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It has been shown that a cosmological background with an anisotropic stress tensor, appropriate for a

free-streaming thermal neutrino background, can damp primordial gravitational waves after they enter

the horizon, and can thus affect the cosmic microwave background B-mode polarization signature due

to such tensor modes. Here we generalize this result and examine the sensitivity of this effect

to nonzero neutrino masses, extra neutrino species, and also a possible relativistic background of

axions from axion strings. In particular, additional neutrinos with cosmologically interesting neutrino

masses at the Oð1Þ eV level will noticeably reduce damping compared to massless neutrinos for

gravitational wave modes with k�0 � 100–200, where �0 � 2=H0 and H0 is the present Hubble

parameter, while an axion background would produce a phase-dependent damping distinct from that

produced by neutrinos.
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I. INTRODUCTION

A generic prediction of inflation in the early universe
[1–3] is the production of gravitational waves (GW) with a
nearly flat spectrum [4,5]. There are ongoing observational
efforts to detect such a spectrum and recent, comprehen-
sive reviews of past, present, and future experimental
efforts can be found in Refs. [6,7]. The dominant signature
in the near term involves the effect that long-wavelength
gravitational waves can have on the cosmic microwave
background (CMB) through the generation of B-mode
polarization (e.g., [8–14]). The amplitude of the gravita-
tional waves can be related to the energy scale at which
inflation occurred, and the ratio of the power spectrum of
gravitational waves to that of the scalar power spectrum,
also known as the ‘‘tensor-to-scalar ratio,’’ r, can give vital
information into the nature of the inflaton—the field which
drives inflation—via the Lyth bound [15,16]. Additionally,
primordial gravitational wave spectra produced by various
noninflationary mechanisms have been suggested [17–21].
Therefore any observation of a primordial gravitational
wave spectrum would be an immensely powerful tool in
the study of the very early universe.

A question that naturally arises is—are there any effects
that can intervene and alter the nature of the GW spectrum
from the time of its production until the time of observa-
tion? If the answer is yes, then one must account for
such effects in order to accurately describe the primordial
spectrum. As is well known, just such an intervening effect
does arise due to the fact that an anisotropic stress from
free-streaming particles can damp the amplitude of GWs

from their primordial value. Weinberg showed in [22] that
the damping effect of free-streaming neutrinos on the GW
spectrum can be quite significant with up to a 35.6% loss in
amplitude, and following this work, the issue has been the
subject of some attention [23–33].
The original study of Weinberg, and much of the

following work has been focused on the effects of three
massless neutrinos. However, recent cosmological obser-
vations have shown hints of deviations from the standard
cosmological value of three effective neutrino degrees
of freedom [34–38]. Because of neutrino oscillation
experiments, it is also known that neutrinos are not mass-
less, as described in a recent global analysis of neutrino
properties [39]. There are also some, albeit statistically
insignificant presently, hints that the addition of extra
neutrino species can improve fits to short baseline neu-
trino oscillation data [40]. Recently issues regarding light
sterile neutrinos and cosmology have been addressed
in [41–45].
Prompted by these results, we broaden the scope by

calculating GW damping in more general scenarios,
including the effect of neutrino masses, additional (beyond
three) massive and massless neutrino species, and extra
bosonic degrees of freedom. (Note that other recent work
[33] also touches on some of these issues related to extra
degrees of freedom and gravitational waves.)
This paper is organized as follows. In Sec. II we derive

in some generality the formula for anisotropic stress. The
results for particular cases are presented in Sec. III, and we
then present our conclusions in Sec. IV.
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II. CALCULATION

To first order, a perturbed Friedmann-Robertson-Walker
metric with scale factor aðtÞ can be written as

ds2 ¼ �ð1þ 2c Þdt2 þ að@Fi þGiÞdxidt
þ a2ðtÞ½�ijð1� 2�Þ þ hij þ @i@jB

þ @jCi þ @iCj�dxidxj: (1)

Gravitational waves arise as the transverse, traceless com-
ponents of the metric fluctuations, which are characterized
by hij. These modes satisfy the transverse and traceless

conditions

@ihij ¼ 0; hii ¼ 0: (2)

The Fourier transformed k-space modes, hk, satisfy the
Einstein equation of the form

h00k þ 2Hh0k þ k2hk ¼ 16�GNa
2ð�Þ�k; (3)

where the prime denotes differentiation with respect to
conformal time d� ¼ dt=aðtÞ, and �k is the anisotropic
stress.

