USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
The genesis of gold-copper-bismuth deposits, Tennant Creek, Northern Territory

by

Roger George Skirrow

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University.

November, 1993
DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma at any other university. To the best of my knowledge and belief this thesis does not contain any material previously published, or written by, any other person, except where it is duly acknowledged and referenced in the text.

[Signature]

Roger George Skirrow
Abstract

The Au-Cu-Bi deposits of the Proterozoic Tennant Creek Inlier share geological and geochemical characteristics that indicate strong links in their genesis, yet the diversity in alteration assemblages, metal ratios and zonation patterns reflect variations in ore forming processes that previously have not been explained in detail.

The West Peko deposit is representative of Cu-rich, pyrrhotite-bearing mineralisation with intermediate gold grades, in magnetite±hematite-rich syntectonic 'ironstones'. By contrast, the high grade Eldorado Au deposit contains minor sulfides and very low Cu grades, similar to several of the larger gold producers in the field (e.g. Juno, White Devil, Nobles Nob), and is also hematite-rich. Au, chalcopyrite and Bi-sulfosalts were introduced into pre-existing ironstone during progressive shearing, either late in the first regional deformation event (D₁) or during a second phase of deformation. The occurrence of some Au zones outside ironstones suggests the ore fluids in part followed different flow paths to those of the ironstone-forming fluids.

Three chemically and isotopically distinct fluids have been characterised. (i) Ironstone-forming fluids at West Peko and Eldorado were Ca-Na-Cl (-Fe?) brines containing 12-20 weight % total dissolved salts, and reached temperatures of 350-400°C during magnetite deposition. Oxygen and hydrogen isotope compositions of minerals formed at the ironstone stage are consistent with an origin of ironstones from formation or metamorphic waters.

(ii) The inferred Au-Bi±Cu transport fluid in the Cu- and sulfide-rich West Peko deposit was of low to moderate salinity (3-10 eq. wt. % NaCl), ~300-350°C and N₂ + CH₄ - rich. Newly represented phase equilibria among the Fe-silicates stilpnomelane and minnesotaite, chlorite, biotite, sulfides, oxides and carbonates as well as fluid inclusion vapour compositions indicate that the Au-Bi±Cu transport fluid was relatively reducing with near-neutral pH and total dissolved sulfur contents of 0.001 m to 0.01 m. In the Eldorado Deeps Au- and hematite-rich deposit the Au-transporting fluid also may have been of low-moderate salinity, with Au deposition occurring at ~300°C. The reducing Au-Bi±Cu transport fluid at West Peko resembles primary magmatic or metamorphic water in oxygen and hydrogen isotopic composition. Carbon isotope ratios of Au-sulfide stage carbonates at West Peko point to involvement of organic carbon, probably sourced outside the host Warramunga Formation.

(iii) A regionally distributed, oxidising Ca-Na-Cl brine with 20-35 weight percent total dissolved salts, was present prior to, after and probably during ore deposition. Mixing with lower salinity reducing Au-Bi±Cu transport fluid is inferred at West Peko and is suggested to have caused effervescence of N₂ + CH₄ by 'salting-out', relatively late in the Au depositional stage.

An hypothesis of metal transport and deposition is proposed for the Tennant Creek deposits in which gold, copper and bismuth were transported in a reducing fluid and were deposited in the Cu- and sulfide-rich deposits dominantly by oxidation, desulfidation and initial pH increase
as the reducing fluid reacted with magnetite−hematite ironstone. Mass transfer modelling indicates that relatively small amounts of ironstone are required to precipitate Au in the observed grades. In deposits with abundant hematite that precipitated with Au + Bi-sulfides, such as Eldorado, the oxidising brine may have played a significant role in ore deposition either by mixing with a reducing Au-Cu-Bi-transporting fluid, or by producing hematite oxidant additional to any already present in the ironstones. The greater extent of oxidation of the ore fluid in such deposits may have generally prevented saturation of copper minerals, resulting in low Cu grades.

