Interferometry and precision measurements with Bose-condensed atoms

Daniel Döring

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University.

April 2011
Declaration

To the best of my knowledge and except where acknowledged in the customary manner, the material presented in this thesis is original and has not been submitted in whole or part for a degree in any university.

Daniel Döring, April 2011
Acknowledgements

My life inside and outside the lab during the last three and a half years has been shared by a group of interesting and great people who have contributed in many ways to the outcome of this thesis. First of all, I want to thank my supervisors Nick Robins and John Close for their help and guidance during the time of my PhD. I very much appreciate the many opportunities I have been given to explore research areas in and outside of Australia. Working in your group has been something special for me. Particular thanks to Nick for his infinite supply of energy, optimism and good will and to John for his always bright and honest insights. To my fellow PhD students, thank you for being around and making the lab more fun. Much of my time in the lab was shared by John Debs (JD), Paul Altin and Gordon McDonald. I want to thank JD for many intense and fruitful discussions, I am sure I have learnt a lot if nothing else on the arts of salesmanship. Thank you Paul for being the smartest and kindest person, and thank you Gordon for your illuminating maths. Also, thank you Rachel for being around and making all those good cakes.

I am very grateful to everyone helping me proof-read my thesis, in particular John, Paul, Gordon, Rachel, Cristina, Nick, JD, Graham and Anke. Your work has helped to improve my writing and thinking by a lot. Thanks to all the people in the Department of Quantum Science who I have shared the chocolate, many cakes and the office with. Thank you Rachel, Mattias, Stuart, Robin, Michael, Graham, Gabriel, Justin, Cristina, Nick, John, Gordon, JD, Joe, Paul A., Tom, Paul S., Matt and everyone else. I had the great opportunity to spend five months of my PhD with the group of Mark Kasevich, and I want to thank particularly Mark, Mike, Geert, Catherine, Nick, Igor, Jongmin and Ping for making my time at Stanford very worthwhile.

The Officer Crescent has been my refuge for times outside the research, and I want to thank Gabriel, Violaine, Kirsten and Magda for making it a homely place. Thank you to my parents Hedda and Bernd, my sister Anna and my brother Julian for their moral support from home. And thank you Anke for always being there — it was important to me.
Abstract

Bose-Einstein condensates are coherent matter waves, produced by cooling gaseous atomic clouds to ultra-low temperatures. For applications in atom interferometry and precision measurements, Bose-condensed sources present an intriguing alternative to thermal atoms. Although the current sensitivity achievable with interferometers using coherent atoms is not comparable to thermal beam machines (mainly due to the lower flux), there are promising ways to utilise the potential of Bose-condensed sources for atom interferometry. Among those is the low momentum width of Bose-Einstein condensates, which can generally be well controlled and is advantageous for increased interferometric sensitivities by implementing large momentum transfer beam splitters. As part of this thesis, experimental and theoretical investigations are presented to investigate the potential of Bose-Einstein condensates for such applications. We shall present the quantum projection noise limited performance of a Ramsey interferometer operating on the atomic clock transition of a freely expanding cloud of Bose-condensed rubidium 87 atoms. The results include Ramsey fringes of high visibility, not measurably affected by atomic interaction-induced dephasing effects. The achievement and detection of the quantum projection noise limit rely critically on the precision and accuracy of both the imaging setup and the coupling scheme in the interferometric beam splitters. The stabilisation of the beam splitters via an optical Sagnac interferometer is the basis for the quantum projection noise limited performance of the interferometer presented. For an increase of bandwidth and flux in atom interferometric measurements, it is advantageous to use a continuous atomic beam. A truly continuous coherent atom source has not been realised to date, and we present results on a pumping mechanism in this thesis, as a decisive step towards a continuous atom laser. By the investigation of different momentum resonances, we find that the pumping scheme relies on a Raman superradiance-like process. Finally, the thesis demonstrates two interaction measurements in rubidium. The strong mean field interactions due to the high densities in Bose-Einstein condensates are used to probe the potential of a rubidium 87 condensate with an atom laser. The measurement allows a determination of the scattering length between the two atomic states involved. In addition to this two-body scattering scheme, we present a measurement of three-body loss coefficients, extracted from loss curves in rubidium 85 Bose-Einstein condensates. The measurement provides new upper bounds on the three-body loss coefficients at the scattering lengths considered.
Contents