To solve this equation, we first turn to the Boltzmann
equation, which determines the evolution of the phase
space density of the particles, Fðx; PÞ, given as a function
of the four-momentum P, which has components P� ¼
dx�=d�. One can then determine the anisotropic stress
by perturbing the distribution function about the back-
ground as Fðx; PÞ ¼ �FðP0Þ þ �Fðx; PÞ, and employing
the Boltzmann equation dFðx; PÞ=dt ¼ 0. For the scenario
of three massless neutrinos, the details of this calculation
have been nicely presented in Appendix D of [26], which
explores the impact of collisionless damping. We will
follow this treatment, but we will generalize to the case
of massive particles with the number of degrees of freedom
left as an input parameter. We will also examine the
situation where a bosonic degree of freedom is incorpo-
rated, as well as the case of relativistic axions produced by
axionic cosmic strings. These relativistic axions have a
nonthermal spectrum.

For particles with a thermal distribution, the background
phase space density is given by

�FðP0Þ ¼ g

eP
0=T� � 1

; (4)

where the plus sign is for fermions while the minus sign is
for bosons, and g gives the number of degrees of freedom.
For the two cases of interest in this work, g ¼ g� ¼ 2 for a
single neutrino, and g ¼ gB ¼ 1 for a real scalar. T� is the
temperature of neutrinos that is related to the photon
temperature at times after the neutrinos’ decoupling as

T� ¼ ð4=11Þ1=3T�. One begins with the relation

g��P
�P� ¼ �ðP0Þ2 þ gijP

iPj ¼ �m2: (5)

We write this as

~p2
0 ¼ gijP

iPj; (6)

where we have defined a new variable through a shift

P0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

0

q
: (7)

A. Damping from neutrinos

We follow the derivation in [26] with this change (their
P0 ¼ our~p0). The full neutrino distribution function sat-
isfies the relativistic collisionless Boltzmann equation,

dFðt; xi; �i; ~p0Þ
dt

¼ @F

@t
þ dxi

dt

@F

@xi
þ d~p0

dt

@F

@~p0

þ d�i

dt

@F

@�i

¼ 0: (8)

Using the variable ~p, one finds that to first order Eq. (8)
becomes the Einstein-Vlasov equation,

�
@F

@t

�
first order

¼ @�F

@t
þ �i ~p0

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

0

q @�F

@xi

� _a

a

ðm2 þ ~p2
0Þ

~p0

@�F

@~p0

� 1

2

@ �F

@~p0

~p0

@hij
@t

�i�j

¼ 0; (9)

and �i ¼ �i are directional cosines.
Defining � � �iki=k and using the mode decomposi-

tion of hij and �F,

hij ¼
X

�¼þ;�

Z d3k

ð2�Þ3 h�;kðtÞQ
�
ijð ~xÞ; (10)

�F ¼ X
�¼þ;�

Z d3k

ð2�Þ3 f�;kðt; ~p0; �Þ�i�jQ�
ijð ~xÞ; (11)

where Q�
ij are symmetric, traceless and divergenceless

tensors that satisfy Q�
ij ¼ Q�

ji, Q
�
ij;a

;að ~xÞ þ k2Q�
ijð ~xÞ ¼ 0

and Q�
ij
;j ¼ 0. The covariant derivative is with respect to

the unperturbed spatial Friedmann-Robertson-Walker met-
ric. Thus, the first order Einstein-Vlasov equation in terms
of the decomposed modes becomes

@fk
@t

þ ik�

a

0
@ ~p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ~p2
0

q
1
Afk � _a

a

�
m2 þ ~p2

0

~p0

�
@fk
@~p0

¼ 1

2
~p0

@ �F

@~p0

@hk
@t

: (12)

