D. H. 1987. A connectionist machine for genetic hillclimbing. Kluwer, Boston.

(pp. 5, 110)

AGARWAL, A. AND TRIGGS, B. 2004a. 3d human pose from silhouettes by rele-

vance vector regression. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (2004), pp. 882–888. (p. 22)

AGARWAL, A. AND TRIGGS, B. 2004b. Learning to track 3d human motion from

silhouettes. In International Conference on Machine Learning (2004). (p. 22)

AGARWAL, A. AND TRIGGS, B. 2006. Recovering 3d human pose from monocular

images. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1, 44–58.

(pp. 1, 22, 25)

AHMED, N., DE AGUIAR, E., THEOBALT, C., MAGNOR, M., AND SEIDEL, H.-P. 2005.

Automatic generation of personalized human avatars from multi-view video. In

VRST ’05: Proceedings of the ACM symposium on Virtual reality software and technology

(Monterey, USA, December 2005), pp. 257–260. Association for Computing Machin-

ery (ACM): ACM. (p. 74)

AHMED, N., LENSCH, H., AND SEIDEL, H.-P. 2007. Seeing people in different

light-joint shape, motion, and reflectance capture. IEEE Transactions on Visualiza-

tion and Computer Graphics 13, 4, 663–674. Member-Christian Theobalt and Member-

197



198 Bibliography

Marcus Magnor. (p. 129)
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ALLEN, B., CURLESS, B., POPOVIĆ, Z., AND HERTZMANN, A. 2006. Learning a

correlated model of identity and pose-dependent body shape variation for real-

time synthesis. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics

symposium on Computer animation (Aire-la-Ville, Switzerland, Switzerland, 2006),

pp. 147–156. Eurographics Association. (pp. 52, 53)

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS, J., AND

DAVIS, J. 2005a. Scape: shape completion and animation of people. ACM Trans.

Graph. 24, 3, 408–416. (pp. 16, 52, 53, 54)

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS, J., AND

DAVIS, J. 2005b. Scape: shape completion and animation of people. ACM Trans.

Graph. 24, 3, 408–416.

ARULAMPALAM, S., MASKELL, S., GORDON, N., AND CLAPP, T. 2002. A tuto-



Bibliography 199

rial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE

Transactions on Signal Processing 50, 2 (Feb.), 174–188. (p. 44)

AZOUZ, Z. B., RIOUX, M., SHU, C., AND LEPAGE, R. 2006. Characterizing human

shape variation using 3d anthropometric data. The Visual Computer 22, 5, 302–314.

(p. 69)
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COOPER, S., HERTZMANN, A., AND POPOVIĆ, Z. 2007. Active learning for real-

time motion controllers. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers (New

York, NY, USA, 2007), pp. 5. ACM.

CORAZZA, S., GAMBARETTO, E., MUNDERMANN, L., AND ANDRIACCHI, T. P. 2009.

Automatic generation of a subject specific model for accurate markerless motion

capture and biomechanical applications. IEEE Transactions on Biomedical Engineer-

ing. (pp. 15, 16, 74)

CORAZZA, S., MNDERMANN, L., GAMBARETTO, E., AND ANDRIACCHI, T. P. 2010.

Markerless motion capture through visual hull, articulated icp and subject specific

model generation. International Journal of Computer Vision 87, 156–169. (pp. 15, 16,

54, 151)

CORAZZA, S., MUNDERMANN, L., CHAUDHARI, A., DEMATTIO, T., COBELLI, C.,

AND ANDRIACCHI, T. June 2006. A markerless motion capture system to study

musculoskeletal biomechanics: Visual hull and simulated annealing approach. An-

nals of Biomedical Engineering 34, 1019–1029(11).



204 Bibliography

CZYZ, J. 2006. Object detection in video via particle filters. icprInternational Confer-

ence on Pattern Recognition 1, 820–823.

DAUBECHIES, I. 1992. Ten Lectures on Wavelets (C B M S - N S F Regional Confer-

ence Series in Applied Mathematics). Society for Industrial and Applied Mathematics.

(p. 172)

DE AGUIAR, E., STOLL, C., THEOBALT, C., AHMED, N., SEIDEL, H.-P., AND THRUN,

S. 2008. Performance capture from sparse multi-view video. In SIGGRAPH ’08:

ACM SIGGRAPH 2008 papers (New York, NY, USA, 2008), pp. 1–10. ACM. (pp. 17,

19, 55)

DE AGUIAR, E., THEOBALT, C., MAGNOR, M., AND SEIDEL, H.-P. 2005. Recon-

structing human shape and motion from multi-view video. In 2nd European Confer-

ence on Visual Media Production (CVMP) (London, UK, December 2005), pp. 42–49.