Abstract vii

Introduction 5

1 Atoms in electromagnetic fields 11
 1.1 Two-level atom ... 11
 1.1.1 Pseudo-spin description 12
 1.1.2 Quantum projection noise 13
 1.1.3 Reduced quantum uncertainty states 14
 1.2 Coherent radiative interactions 14
 1.2.1 Coupling two levels 15
 1.2.2 Raman and Bragg transitions in multi-level atoms 16
 1.2.3 ac-Stark shifts ... 19
 1.2.4 Scattering rates 21
 1.3 Atom interferometry .. 23
 1.3.1 Time evolution ... 23
 1.3.2 Ramsey interferometry 24
 1.3.3 Adiabaticity ... 26
 1.4 Interactions with static magnetic fields 27
 1.5 Uncertainty evaluation 28
 1.5.1 Allan variance .. 28
 1.5.2 Higher order error propagation 29

2 Bose-condensed sources for precision measurements 33
 2.1 Mean field description of a Bose-Einstein condensate 33
 2.2 Bose-Einstein condensates for atom interferometry 35
 2.2.1 Flux .. 35
 2.2.2 Density profiles .. 35
 2.2.3 Atomic interaction effects 38
 2.2.4 Momentum distribution 40
 2.3 Atom laser schemes .. 44
 2.3.1 Outcoupling schemes 45
 2.3.2 Instantaneous flux of an atom laser 47
 2.3.3 Mode shape ... 49
 2.3.4 Comparison to expanding BECs 50
 2.4 A stable magnetic trap for precision measurements 51
 2.4.1 QUIC traps ... 52
 2.4.2 Trap design ... 52
 2.4.3 Magnetic potential 54
3 Optimising detection of BECs and atom lasers
3.1 Basics of absorption imaging
3.2 Noise sources
3.2.1 Classical noise
3.2.2 Photon shot noise
3.2.3 Quantum projection noise
3.2.4 Optimising imaging parameters
3.3 Atom number calibration
3.3.1 Temperature measurement
3.3.2 Magnification calibration
3.4 Normalised two-state detection
3.4.1 Subsequent imaging
3.4.2 Stern-Gerlach spatial separation

4 Interferometry with Bose-condensed atoms
4.1 Coupling schemes
4.1.1 Two-photon optical coupling
4.1.2 Microwave coupling
4.1.3 Oscillator stability
4.2 Free-space interferometry
4.2.1 Optical setup
4.2.2 Ramsey interferometry results
4.2.3 Reaching the quantum projection noise limit
4.3 In-trap interferometry
4.3.1 Setup
4.3.2 Results
4.4 Technical noise sources
4.4.1 Beam splitter noise
4.4.2 Propagation noise
4.4.3 Combined noise contributions
4.5 Summary

5 Towards a continuous atom laser source
5.1 The pumping scheme — an introduction
5.2 Continuous pumping performance
5.3 Investigating the pumping process
5.3.1 Setup
5.3.2 Experimental results
5.3.3 Theoretical simulations
5.4 Atom-light interaction in the boson-accumulation regime
5.4.1 Several decay paths
5.4.2 Single decay path
5.4.3 Further interpretation
5.5 Summary

6 Probing atomic potentials with Bose-condensed sources
6.1 Characterisation of atomic interactions
6.1.1 s-wave scattering length
6.1.2 Singlet and triplet potentials
6.1.3 Effect of hyperfine interactions