Once again, following [26] we define new variables
q� ¼ aP� and q0 ¼ aP0 � q and conformal time, d� ¼
dt=aðtÞ. Then Eq. (12) can be written as

@fk
@�

þ ik�~p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

0

q fk ¼
�
q2 � a2m2

q

�
@ �F

@q

1

2

@hk
@�

: (13)
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This equation determines the time evolution of the
perturbation of distribution function �F, which in turn
determines the anisotropic stress part of the perturbed
energy-momentum tensor that goes into the right-hand
side (RHS) of Eq. (3).

�T ij ¼ a2
X

�¼þ;�

Z d3k

ð2�Þ3 ��;kQ
�
ijð ~xÞ (14)

and

T ij ¼ 1ffiffiffiffiffiffiffi�g
p

Z d3q

ð2�Þ3qqiqjFðqÞ

) �T ij ¼ 1ffiffiffiffiffiffiffi�g
p

Z d3q

ð2�Þ3qqiqj�FðqÞ: (15)

Using Eqs. (11), (14), and (15), one finds that the
anisotropic stress is

��;kQ
�
ijð ~xÞ ¼ a�4

Z d3q

ð2�Þ3q q
2�i�j�l�mf�;kQ

�
lmð ~xÞ; (16)

where f�;k � f�;kð�; q;�Þ. On the other hand, Eq. (13),

which is a first order differential equation, has the follow-
ing solution:

fkð�; q;m;�Þ

¼ q2

2

@ �F

@q

Z �

�dec

d�0h0kð�0Þ	ðm; �0; qÞ2e�i�	2kð���0Þ; (17)

where we have defined

	ð�;m; qÞ2 ¼ 1�m2að�Þ2
q2

(18)

and

� ¼ �iki
k

) � ¼ �̂ � k̂ (19)

and used the fact that fkð�dec; q; m;�Þ ¼ 0 because there is
no anisotropic stress at neutrino decoupling since the neu-
trinos just start to free-stream at decoupling. The polariza-
tion index � is suppressed on both sides of Eq. (17). Finally
using the identity

Z
d�q�

i�j�l�me�i�ik
iuQ�

lm ¼ 1

8
ð�il�jm þ �im�jlÞ

�
Z

d�qe
�i�u;

d3q ¼ q2dqd�q; (20)

one can write the anisotropic stress in momentum space
(again the polarization index � is suppressed)

�k¼ 1

8að�Þ4
Z
d�0

d3q

ð2�Þ3 ð1��2Þ2e�i�bh0kð�0Þ
@ �FðqÞ
@q

q2	2;

(21)

where

b � kð�� �0Þ	2; (22)

	2 � 1�m2að�0Þ2
q2

; (23)

� ¼ �̂ � k̂ ¼ cos 
q; (24)

where we have taken k̂i to be in the z direction in q space.
We also define

u � k�; (25)

s � k�0: (26)

We can perform the integrations over d�q ¼
d�qdðcos
qÞ and find that anisotropic stress is then

given by

�k ¼ �

2aðuÞ4
Z u

udec

dsdq
dhkðsÞ
ds

@ �FðqÞ
@q

q4	2

�
sin b

b
þ 2	2

�
� sin b

b
� 2

cosb

b2
þ 2

sinb

b3

�

þ 	4

�
sin b

b
þ 4

cos b

b2
� 12

sin b

b3
� 24

cos b

b4
þ 24

sin b

b5

��
: (27)

Furthermore we define

x � q

aT
¼ q

a0T0

¼ q

T0

; (28)

where the second equality holds for our normalization that the present day scale factor is a0 ¼ 1. This allows us to write the
distribution �FðqÞ and the function 	 as

�FðxÞ ¼ g�
ex þ 1

; (29)

