
Karen Jean Edler
July 1997

Amorphous silica - a radiolarian and a silica sphere.
Photograph by Roger Heady, EMU, ANU. (used with permission)

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University
Declaration

This dissertation is an account of research undertaken primarily in the Research School of Chemistry at the Australian National University, under the supervision of Professor John W. White. Additional experiments were performed at the ISIS Pulsed Neutron Source at the Rutherford Appleton Laboratory, Chilton, UK, the Intense Pulsed Neutron Source at Argonne National Laboratories, Illinois, USA, the Cold Neutron Research Facility at the National Institute of Standards and Technology, Washington D.C., USA and the Australian National Beamline Facility at the Photon Factory Synchrotron, Tsukuba, Japan.

All of the sample preparation required for this thesis was carried out by the candidate, except in cases where it was not possible for her to do so, in which case, detailed experimental instructions, written by the candidate, were supplied to those who carried out the work. Sample sets prepared in this fashion by Gordon Lockhart while the candidate was visiting overseas facilities for data collection purposes, are those listed in Appendix 1, Table A1.1, labelled GP, R, J, LOQ heated ordinary and LOQ heated acid. All characterisation and analysis, except where noted in the text and where indicated below, were also performed by the candidate. Gas adsorption isotherm data collection was performed by Gordon Lockhart and Dr Peter Branton, but all subsequent analysis was done by the candidate. Due to insufficient funding the overseas experiments listed below were carried out on the candidate's behalf as noted. For the shear experiments discussed in Chapter 4, section 4.3.3, one third of the data on the shear behaviour of silicate-surfactant gels was collected at the ISIS facility by Dr Philip Reynolds and Dr Tony Brown. Small angle neutron scattering contrast variation data on five samples total, on two separate occasions, was collected at the ISIS facility by Dr Jonathon Watson and Dr Tony Brown. All data processing and analysis in those cases was done by the candidate. Similarly, for the quasielastic neutron scattering experiments on hydrogen adsorbed in MCM-41 discussed in Chapter 6, section 6.7 carried out at the Argonne National Laboratories, data collection and initial data processing was carried out by Dr Philip Reynolds. For the quasielastic neutron scattering experiments on methane, Dr. Frans Trouw continued data collection and initial data reduction after the candidate returned to Australia, as funding was insufficient for her to remain to complete the experiment. Data collection and initial processing of the synchrotron X-ray patterns collected at the Australian National Beamline in Japan, were done by Dr David Cookson, and Wilfred Fullagar. All subsequent data processing was done by the candidate. Other contributions to this work, by way of technical support and advice are acknowledged on the following pages.

None of the work presented in this thesis has been submitted to any other institution for any degree.

Karen J. Edler
11 July 1997
Abstract

The pure silicate mesoporous material, MCM-41 having hexagonally packed cylindrical channels with a centre to centre distance of ca. 45 Å may be synthesised from a preparation containing only sodium silicate solution, a surfactant template molecule, water, and some acid. The preparation was optimised initially both for heated and unheated syntheses. The effects of aging in the gel, heating time and stirring were investigated. MCM-41 materials which were stable to calcination were prepared in an ambient temperature synthesis, with stability proportional to aging time in the gel. Heated preparations proved to have highest long range order after 3 days at 100°C in unstirred systems.

The effect of pH during synthesis was then investigated. Preparations titrated against 1 M acid to maintain a constant pH during the whole of the synthesis developed much higher long-range order, as determined by the number and intensity of the observed X-ray diffraction peaks. A small counterion effect, dependant upon the type of acid used was noted. The most highly ordered materials were prepared from preparations titrated with sulphuric acid to maintain a pH of 10 during the synthesis. Heated preparations were more ordered than those carried out at ambient temperatures, although the addition of acid also promoted order in unheated syntheses.

From these highly ordered materials X-ray diffraction patterns containing up to seven peaks were obtained using synchrotron radiation. These peaks could all be indexed to a hexagonal lattice. The intensity envelope for these peaks was modelled by the expected envelope for an array of cylinders. The data could not be fitted by a model containing only one cylinder, but required two concentric cylinders of different scattering length density. This indicates the presence of three regions in the MCM-41 framework.

Firstly, a denser, continuous wall structure about 6 Å wide filling the regions between pores. Secondly, each pore is lined with a less dense silica region about 12 Å thick. The empty holes down the centre of each channel in this material have a radius of about 7 Å. The average bulk MCM-41 density calculated from the X-ray results and gas adsorption measurements was found to be low, around 0.83(5) g cm⁻³, with the denser part of the wall being 0.99 g cm⁻³ and the less dense lining of the pores 0.87 g cm⁻³.