Gold is inferred to have been transported dominantly as uncharged bisulfide complexes, although biselenide complexes were potentially important. New thermodynamic data estimated for bismuth complexes are consistent with bismuth transport as uncharged S-H-O-bearing species in the Tennant Creek ore fluids. The existence of high grade Au-Bi deposits outside ironstones is predicted by chemical modelling of mixing between reducing and oxidising fluids, located where structures allowed focussed flow of both fluids.
Acknowledgements

This study was carried out with the guidance of John Walshe, to whom I am deeply grateful. I wish to extend special thanks to Geopeko for financial and logistical support, and for providing access to deposit data and field areas. Brian Williams and Bob Love were involved in the initiation of the project and contributed enthusiastically to many aspects of the study, for which they are heartily thanked. The financial support of Poseidon Gold Limited in the latter part of the project is gratefully acknowledged.

Stimulating discussions with Chris Heinrich and thoughtful comments on drafts benefited the thesis greatly. Mike Etheridge is thanked for his time spent in the field with me and for many interesting suggestions on the geology and structure. I would like to express my gratitude to Brian Harrold who helped in solving computational problems of all sorts. Other people whose technical assistance is greatly appreciated are as follows: Joe Cali (carbonate isotope analysis), Nick Ware (electron microprobe analysis), Terry Mernagh (laser Raman analysis), Stewart Eldridge (SHRIMP S-isotope analysis), Robin Westcott (XRD) and other technical staff in the Geology Department.

Thanks are also due to fellow students Stephan Matthäi, David Compston, Idunn Kjolle and also to David Huston for valuable discussions.

To Ursula, who persevered and lent support throughout, I give my warmest thanks.

During the period of this research I held an Australian Postgraduate Research Award (Industry), for which I am very grateful.
CONTENTS

Abstract i

Acknowledgements iii

List of Figures x

List of Tables xiv

CHAPTER 1. INTRODUCTION 1
1.1 Major characteristics of the Au-Cu-Bi deposits 1
1.2 Previous models of ore genesis 2
1.3 Aims of the study 3
1.4 Approach 4
1.5 Company support 5
1.6 Significance of the study 5

CHAPTER 2. REGIONAL GEOLOGY AND IRONSTONES 7
2.1 Previous work 7
2.2 Stratigraphy 7
2.3 Intrusive rocks 9
2.4 Structural geology 11
2.5 Metamorphism 13
2.6 Ironstones 14
 2.6.1 Nature and occurrence 14
 2.6.2 Timing of ironstone emplacement 15
 2.6.3 Mechanism of ironstone emplacement 16
2.7 Timing of Au-Cu-Bi mineralisation, and the Orlando East Au deposit 17
 2.7.1 Orlando East Au deposit 17
 2.7.2 Radiometric dating of mineralisation 18

CHAPTER 3. WEST PEKO: PARAGENESIS, ZONING AND MINERAL CHEMISTRY 20
3.1 Geological setting 20
3.3 Hangingwall Au mineralisation 22
3.4 Textures and parageneses in the ironstones 23
 3.4.1 Hematite 23
 3.4.2 Magnetite 24
 3.4.3 Pyrrhotite 25
 3.4.4 Chalcopyrite 26
 3.4.5 Pyrite and Marcasite 26
 3.4.6 Arsenopyrite 27
 3.4.7 Sphalerite 27
 3.4.8 Bismuthinite 27
 3.4.9 Galena 28
 3.4.10 Cosalite 28
 3.4.11 Bismuth 28
 3.4.12 Gold 29
3.5 Silicate-oxide zonation, and silicate and carbonate textures 29
 3.5.1 Chlorite±biotite Au-Cu core zone 30
 3.5.2 Stilpnomelane and chlorite-stilpnomelane zones 30
 3.5.3 Minnesotaite and stilpnomelane-minnesotaite zones 31
 3.5.4 Talc±stilpnomelane zone 32
 3.5.5 Greenalite 33
 3.5.6 Tremolite-actinolite 33
 3.5.7 Carbonates 34
 3.5.8 Other minerals 34
3.6 Summary of the paragenetic sequence 34
3.7 Geochemistry of the West Peko Au-Cu-Bi deposit 35
 3.7.1 Au, Cu and Bi distribution 35
 3.7.2 Mineral Compositions 35
3.8 Summary of structural and hydrothermal evolution, West Peko 39