	2ðm; xÞ ¼ 1�m2a2

T2
0x

2
: (30)
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With this we find

�k ¼ 1

16�2aðuÞ4
Z u

udec

dsdx
dhkðsÞ
ds

@ �FðxÞ
@x

x4T4
0	

2ðm; xÞ
�
sin ððu� sÞ	2ðm; xÞÞ
ðu� sÞ	2ðm; xÞ þ 2	2ðm; xÞ

�
� sin ððu� sÞ	2ðm; xÞÞ

ðu� sÞ	2ðm; xÞ
� 2

cos ððu� sÞ	2ðm; xÞÞ
ððu� sÞ	2ðm; xÞÞ2 þ 2

sin ððu� sÞ	2ðm; xÞÞ
ððu� sÞ	2ðm; xÞÞ3

�
þ 	4ðm; xÞ

�
sin ððu� sÞ	2ðm; xÞÞ
ðu� sÞ	2ðm; xÞ þ 4

cos ððu� sÞ	2ðm; xÞÞ
ððu� sÞ	2ðm; xÞÞ2

� 12
sin ððu� sÞ	2ðm; xÞÞ
ððu� sÞ	2ðm; xÞÞ3 � 24

cos ððu� sÞ	2ðm; xÞÞ
ððu� sÞ	2ðm; xÞÞ4 þ 24

sin ððu� sÞ	2ðm; xÞÞ
ððu� sÞ	2ðm; xÞÞ5

��
: (31)

The full gravitational wave equation is

d2hkðuÞ
du2

þ 2

�
daðuÞ=du

aðuÞ
�
dhkðuÞ
du

þ hkðuÞ ¼ 16�GNa
2ðuÞ

k2
�k ¼ 6

�ðuÞ
�
daðuÞ=du

aðuÞ
�
2
�k: (32)

This gives an equation for the transverse-traceless tensor
modes as a general function of the mass of the particle
creating the anisotropic stress for a general phase space
distribution �FðxÞ. It can be seen to reduce to the standard
form for three massless neutrinos when g� ¼ 6 and
m ¼ 0 [26].

From the relation Eq. (31), one can then include addi-
tional degrees of freedom by simply using g� ¼ 8 (10) for
four (five) massless neutrino species. We use the simplify-
ing assumption that the neutrinos all have the same decou-
pling temperature. (To generalize to arbitrary decoupling
temperatures we would change the lower integration limit
of the anisotropic stress for that species.) For a mixed
scenario where particles of different masses contribute,
one can use Eq. (31) for the anisotropic stress, �k;i, gen-

erated by a single species of mass m ¼ mi with g� ¼ gi
degrees of freedom, and then add another anisotropic stress
term of this form for any additional species of mass mj

with degrees of freedom gj. In other words, the total

anisotropic stress due to i particles is given by the sum
�k;tot ¼ P

i�k;i.

To graphically display the effect of adding nonzero
neutrino masses we adopt the simple analytic form for
the scale factor að�Þ in a matter plus radiation universe
given by

að�Þ ¼
�
�

�0

�
2 þ 2

�
�

�0

� ffiffiffiffiffiffiffi
aeq

p
; �0 ¼ 2ffiffiffiffiffiffiffiffi

�M

p
H0

: (33)

Note that today, the relation between radiation and matter
densities is given by

�r ¼ aeq�M: (34)

For the standard cosmological scenario with Neff ¼ 3,
i.e., three effective neutrino degrees of freedom, we have
aeq ¼ 1=3600, �M ¼ 0:3 and �r ¼ �� þ�� since the

free-streaming neutrinos are relativistic. Further it can be
shown that [26]

��

�� þ��
¼ 0:40523; g� ¼ 6: (35)

When adding extra neutrino species, we use the above
relation and keep �M fixed but change the ratio in
Eq. (35) accordingly to get a new redshift for matter-
radiation equality [46]. So, for Neff ¼ 4, aeq ¼ 1=3172

and for Neff ¼ 5, aeq ¼ 1=2834.