This low density model with porous walls is supported by results from neutron diffraction, inelastic and quasielastic neutron scattering measurements on hydrogen adsorbed in the pores of MCM-41, and by small angle neutron scattering using contrast variation on MCM-41 materials at all stages of preparation. Other possible interpretations of the data are presented and discussed.

The behaviour of methane adsorbed in the channels of MCM-41 was also observed by quasielastic neutron scattering. Considerable alteration in the phase behaviour from that of bulk methane was observed. The melting point was depressed from 91 K in bulk methane to between 45 and 60 K for the confined methane in this system, and a liquid phase was still present in the pores at 180 K, around 70 K above the normal boiling point of the bulk material.
Acknowledgments

Firstly, I wish to thank my supervisor, Professor John White for allowing me to work with him and his research group. His infectious enthusiasm, creativity and encouragement have made the last three years interesting and memorable. I also wish to acknowledge the invaluable co-supervisory role of Dr Philip Reynolds, whose down-to-earth advice provided an essential balance and who was always available for questions.

Two other members of the research group who deserve special mention are Trevor Dowling, and Gordon Lockhart. Trevor ensured the smooth running of that vital piece of equipment, the small angle X-ray camera, and his technical expertise in creating the heating cell and other useful items was much appreciated. Likewise, the assistance of Gordon, often in rushed situations, in the synthesis of some of the materials studied for this thesis permitted a much more extensive investigation than would otherwise have been possible. His collection of most of the nitrogen and methane isotherm data is also gratefully acknowledged. The assistance of Dean Gilkes with computer related matters and of Heather Jauncey for all administrative concerns big and small, particularly organisation of the overseas trips were also invaluable.

The assistance of research scientists at overseas institutions must also be noted. The aid of Dr. Frans Trouw at IPNS in the collection and reduction of quasielastic neutron scattering data was deeply appreciated. Dr. Tania Slawecki at CNRF, NIST must be thanked for her enthusiasm, vegetarian cooking and all her help with the shear cell experiments on the NG-3SANS beamline. Dr. B. Hammouda is also thanked for assistance with those experiments. Dr. Richard Heenan and Dr. Steve King at ISIS, RAL gave willing and cheerful support for the small angle neutron scattering experiments on LOQ and Dr. P. Thiyagarajan did likewise for experiments at IPNS on SAD, the small angle neutron scattering machine at ANL.

Some of the work reported in this thesis has benefited from the use of the Intense Pulsed Neutron Source at Argonne National Laboratory which is funded by the U.S. Department of Energy, BES-Materials Science, under Contract W-31-109-ENG-38. Some of the other material is based upon activities supported by the National Foundation under Agreement No. DMR-9423101. I acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in some of this work. Travel grants through the Australian Government ISTAC/ANSTO Access to Major Facilities Program are gratefully acknowledged.

Closer to home, my adviser Dr. Ray Withers is to be thanked for taking the transmission electron micrographs included in this thesis. I also wish to thank Dr. Juliane Dougherty and Dr. John Thompson for taking the scanning electron micrographs included herein. The assistance of Dr. Tim Senden with AFM experiments is acknowledged, even though the results were not as useful we had hoped. He is also to be thanked for synthesising the surfactant used in the Langmuir trough experiment and for many stimulating discussions. Discussions with Dr Paul Saville on many things, but
especially the interpretation of the Langmuir trough data were deeply appreciated. The assistance of Dr Peter Branton with the collection and analysis of some of the nitrogen isotherms is also recognised. The hard work and dedicated assistance of all those who carried out experiments at overseas facilities on my behalf, when the funding situation would not allow me to be there in person, is gratefully acknowledged. These people were Dr. Tony Brown, Dr. Philip Reynolds, Dr. Jonathan Watson, Dr. David Cookson and Wilfred Fullagar.

All of the many and varied occupants of Room 2; Richard Durand, Elliot Gilbert, Wilfred Fullagar, Graeme Lindsell, Ian Jamie, Phillippe Espeau, Jonathon Watson, Peter Branton, and Gavin Kirton, will be long remembered for their diverting conversation, and as a source of amusement, encouragement and comradeship over the past few years. Paul Saville and Julieanne Dougherty are, in particular, to be thanked for their friendship and willingness to share their experience and wisdom. Their encouragement and sense of perspective helped to maintain sanity, or at least some semblance thereof, throughout this process of education.