The IEE. (p. 74)

DE AGUIAR, E., THEOBALT, C., STOLL, C., AND SEIDEL, H.-P. 2007a. Marker-less

3d feature tracking for mesh-based motion capture. In A. ELGAMMAL, B. ROSEN-

HAHN, AND R. KLETTE Eds., Human Motion - Understanding, Modeling, Capture and

Animation, Volume 4814 of Lecture Notes in Computer Science (Rio de Janeiro, Brazil,

October 2007), pp. 1–15. Springer. (p. 129)

DE AGUIAR, E., THEOBALT, C., STOLL, C., AND SEIDEL, H.-P. 2007b. Marker-less

deformable mesh tracking for human shape and motion capture. In IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition (CVPR) (Minneapolis,

USA, June 2007), pp. XX–XX. IEEE: IEEE.

DE AGUIAR, E., THEOBALT, C., THRUN, S., AND SEIDEL, H.-P. 2008. Automatic

conversion of mesh animations into skeleton-based animations. Comput. Graph. Fo-

rum 27, 2, 389–397. (p. 129)

DE LA GORCE, M., PARAGIOS, N., AND FLEET, D. J. 2008. Model-based hand

tracking with texture, shading and self-occlusions. In CVPR (2008).



Bibliography 205

DENNY, M. 2001. Introduction to importance sampling in rare-event simulations.

European Journal of Physics 22, 4, 403–411. (p. 44)

DEUTSCHER, J., BLAKE, A., AND REID, I. 2000. Articulated body motion capture

by annealed particle filtering. In Computer Vision and Pattern Recognition, 2000. Pro-

ceedings. IEEE Conference on, Volume 2 (2000), pp. 126–133 vol.2. (pp. 10, 147, 148)

DEUTSCHER, J., DAVISON, A., AND REID, I. 2001. Automatic partitioning of high

dimensional search spaces associated with articulated body motion capture. Com-

puter Vision and Pattern Recognition, IEEE Computer Society Conference on 2, 669.

(p. 10)

DEUTSCHER, J., NORTH, B., BASCLE, B., AND BLAKE, A. 1999. Tracking through

singularities and discontinuities by random sampling. In ICCV ’99: Proceedings

of the International Conference on Computer Vision-Volume 2 (Washington, DC, USA,

1999), pp. 1144. IEEE Computer Society. (p. 10)

DEUTSCHER, J. AND REID, I. 2005. Articulated body motion capture by stochastic

search. International Journal of Computer Vision 61, 2, 185–205. (pp. 10, 85, 87, 126)

DONOHO, D. L. 2006. Compressed sensing. IEEE Transactions on Information The-

ory 52, 4, 1289–1306. (p. 7)

DOUCET, A., GODSILL, S., AND ANDRIEU, C. 2000. On sequential monte carlo

sampling methods for bayesian filtering. Statistics and Computing 10, 3, 197–208.

(pp. 10, 44)

DUARTE, M. F., DAVENPORT, M. A., TAKHAR, D., LASKA, J. N., SUN, T., KELLY,

K. F., AND BARANIUK, R. G. 2008. Single-pixel imaging via compressive sam-

pling. IEEE Signal Processing Magazine 25, 2 (March), 83–91. (p. 155)

DUCHENNE, O., AUDIBERT, J.-Y., KERIVEN, R., PONCE, J., AND SEGONNE, F. 2008.

Segmentation by transduction. Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, 1–8. (pp. 33, 34)



206 Bibliography

EISEMANN, M., DECKER, B. D., MAGNOR, M., BEKAERT, P., DE AGUIAR, E., AHMED,

N., THEOBALT, C., AND SELLENT, A. 2008. Floating Textures. Computer Graph-

ics Forum (Proc. Eurographics EG’08) 27, 2 (4), xx–xx. (p. 129)

EK, C., TORR, P., AND LAWRENCE, N. 2008. Gaussian process latent variable mod-

els for human pose estimation. pp. 132–143. (p. 25)

EL-MARAGHI, T. F. 2003. Robust online appearance models for visual tracking. PhD

thesis, Toronto, Ont., Canada, Canada. Adviser-Allan D. Jepson.

ELGAMMAL, A. AND LEE, C.-S. 2007. Nonlinear manifold learning for dynamic

shape and dynamic appearance. Comput. Vis. Image Underst. 106, 1, 31–46.

ELGAMMAL, A. AND LEE, C.-S. 2009. Tracking people on a torus. IEEE Trans. Pat-

tern Anal. Mach. Intell. 31, 3, 520–538. (pp. 27, 28)

FLEET, D. J., BLACK, M. J., AND NESTARES, O. 2003. Bayesian inference of visual

motion boundaries. pp. 139–173.