One sees that Eq. (32) is an integro-differential equation
since the source term on the right-hand side is the integral
in Eq. (31). To put the equation into a suitable form for a
numerical solution, we adopt the method in Appendix A of
[47], which consists of rewriting the single, second order
integro-differential equation as a system of coupled first-
order Volterra type integro-differential equations. This can
then be solved by standard methods of numerical integra-
tion [48]. There is a slight difference in our method of
solution from that in [26,47] due to the form of the integral
kernel. Namely, we do not have the simplifying option of
integrating out the distribution function (which would give
the energy density in the standard case of massless neu-
trinos) due to the additional x dependence of other factors
in the integrand. We therefore were forced to generate
numerical values for the integrand at each value of u and
s, after which the procedure of [47] could be implemented.

B. Damping from axions

The fine-tuning of 
QCD can be avoided in models of

particle physics that contain an extra Uð1Þ Peccei-Quinn
(PQ) symmetry. A consequence of these models is a light
pseudoscalar particle, the axion. In a cosmological setting,
the axion is massless above the QCD temperature but
gains a small mass below this temperature. Even though
the axion is very light, with a typical mass ma ¼
Oð10�3 eVÞ, it can be nonrelativistic because it is pro-
duced coherently throughout the cosmological horizon and
has momenta given by �t�1 at cosmic time t. This argu-
ment, however, ignores the topology that accompanies the
breaking of the PQ symmetry, which is relevant if the PQ
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symmetry breaking scale occurs below the scale of
inflation. In this case, the spontaneous breaking of the
PQ symmetry leads to the production of axionic cosmic
strings with energy density set by the PQ energy scale. As
the strings oscillate, they radiate relativistic axions. At the
QCD temperature scale, the strings get connected by axi-
onic domain walls, and the whole network of strings and
walls collapses, dissipating energy again into relativistic
axions. Hence the axion density in the Universe contains
two separate components: the nonrelativistic component
due to coherent oscillations of the axion field, and the
relativistic component due to the radiation from topologi-
cal defects. The latter component can be significant and
may even dominate the nonrelativistic component for large
values of the Peccei-Quinn symmetry breaking scale.
Relativistic axions can also have anisotropic stress, and
hence they can couple to gravitational waves just as
neutrinos do.

The spectral energy density of relativistic axions has
been debated and there has been some disagreement
between Davis [49] and Hagmann et al. [50]. We will be
using Davis’s spectral distribution, which has recently been
verified by field theoretic lattice simulations in [51,52],

�aðtÞ ¼ 4�f2a
t2

Z �5=6=
ffiffiffiffi
~tt	

p

�2=3=~t

�
q2 þ ðt=~tÞm2

a

q2 þ ~m2

�
1=2

�
�
ln

�
�5=3

~tq2�

�
� 1

2

�
dq

q
; (36)

where, as previously defined, q is the comoving momen-
tum, fa 
 2� 1010 GeV is the PQ symmetry breaking
scale, � ¼ 1=fa, � ¼ 2�, ~m � 1=~t ¼ 10�9–10�8 eV
and t	 is the time at which the axions decoupled. The
mass of the axion ma and the decoupling temperature T	

d

of axions is related to the scale fa through [53]

ma ¼ 6� 10�6 eV

�
1012 GeV

fa

�
¼ 6� 1015 eV2

fa
; (37)

T	
d ¼ 5� 1011 GeV

�
fa

1012 GeV

�
2
: (38)

Since T / 1=aðtÞ, we can find t	 using T	
d and the scale

factor aðtÞ in (33). We will consider damping from relativ-
istic axions with the spectrum (36) for three different fa
values 108, 109 and 1010 GeV. This lies within the range
107 GeV< fa < 2� 1010 GeV where the lower bound on
fa comes from astrophysical constraints [54] and the upper
bound comes from the requirement that the energy density
in relativistic axions remain below critical energy density
to avoid overclosing the Universe.