CHAPTER 4. THE ELDORADO AU DEPOSIT 40
4.1 Geology of the Eldorado area 40
4.2 Eldorado 'Shallows' Au deposit 41
 4.2.1 Structure 41
 4.2.2 Ironstone and Au mineralisation 42
4.3 Eldorado Deeps 43
 4.3.1 Ironstone stage 43
 4.3.2 Brecciation stage 44
 4.3.3 Au-Bi mineralisation 45
4.4 Chlorite compositions 47
 4.4.1 Eldorado area 47
 4.4.2 Warrego chlorites 49
4.5 Muscovite compositions 50
4.6 Summary of structural and hydrothermal evolution, Eldorado 50

CHAPTER 5. FLUID INCLUSION STUDIES 51
5.1 Introduction 51
5.2 Methods 51
5.3 Fluid inclusion types and occurrence 52
 5.3.1 Ironstone 53
 5.3.2 Veins in wall rocks 53
 5.3.3 West Peko Au-Cu-Bi mineralisation 54
 5.3.4 Eldorado Au mineralisation 55
5.4 Compositional types of fluid inclusions and heating-freezing behaviour 56
 5.4.1 Ca-Na-Cl fluid 57
 5.4.2 Low-moderate salinity fluids 58
 5.4.3 N₂-CH₄-rich fluids 59
5.5 Relationships of fluid inclusion types to mineral parageneses 60
 5.5.1 Ironstone-forming fluid(s) 60
 5.5.2 Syn-deformational fluids in wall rocks 60
 5.5.3 West Peko Au-Cu-Bi mineralisation 61
 5.5.4 Eldorado Au-Bi mineralisation 63
5.6 Discussion 64
 5.6.1 Effervescence of N₂-CH₄, West Peko 64
 5.6.2 Pressure-temperature conditions, West Peko and Eldorado 66
 5.6.3 Comparison with previous work 67
5.7 Conclusions 68

CHAPTER 6. STABLE ISOTOPE INVESTIGATIONS 70
6.1 Oxygen isotope geothermometry 70
 6.1.1 Sample selection and quartz-Fe oxide geothermometers 70
 6.1.2 Results: quartz-magnetite & quartz-hematite geothermometers 71
 6.1.3 Quartz-chlorite and chlorite-hematite geothermometry 72
6.2 Oxygen and hydrogen isotopic compositions of fluids 73
6.2.1 Ironstone-forming and oxidising fluids 74
6.2.2 Au-Bi±Cu transport fluids 76
6.3 Sources of oxygen and hydrogen in fluids 78
6.4 Oxygen and carbon isotopic composition of carbonates 80
6.4.1 Sampling and objectives 80
6.4.2 Results and interpretation 80
6.4.3 West Peko calcite associated with Au-Cu-Bi 82
6.4.4 Sources of carbon in dolomite-forming and
 Au-Cu-Bi fluids 83
6.5 Sulfur isotope investigation 83
6.5.1 West Peko results and interpretation 84
6.5.2 Eldorado results and interpretation 84
6.5.3 Sulfate minerals 86
6.5.4 Comparison with data from the literature 86
6.5.5 Source of sulfur 89
6.6 Summary of stable isotope investigations 89

CHAPTER 7. PHYSICO-CHEMICAL PARAMETERS
OF THE HYDROTHERMAL FLUIDS 91
7.1 Introduction 91
7.2 Cu-Au-Bi deposits - West Peko 92
7.2.1 Stabilities of Fe-Mg±Al±K silicates 92
7.2.2 Activity-composition relationships for silicates 93
7.2.3 Temperature and f_{O_2} from phase relationships and gas
 compositions 95
7.2.4 Temperature and f_{O_2} estimates from chlorite
 thermodynamic models 96
7.2.5 pH 99
7.2.6 Fugacity of sulfur, and total sulfur concentration in fluid 101
7.2.7 Causes of silicate zonation, West Peko ironstones 101
7.3 Conditions at other Cu-Au-Bi deposits 103
7.4 Au-Bi±Cu deposits 105
7.4.1 Eldorado Au-Bi deposit 105
7.4.2 Other Au-Bi±Cu deposits 106
7.5 Conclusions 108

CHAPTER 8. TRANSPORT AND DEPOSITION OF AU,
CU AND BI 109
8.1 Introduction 109
8.2 Aqueous geochemistry of gold
 8.2.1 \(\text{AuCl}_2^- \)
 8.2.2 \(\text{AuOH}^+ \)
 8.2.3 Sulfide complexes of gold
 8.2.4 Other ligands
 8.2.5 Gold solubility: temperature, pressure and fluid compositional variables