GALL, J., POTTHOFF, J., SCHNOERR, C., ROSENHAHN, B., AND SEIDEL, H.-P. 2007.

Interacting and annealing particle filters: Mathematics and a recipe for applica-

tions. Journal of Mathematical Imaging and Vision 28, 1, 1–18. (pp. 12, 50)

GALL, J., ROSENHAHN, B., BROX, T., AND SEIDEL, H.-P. 2010. Optimization and

filtering for human motion capture - a multi-layer framework. International Journal

of Computer Vision 87, 75–92. (pp. 15, 149, 151)

GALL, J., ROSENHAHN, B., AND SEIDEL, H.-P. 2008. Drift-free tracking of rigid

and articulated objects. In CVPR (2008). (p. 14)

GALL, J., STOLL, C., DE AGUIAR, E., THEOBALT, C., ROSENHAHN, B., AND SEIDEL,

H.-P. 2009. Motion capture using joint skeleton tracking and surface estima-

tion. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference

on (June 2009), pp. 1746–1753. (pp. 15, 54)

GINSBERG, C. M. AND MAXWELL, D. 1984. ”graphical marionette”. SIGGRAPH



Bibliography 207

Comput. Graph. 18, 1, 26–27.

GONG, R. H. AND ABOLMAESUMI, P. 2008. 2d/3d registration with the cma-es

method. Volume 6918 (2008), pp. 69181M. SPIE.

GRAU, O., HILTON, A., KILNER, J., MILLER, G., SARGEANT, T., AND STARCK, J.

2006. A free-viewpoint video system for visualisation of sport scenes. Interna-

tional Broadcasting Convention (IBC).

GRIEWANK, A. 1981. Generalized descent for global optimization. Journal of Opti-

mization Theory and Applications 11, 11–39. Berlin Heidelberg. (p. 114)

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND POPOVIĆ, Z. 2004. Style-
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LÓPEZ, F. J. P. AND FISHER, R. B. Eds. 2006. Articulated Motion and Deformable

Objects, 4th International Conference, AMDO 2006, Port d’Andratx, Mallorca, Spain,

July 11-14, 2006, Proceedings, Volume 4069 of Lecture Notes in Computer Science (2006).

Springer.

LOWE, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int.

J. Comput. Vision 60, 2, 91–110.

LUO, M. R., CUI, G., AND RIGG, B. 2001. The development of the cie 2000 colour-



Bibliography 213

difference formula: Ciede2000. Color Research and Application 26, 5 (Feb.), 340–350.

(pp. 134, 135)

M. EMRE CELEBI, H. A. K. AND CELIKER, F. 2009. Fast color space transforma-

tions using minimax approximations. IET Image Processing 1, 3, 134–142.

MACCORMICK, J. AND ISARD, M. 2000. Partitioned sampling, articulated objects,

and interface-quality hand tracking. In ECCV ’00: Proceedings of the 6th European

Conference on Computer Vision-Part II (London, UK, 2000), pp. 3–19. Springer-Verlag.

(p. 10)

MACKAY, D. J. C. 1998. Introduction to monte carlo methods. In Proceedings of the

NATO Advanced Study Institute on Learning in graphical models (Norwell, MA, USA,

1998), pp. 175–204. Kluwer Academic Publishers. (p. 10)
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TÖRN, A. AND ZILINSKAS, A. 1989. Global Optimization. Lecture Notes in Com-

puter Science 350. (p. 111)

TROPP, J. AND GILBERT, A. 2005. Signal recovery from partial information via or-

thogonal matching pursuit. http://www.dsp.ece.rice.edu/CS/tropp.pdf . (p. 159)

TUNG, T., NOBUHARA, S., AND MATSUYAMA, T. 2008. Simultaneous super-



222 Bibliography

resolution and 3d video using graph-cuts. In CVPR (2008). (p. 60)

UNSER, M. 2000. Sampling—50 Years after Shannon. Proceedings of the IEEE 88, 4

(April), 569–587.

URTASUN, R., FLEET, D. J., AND FUA, P. 2006a. 3d people tracking with gaussian

process dynamical models. In CVPR ’06: Proceedings of the 2006 IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition (Washington, DC, USA,

2006), pp. 238–245. IEEE Computer Society. (pp. 24, 26)

URTASUN, R., FLEET, D. J., AND FUA, P. 2006b. Temporal motion models for

monocular and multiview 3d human body tracking. Comput. Vis. Image Un-

derst. 104, 2, 157–177.

VIOLA, P. AND WELLS, W. M., III. 1997. Alignment by maximization of mutual

information. Int. J. Comput. Vision 24, 2, 137–154. (p. 140)

VLASIC, D., ADELSBERGER, R., VANNUCCI, G., BARNWELL, J., GROSS, M., MATUSIK,
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