To calculate the anisotropic stress �k, we need the
unperturbed phase space distribution function �FðqÞ of
these relativistic axions, which we can read off from (36)

�FaxionðqÞ ¼ f2aaðtÞ4
t2q3ðq2 þ aðtÞ2m2

aÞ1=2
�
q2 þ ðt=~tÞm2

a

q2 þ ~m2

�
1=2

�
�
ln

�
�5=3

~tq2�

�
� 1

2

�
: (39)

However, there are few differences from the neutrino case
of (31). Since axions have a nonthermal spectrum, we do
not do the substitution of (28) and retain the expression for
	2 in (18). Thus, the expression for�k for axions becomes

�axion
k ¼ �kð �F ! �FaxionÞ; (40)

where�k is defined in Eq. (31) and 	ðm; q; �Þ2 is the same
as in Eq. (18)

III. RESULTS AND DISCUSSION

For massless neutrinos, the effects of damping are
determined solely by the neutrino energy density contri-
bution, (which falls as a�4) once one enters the matter-
dominated era, and will thus be most significant for
k * keq ¼ aeqHeq � 170=�0.

The effect of nonzero neutrino masses will be to add an
extra k dependence to damping, as free streaming, and
hence damping, will be reduced when the temperature is
of order of the mass. The k modes that come inside the
horizon while neutrinos are relativistic, and contribute
significantly to the overall energy density, will be damped
more. On the other hand, those modes that come inside
the horizon at later times, either when neutrino masses
become significant or during matter domination, when
the neutrino energy density fraction may have been
reduced considerably due to redshifting, will be damped
less. This heuristic behavior is validated by our detailed
calculations, which quantitatively explore this effect. For
demonstrations purposes here, we display the damping as a
function of neutrino mass for three different values of
k�0 ¼ 100, 200, 1000.
In Fig. 1, we plot the damping from 3 massless and a

1 eV neutrino and compare it to the case of 4 massless
neutrinos. In doing so, we have adjusted aeq to Neff ¼ 4 for

both cases, which is a good approximation since neutrino
masses of Oð1Þ eV are largely relativistic at matter-
radiation equality. Note that a cosmological scenario with
a 1 eV neutrino and Neff ¼ 4 is consistent with the current
Planck data [55].
For k�0 ¼ 100, the ratio between the minima of the 3

massless plus 1 eV case and the homogeneous (undamped)
case is 0.94, and for the 4 massless vs homogeneous case is
0.92, a difference of order 2%. For k�0 ¼ 200, the differ-
ence in damping is of order 1.5%. And finally, for k�0 ¼
1000 the difference in damping is now only 0.7%.
Similarly the effect of additional massless degrees of

freedom is to increase the damping of gravitational waves.
As seen in Fig. 2 this effect varies slightly with conformal
time, �. We can compare the effect of extra species, for
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example, at the first minimum. For the undamped case,
this minimum occurs at u ¼ 4:54 independent of Neff .
However, including GW damping through free streaming,
this minimum shifts to u ¼ 4:72, 4.74, 4.76 (Neff ¼ 3, 4, 5,
respectively). With respect to the homogeneous case,
the mode amplitude at the minimum is 76.5%, 73.1% and
70.5% as large as for Neff ¼ 3, 4, 5, respectively. Thus,
tensor modes are damped more, with increasing Neff , as
expected.

Since the identity of the source of any possible extra
degrees of freedom is currently unknown, one may want
to expand the realm of possibilities to include bosonic
degrees of freedom. As expected on the basis of the
number of degrees of freedom, and hence Neff , the damp-
ing due to a single boson is less by about 19% than that
of a single, massless neutrino species. Two bosonic
degrees of freedom are virtually indistinguishable from
a single neutrino.
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FIG. 1 (color online). The k dependence of the damping of an extra massive neutrino is demonstrated. The plots show that the
damping is reduced for gravitational wave modes that enter the horizon as neutrinos are beginning to become nonrelativistic.
The damping is also less at later times when the neutrino energy fraction has been reduced due to redshifting. The region in each plot
on the left around the first minimum is zoomed in the adjacent plot on the right. For the k�0 ¼ 1000, the red and blue lines are
overlapping, implying a negligible effect of mass.
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In Fig. 3, we examine the damping of gravitational
waves caused by relativistic axions. We compare the
results for axions with fa ¼ 109 GeV versus 3 massless
neutrinos since relativistic axions have 26% and 3 massless
neutrinos constitute 10% of critical density at the last
scattering. With respect to the no-damping case, the
mode amplitudes at the minima are damped by 76.5% for
3 neutrinos versus 77% for axions. However, note that the
minimum for neutrinos is at u ¼ 4:72, but for axions it is at
u ¼ 4:42. And as can be seen this phase shift persists
throughout the time evolution. Thus, although axions
damp the amplitudes by the same amount as neutrinos
for these parameters, their phase shift is an important
distinguishing feature.