8.3 Aqueous geochemistry of copper

8.4 Aqueous geochemistry of bismuth
 8.4.1 Hydroxy-, chloro- and mixed hydroxy-chloro-complexes
 8.4.2 Bismuth-thio complexes

8.5 Chemical mass transfer modelling of Au, Cu and Bi deposition
 8.5.1 Input fluid compositions
 8.5.2 Reduced Au-Cu-Bi fluid reacting with magnetite-hematite
 8.5.3 Oxidising Au-Cu-Bi transport fluid reacting with magnetite-hematite
 8.5.4 Mixing of reducing ore fluid and oxidising brine

CHAPTER 9. DISCUSSION AND CONCLUSIONS
9.1 Timing of ironstone development and Au-Cu-Bi mineralisation
9.2 Nature of the fluids
9.3 Origins of the fluids and Au, Cu and Bi
9.4 Ore depositional processes
9.5 Exploration implications and comparison with other gold deposit types

BIBLIOGRAPHY

LIST OF APPENDICES

Appendix Table 3.1a West Peko mineral compositions, weight percent A1
Appendix Table 3.1b West Peko mineral compositions, atomic proportions A3
Appendix Table 3.2 West Peko chlorite compositions and parameters calculated from the chlorite model of Walshe (1986) A5
<table>
<thead>
<tr>
<th>Appendix Table 4.1a</th>
<th>Eldorado and One-Oh-Two mineral compositions, weight percent</th>
<th>A13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix Table 4.1b</td>
<td>Eldorado and One-Oh-Two mineral compositions, atomic proportions</td>
<td>A15</td>
</tr>
<tr>
<td>Appendix Table 4.2</td>
<td>Eldorado chlorite compositions and parameters</td>
<td></td>
</tr>
<tr>
<td>Appendix Table A5.1</td>
<td>Fluid inclusion data, West Peko and Eldorado</td>
<td></td>
</tr>
<tr>
<td>Appendix A5.1</td>
<td>Phase relations in the system H₂O-N₂-CH₄-NaCl, and estimation of molar volumes</td>
<td>A26</td>
</tr>
<tr>
<td>Appendix Figure A5.1</td>
<td>Temperature-XCH₄ diagram in the CH₄-NaCl-H₂O ternary system</td>
<td></td>
</tr>
<tr>
<td>Appendix Table A5.2</td>
<td>Vapour-rich fluid inclusions-microthermometry and Raman analysis</td>
<td></td>
</tr>
<tr>
<td>Appendix Figure A5.2</td>
<td>Pressure-XCH₄ diagram in the CH₄-NaCl-H₂O ternary system for 1.7 wt. % NaCl.</td>
<td>A35</td>
</tr>
<tr>
<td>Appendix Figure A5.3</td>
<td>Molar volume vs XCH₄ diagram in the CH₄-NaCl-H₂O ternary system for 1.7 wt. % NaCl</td>
<td>A40</td>
</tr>
<tr>
<td>Appendix Figure A5.4</td>
<td>Homogenisation point curves for CH₄-N₂</td>
<td></td>
</tr>
<tr>
<td>Appendix 6.1</td>
<td>Stable isotope analytical methods</td>
<td>A43</td>
</tr>
<tr>
<td>Appendix Table 6.1</td>
<td>Oxygen and hydrogen isotope data</td>
<td>A46</td>
</tr>
<tr>
<td>Appendix Table A6.2</td>
<td>Oxygen isotope geothermometry and calculated δ¹⁸O, δD of water</td>
<td>A50</td>
</tr>
<tr>
<td>Appendix Table A6.3a</td>
<td>Fractionation factors - oxygen</td>
<td>A54</td>
</tr>
<tr>
<td>Appendix Table A6.3b</td>
<td>Fractionation factors- hydrogen</td>
<td>A54</td>
</tr>
<tr>
<td>Appendix Table A6.3c</td>
<td>Fractionation factors- carbon</td>
<td>A55</td>
</tr>
<tr>
<td>Appendix Table A6.4</td>
<td>Carbonate oxygen and carbon isotope data, and calculated δ¹⁸O(H₂O) and δ¹³C (∑C) compositions of fluid</td>
<td>A56</td>
</tr>
<tr>
<td>Appendix Table A6.5</td>
<td>Sulfur isotope data</td>
<td>A58</td>
</tr>
<tr>
<td>Appendix 7.1</td>
<td>Example SYSTEM input file, pH - log fO₂ diagram</td>
<td>A60</td>
</tr>
<tr>
<td>Appendix 7.2</td>
<td>Thermodynamic data for iron silicates</td>
