Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

This content has been downloaded from IOPscience. Please scroll down to see the full text.

(http://iopscience.iop.org/1742-6596/488/7/072007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 130.56.107.180
This content was downloaded on 09/12/2014 at 04:53

Please note that terms and conditions apply.
Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

* ARC Centre for Antimatter-Matter Studies (CAMS), Research School of Physics and Engineering, The Australian National University, Canberra ACT, Australia
† ARC CAMS, School of Chemical and Physical Sciences, Flinders University, Adelaide SA, Australia
‡ ARC CAMS, School of Engineering and Physical Sciences, James Cook University, Townsville QLD, Australia
+ Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia
Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Madrid, Spain
& Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW, Australia
^ Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid, Spain

Synopsis

We present new cross section results from a joint experimental and theoretical investigation into low-energy positron and electron scattering from two targets of biological interest, namely tetrahydrofuran and 3-hydroxy-tetrahydrofuran. We compare and discuss the total, elastic and inelastic cross sections for these species in the light of potential positron and electron-induced damage in biomolecular systems.

We present recently measured and computed cross sections for low-energy positron collisions with the structurally related molecules tetrahydrofuran (THF) [1] and 3-hydroxy-tetrahydrofuran (3H-THF) [2]. Those two species represent suitable models for the sugar rings contained in the phosphate-deoxyribose backbone structure of the nucleic acids [3, 4]. As the knowledge of the impact cross sections is essential for charged-particle track simulations, studying those compounds can assist us in shedding more light on the effects of positron and electron-induced damage in biological media.

Total, positronium formation, elastic differential and inelastic integral cross sections have been measured at selected energies in the range 1-190 eV using the buffer-gas trap and positron beam spectrometer at the Australian National University [5] with an energy resolution of 60-100 meV.

Total, inelastic and elastic integral, as well as elastic differential cross sections have also been computed at energies between 1 and 1000 eV within the Independent Atom Model and using the Screening Corrected Additivity Rule formalism [6]. In addition, electron-impact cross sections have also been calculated in order to explore the different role that positrons and electrons play in the low-energy scattering dynamics for those species.

References

1 E-mail: james.sullivan@anu.edu.au