We can understand this effect on physical grounds. The
axion phase space distribution, Eq. (39), has an explicit

time dependence that is not present in the thermal neutrino
distribution function. As a result the integral over time of
the anisotropic stress, which produces the damping, is
modulated compared to the neutrino case, and hence mod-
ulates the resulting k-dependent damping of gravitational
waves.
This phase difference will have an observational impact

on the damping of CMB B-modes. Recall that it is _� that
enters into the Boltzmann equation for the temperature
perturbations [56]. Following [22], we expect all tensor
multipole coefficients to depend on �ðuÞ only through a
factor of j�0ðuLSSÞj2, where uLSS ¼ ð1þ zEQÞ=ð1þ zLSSÞ
is the value of u at the last scattering surface (LSS). We
take zLSS ¼ 1089 and convert it into uLSS using Eq. (33)
and �M ¼ 0:3. Moreover, we expect the dominant contri-
bution to multipole l in the CMB will come from the wave
number, k � aLSSl=dLSS [22] where aLSS is the scale factor
at the surface of last scattering and dLSS is the angular
diameter distance of the surface of the last scattering.
Using numerical values of aLSS and dLSS we get

l ¼ 0:878uLSS: (41)

In Fig. 4 we show the ratio of �02 for damped to
undamped gravitational waves for axions and different
numbers of massless neutrinos. We have extracted this
ratio at the surface of last scattering for several different
low l values. We expect the graph to look similar at higher l
values, but the computations at high l become prohibitively
expensive. Both neutrinos and axions produce an oscilla-
tory pattern in the damping, but there is a phase shift
between them. It is important to note that at certain l,
‘‘damped’’ gravitational waves can actually produce a
larger signal than undamped waves by a factor of 2 or
more. This surprising effect is due to that fact that for some
k� values there is actually a relative amplification caused
by anisotropic stress, as can be seen from Figs. 1 and 2,
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FIG. 3 (color online). The effect of axions produced by axionic
strings.
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where the mode amplitude does not decrease as rapidly as
in the undamped case.

IV. CONCLUSIONS

The observation of a primordial gravitational wave spec-
trum would provide a direct window on physics of the very
early universe. As has been stressed, to extract as much
cosmological information as possible from such a signal,
one must be mindful of any phenomena that may alter the
primordial signal. One example of such a process is the
damping of gravitational waves by free-streaming particles
such as neutrinos.

In this work we have generalized the formalism for
deriving the effects of damping of gravitational waves
due to anisotropic stress caused by free streaming by
deriving a general formula for the anisotropic stress as a
function of mass and number of degrees of freedom, which
should be useful for calculating the cosmological signature
of possible additional nonstandard model relativistic
species.

We find that for additional neutrino masses of current
cosmological interest, the effects of nonzero mass on
damping in comparison to the massless case is most pro-
nounced for k�0 � 100–200. For longer wavelength modes

that enter the horizon later, the damping is suppressed
for all cases because the neutrino energy density is less
significant. In addition we have explored the possible
impact of a relativistic axion background, as might be
present due to radiation from axion strings. While the
overall damping produced by such a background could
perhaps be comparable to that due to three standard model
neutrinos, we find that their nonthermal phase space dis-
tribution will produce a possibly measurable phase shift in
the damping signature.
If a nonzero tensor B-mode contribution is observed in

future CMB experiments, one might hope to use these
results to help constrain new physics beyond the standard
model.
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