<td>A63</td>
</tr>
<tr>
<td>Appendix 8.1a</td>
<td>Thermodynamic data for Au, Bi and Cu complexes</td>
<td>A64</td>
</tr>
<tr>
<td>Appendix 8.1b</td>
<td>Thermodynamic data for Au complexes</td>
<td>A67</td>
</tr>
<tr>
<td>Appendix 8.2</td>
<td>Example CHEMIX input and output files, progressive reaction</td>
<td>A68</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Sample locations & Geology Dept. rock & slide numbers</td>
<td>A73</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Location of the Tennant Creek Inlier
Figure 1.2 Geology of the Tennant Creek Block
Figure 1.3 Schematic cross sections of selected deposits in the Tennant Creek gold field
Figure 2.1 Stereoplots of poles to S₀, S₁, S₂ and S₃, and intersection lineations, from the Flynn and Tennant Creek 1:100 000 map sheets
Figure 2.2 Conjugate kink zones and S₃ fracture cleavages Olive Wood area, 1.3 km east of Orlando
Figure 2.3 Stereoplots of poles to F₃ axial planes (S₂), and F₃ kink fold axes in the Orlando-Gecko area
Figure 2.4 Simplified cross sections of structure at the West Peko and Eldorado deposits
Figure 2.5 Schematic representation of ironstone development in a dilatent jog along a reverse fault
Figure 2.6 Predicted pattern of fluid flow around a reverse fault jog
Figure 2.7 Orlando East: (a) Reverse microfaults
(b) Early quartz veins in siltstone.
(c) Quartz-chalcopyrite-chlorite veins
Figure 2.8 Typical cross section of the Orlando East Au deposit
Figure 2.9 Orlando East: (a) Folded veinlets of Cu and Bi sulfides
(b) D₃ folding in high strain zone
(c) Outcrop of the Orlando East mineralised zone
Figure 2.10 Schematic cross section of the shear zone at Orlando East
Figure 3.1 Geology of the southern Tennant Creek Block
Figure 3.2 Surface plan of West Peko
Figure 3.3 Cross section of the West Peko No.1 Lode
Figure 3.4 Cross section of the West Peko No.2 Lode
Figure 3.5 A. Tight F₁ folds in hematite-calcite-rich recrystallised siltstone
B. Chalcopyrite - quartz vein containing Au and Bi minerals
C. Banded quartz - magnetite I/II
Figure 3.6 Silicate-oxide-sulfide zoning, cross section 10100E, No. 2 Lode
Figure 3.7 Silicate-oxide-sulfide zoning, cross section 10050E, No. 2 Lode
Figure 3.8 Silicate-oxide-sulfide zoning, cross section 10150E, No. 2 Lode
Figure 3.9 Silicate-oxide-sulfide zoning, cross section 9860E, No. 1 Lode
Figure 3.10 A. Radial aggregates of stubby lamellar and tapering crystals
B. Zoned magnetite I/II euhedra
C. Early pyrite along the contact of magnetite II and III
Figure 3.11 A. Chalcopyrite veinlet with margin of euhedral magnetite
B. *En echelon* tension veins of pyrrhotite and minnesotaite
C. Pyrrhotite-galena-chlorite 6Å bands in chalcopyrite-chlorite
Figure 3.12 A. Chalcopyrite veinlets and wispy pyrrhotite masses
B. Chalcopyrite vein and pyrrhotite geometry
C. Pyrite 1 in sulfidic 'matrix' to magnetite-chlorite 2B
Figure 3.13 A. Gold with sphalerite in chalcopyrite
B. Bismuthinite with rim of native Bi and pyrrhotite
C. Early stilpnomelane
Figure 3.14 A. Foliated chlorite 2A cut by early stilpnomelane veins.
B. Minnesotaite aggregates replacing quartz and magnetite

Figure 3.15
A. *En echelon* tension gashes of fibrous talc
B. Talc-magnetite foliated rock
C. Calcite-quartz-chlorite crack-seal tension gashes

Figure 3.16 Paragenetic sequence in the West Peko Cu-Au-Bi deposit

Figure 3.17 Gold grade contours, cross section 10100E, Lode No. 2

Figure 3.18 Copper grade contours, cross section 10100E, Lode No. 2

Figure 3.19 Bismuth grade contours, cross section 10100E, Lode No. 2

Figure 3.20 Silicate Mg-numbers and sphalerite FeS contents, No. 2 Lode

Figure 3.21 Silicate Mg-numbers and sphalerite FeS contents, No. 2 Lode

Figure 3.22 Silicate Mg-numbers and sphalerite FeS contents, No. 2 Lode

Figure 3.23 Chlorite Si versus Mg-number, West Peko No. 1 & No. 2 Lodes

Figure 3.24 Carbonate compositions, West Peko

Figure 4.1 Geology, ground magnetics and drill hole paths, Eldorado area

Figure 4.2 Plan of the Eldorado Shallows open cut, geology and alteration

Figure 4.3 Cross section of the Eldorado Shallows Au deposit

Figure 4.4
A. Breccia of hematite-chlorite altered siltstone
B. *En echelon* kaolinite-quartz veinlets
C. Martite-hematite-magnetite stringers

Figure 4.5 Geological cross section A-B Eldorado Deeps

Figure 4.6 Plan of geology, Eldorado Deeps

Figure 4.7 Alteration, cross section A-B, Eldorado Deeps

Figure 4.8
A. Spindle shaped hematite crystals
B. Semi-massive martite-hematite (trace magnetite)
C. Au and Bi sulfosalts in breccia of chloritised sediment

Figure 4.9
A. Heterolithic breccia of chlorite 2A - muscovite A - hematite - magnetite fragments
B. Specular hematite with chlorite 4 and muscovite B
C. Quartz-hematite veins associated with brecciation
D. Complete silicification of fragments/remnants of chloritic sediment

Figure 4.10
A. Vermicular chlorite type 5 replacing quartz in a late vein
B. Vein of chlorite type 6 cutting chlorite 5
C. Micro-shear defined by aligned chlorite type 6

Figure 4.11
A. Au interstitial to hematite. Eld 2/21 178.5
B. Muscovite B with lamellae of chlorite type 6
C. Quartz vein related to brecciation
D. Narrow chlorite type 6 - hematite vein

Figure 4.12 Minerals in the system Bi$_2$(S,Se)$_3$ - Cu$_2$(S,Se) - Pb(S,Se)

Figure 4.13
A. Chlorite 5 rosettes with thin marginal zones of chlorite 6
B. Warrego: Fe-chlorite - quartz - chalcopyrite - bismuthinite - siderite veins cutting massive magnetite
C. Magnesian chlorite cut and replaced by Fe-chlorite

Figure 4.14 Chlorite type 1, Mg-number versus Si (T), H8-H13, Eldorado

Figure 4.15 Chlorite Mg-number versus Si (T), Eldorado Anom. 5 and 2E

Figure 4.16 Chlorite Mg-number versus Si (T), Eldorado Deeps Au deposit

Figure 4.17 Muscovite Mg-number versus Si (T), Eldorado Deeps

Figure 5.1 Location of fluid inclusion samples, West Peko

Figure 5.2 Location of fluid inclusion samples, Eldorado
Figure 5.3 (A) Euhedral quartz from the ironstone stage
 (B) Primary liquid-vapour inclusions in a quartz growth zone
 (C) Euhedral quartz in magnetite-quartz ironstone
 (D) Primary fluid inclusions along growth zones in euhedral quartz intergrown with magnetite.

Figure 5.4 (A) Chalcopyrite - quartz vein cutting magnetite - bladed quartz intergrowths
 (B) Quartz in the chalcopyrite - quartz vein shown in A
 (C) Halite-bearing L-V-H inclusion
 (D) Low-moderate salinity fluid inclusion with a native Bi

Figure 5.5 (a) Sketch from a photograph of a fluid trail in quartz
 (b) Similar to (a), showing several Bi-bearing inclusions.

Figure 5.6 (a) Trail of pseudosecondary or secondary V-rich fluid inclusions
 (b) Quartz-chalcopyrite-pyrrhotite-cosalite-Bi-Au veinlets
 (c) Quartz vein cutting Au-Bi mineralised magnetite-martite-quartz-chlorite A ironstone.
 (d) Part of a quartz-hematite-chalcopyrite-chlorite vein

Figure 5.7 (a) Histogram of Tm (ice), West Peko
 (b) Histogram of homogenisation temperatures, West Peko

Figure 5.8 (a) Histogram of Tm (ice), Eldorado
 (b) Histogram of homogenisation temperatures, Eldorado

Figure 5.9 Salinity vs. homogenisation temperature, West Peko

Figure 5.10 Salinity vs. homogenisation temperature, Eldorado

Figure 5.11 T(first melting) vs. Tm(ice), West Peko and Eldorado

Figure 5.12 Phase relationships for part of the system NaCl-CaCl₂-H₂O

Figure 5.13 Tm(ice) versus T(nucleation), West Peko and Eldorado

Figure 5.14 Salinity vs. homogenisation temperature, ironstone-forming fluids, West Peko and Eldorado.

Figure 5.15 Salinity vs. homogenisation temperature of inclusion fluids in veins in host sediments, West Peko

Figure 5.16 Salinity vs. homogenisation temperature of fluid inclusions in Au-Bi±Cu zones, West Peko

Figure 5.17 Cathodoluminescence images:
 (a) Growth zones in quartz, and narrow CL markers
 (b) Growth zoned quartz with hematite

Figure 5.18 Pressure-temperature conditions of halite-bearing fluid inclusions from West Peko and Eldorado

Figure 5.19 Summary of pressure-temperature conditions, West Peko

Figure 5.20 Salinity-Th diagram of data from the literature

Figure 6.1 Quartz-magnetite and quartz-hematite O-isotope geothermometry.

Figure 6.2 Equilibrium oxygen isotope exchange in an hypothetical two phase quartz-magnetite system.

Figure 6.3 Calculated δ¹⁸O of water; silicates, oxides

Figure 6.4 O- and H-isotopic composition of chlorite, muscovite and talc

Figure 6.5 (a) Calculated δ¹⁸O and δD compositions of water, ironstone stage or during later hematitic alteration
(b) Calculated δ^{18}O and δ^D compositions of water, Au-sulfide stage at West Peko and Eldorado

Figure 6.6 δ^{18}O vs. δ^D compositions of natural waters

Figure 6.7 (a) C- and O-isotopic composition of carbonates from West Peko, Eldorado and Gecko, data from this study
(b) C- and O-isotopic composition of carbonates

Figure 6.8 Calculated δ^{18}O$_{H_2O}$ and δ^{13}C$_{\Sigma C}$ of fluids in equilibrium with Tennant Creek carbonates at 300°C

Figure 6.9 Variation of δ^{13}C in carbon compounds

Figure 6.10 S-isotope frequency histograms for Au-Bi±Cu deposits

Figure 6.11 Log f_{O_2} - pH diagram showing contours of $\Delta = \delta^{34}$S$_{H_2S} - \delta^{34}$S$_{\text{fluid}}$

Figure 6.12 Variation of $\Delta = \delta^{34}$S$_{H_2S} - \delta^{34}$S$_{\text{fluid}}$ with temperature and $\Sigma SO_4/\Sigma H_2S$ ratio.

Figure 7.1 Temperature vs. log f_{O_2}, Fe-silicates, oxides and sulfides

Figure 7.2 Log f_{S_2} - log f_{O_2} diagram showing stability fields of minnesotaite

Figure 7.3 Log f_{S_2} - log f_{O_2} diagram showing minerals in the Fe-Ti-O-S system with chlorite and muscovite, at 300°C, 1500 bars

Figure 7.4 pH vs. log f_{O_2} plot at 300°C, 1500 bars

Figure 7.5 pH vs. log f_{O_2} diagram of phase relationships and predominance areas of aqueous species in the system As-Fe-O-H-S at 300°C, 1500 bars

Figure 7.6 pH - log f_{O_2} stability fields of siderite and calcite

Figure 7.7 Temperature vs. log f_{O_2}, West Peko chlorite

Figure 7.8 Empirical relationship between chlorite Mg-number, Si (T), temperature and log f_{O_2}

Figure 7.9 pH-log f_{O_2} diagrams illustrating the stability fields of silicates

Figure 7.10 log a_{Sl} - log f_{O_2} plots of phases in system Fe-Si-Al-K-O-SH

Figure 7.11 log a_{H_2S} - log (a_{K^+}/a_{H^+}), phases in the system Fe-Si-Al-K-O-S-H

Figure 7.12 Temperature vs. log f_{O_2}, Eldorado chlorite type 1, H8-H13

Figure 7.13 Temperature vs. log f_{O_2}, Eldorado chlorite in Anoms.5 & 2E

Figure 7.14 Temperature vs. log f_{O_2}, chlorite in Eldorado Deeps Au deposit

Figure 8.1 Summary of the variation of log K with temperature

Figure 8.2 Relative stabilities of SCN$^-$ versus SeCN$^-$ metal complexes, 25°C

Figure 8.3 Correlation of log B (AgX$_2$) with log B (AuX$_2$) at room temp

Figure 8.4 Relationship between the stability of Au$^+$, Ag$^+$ and Cu$^+$ complexes and ligation number at 25°C

Figure 8.5 Solubility of gold as a function of temperature, pressure & redox
(a) Vapour saturation pressure, pyrite, pyrrhotite, magnetite, (b) 1500 bars, pyrite, pyrrhotite, magnetite
(c) Vapour saturation pressure, hematite, magnetite

Figure 8.6 Gold solubility and speciation as a function of pH and f_{O_2}
(a) saturation vapour pressure, and (b) 1500 bars

Figure 8.7 Gold solubility and speciation as a function of $a_{Sl}(aq)$ and f_{O_2}, at (a) saturation vapour pressure, and (b) 1500 bars

Figure 8.8 (a) Gold, and (b) bismuth and copper solubility with $m_{H_2S(aq)}$

Figure 8.9 Solubility of chalcopyrite as a function of temperature
Figure 8.10 Bismuth speciation in chloride solutions at 200° and 300°C
Figure 8.11 Log K versus temperature plots for reactions involving As, Sb and Bi complexes
Figure 8.12 Solubility of bismuthinite and bismuth speciation as a function of temperature and redox, vapour saturation pressure
(a) pyrite, pyrrhotite, magnetite, (b) hematite, magnetite
Figure 8.13 Bismuthinite solubility and bismuth speciation, pH and fO2
Figure 8.14 Bismuthinite and native bismuth solubility, aΣS(aq) and fO2
(a) pH = 6, activities of 10^{-6} for mononuclear bismuth complexes,
(b) pH = 6 and activities of 10^{-7} and 10^{-8}
(c) pH = 5 and activities of 10^{-7}
Figure 8.15 Schematic representation of 'progressive' fluid-rock reaction
Figure 8.16 Stage 1 of a model progressive reaction of a reducing fluid saturated with Au, Cu, Bi with magnetite+hematite at 300°C, 300 bars
Figure 8.17 Stage 2 of progressive reaction, 2 kg of reducing fluid passed
Figure 8.18 Stages 5 and 10 of progressive reaction
Figure 8.19 Reaction paths of stages 1, 2 and 5 in pH - log fO2 space
Figure 8.20 Mixing of a reducing Au-Cu-Bi saturated fluid with oxidising, Fe-rich brine at 300°C, 300 bars.

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Tonnage and grade of the major deposits in the Tennant Creek Gold Field</td>
<td>1</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Geochronology of the Tennant Creek Block</td>
<td>7</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Correlation of folding events</td>
<td>11</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Chlorite types, West Peko</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Mineralogy of the West Peko Number 2 Lode</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Arsenopyrite compositions</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Paragenetic sequence, Eldorado Deeps Au deposit</td>
<td>43</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Chlorite types, Eldorado</td>
<td>44</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Bi-sulfosalts analyses, Eldorado Deeps</td>
<td>46</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Fluid inclusion sample summary</td>
<td>51</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Fluid compositional types and inclusion characteristics</td>
<td>56</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Chemical formulae and activity-composition models of minerals used in</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>constructing phase diagrams</td>
<td></td>
</tr>
<tr>
<td>Table 8.1</td>
<td>Formation constants of Au(I) complexes at 25°C</td>
<td>p.110</td>
</tr>
<tr>
<td>Table 8.2</td>
<td>Calculation of log Ks for bismuth-thio complexes</td>
<td>122</td>
</tr>
<tr>
<td>Table 8.3</td>
<td>Input fluid compositions for mass transfer modelling, 300°C, 300 bars</td>
<td>125</td>
</tr>
</tbody>
</table>