The last few acknowledgments and heartfelt thanks are for those who have influenced me most over the past three and a half years. Firstly to David Clarke, for encouraging me to leave the safe haven of Sydney University for a strange new lab at the RSC. Secondly, to my parents and brothers for supporting that decision, and assisting with all the mundane aspects of every residential relocation. Their continued love and support will always be valued.

The penultimate thanks go to Sandra Nissen, for her friendship and assistance from the moment I moved in to Fenner Hall until the present. For dragging me along to choir, and then to coffee and onto the committee, and for all the email and morning teas, for her understanding of all hassles, big and small - thank you.

Finally, to Cameron, for patience, philosophy, proof reading and a monopoly on the computer, for collecting me from or delivering me to the airport at early hours of the morning, for teaching me an appreciation of good red wine, twentieth century music, and flambe-ing the Cointreau. For his encouragement and support, careerwise and personally, he has my abiding thanks and love.
Publications

Table of Contents

Chapter 1
Introduction .. 1

1.1 Porous Silicates ... 2
1.2 MCM-41 .. 3
1.3 Templated Systems ... 4
1.4 The Synthesis of MCM-41 .. 7
1.5 Mechanism of MCM-41 Formation .. 7
1.6 Applications of MCM-41 .. 13
1.7 References ... 16

Chapter 2
Synthesis of MCM-41 ... 22

2.1 Introduction ... 22
2.2 Materials .. 23
2.3 Preparative Method ... 24
2.4 Removal of Template .. 25
2.5 Physical Description of MCM-41 Materials ... 29
2.6 References ... 29

Chapter 3
Characterisation Techniques & Theory .. 33

3.1 Size .. 34
3.2 Small Angle Scattering .. 35
 3.2.1 Small Angle Scattering Theory ... 36
 3.2.1.1 The Guinier Approximation .. 38
 3.2.1.2 Porod’s Law ... 38
 3.2.1.3 Contrast Variation in Neutron Scattering ... 39
 3.2.2 Instrumentation and Sample Containment .. 41
3.3 Synchrotron X-ray Powder Diffraction .. 44
 3.3.1 Powder Diffraction Theory ... 44
 3.3.2 Instrumentation and Sample Containment .. 45
3.4 Gas Adsorption Isotherms ... 46
 3.4.1 Adsorption Isotherm Theory ... 46
 3.4.2 Instrumentation and Sample Preparation .. 50
3.5 Quasielastic & Inelastic Neutron Scattering ... 51
 3.5.1 Theory ... 51
 3.5.2 Instrumentation and Sample Preparation .. 55
3.6 Neutron Powder Diffraction .. 56
3.7 Langmuir Trough ... 57
 3.7.1 Theory ... 57
 3.7.2 Instrumentation and Sample Preparation .. 59
Table of Contents

Chapter 4

Development of Long Range Order in MCM-41

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>4.2 Unheated Syntheses</td>
<td>67</td>
</tr>
<tr>
<td>4.2.1 Ordinary Preparations</td>
<td>68</td>
</tr>
<tr>
<td>4.2.2 Acid Titrated Preparation</td>
<td>69</td>
</tr>
<tr>
<td>4.3 Results and Discussion of Unheated Syntheses</td>
<td>70</td>
</tr>
<tr>
<td>4.3.1 Langmuir Trough Experiments</td>
<td>70</td>
</tr>
<tr>
<td>4.3.2 Unheated Wet Synthesis Gels</td>
<td>75</td>
</tr>
<tr>
<td>4.3.3 Shear Experiments on Wet Synthesis Gels</td>
<td>78</td>
</tr>
<tr>
<td>4.3.4 Washed and Dried Materials from Unheated Gels</td>
<td>80</td>
</tr>
<tr>
<td>4.3.5 Calcined Materials from Unheated Preparations</td>
<td>83</td>
</tr>
<tr>
<td>4.4 Heated Syntheses</td>
<td>86</td>
</tr>
<tr>
<td>4.4.1 Ordinary Preparation</td>
<td>86</td>
</tr>
<tr>
<td>4.4.2 Acid Titrated Preparation</td>
<td>87</td>
</tr>
<tr>
<td>4.5 Results and Discussion for Heated Syntheses</td>
<td>88</td>
</tr>
<tr>
<td>4.5.1 Diffraction from the Heated Synthesis Gels</td>
<td>88</td>
</tr>
<tr>
<td>4.5.1.1 Ordinary MCM-41 Preparation</td>
<td>88</td>
</tr>
<tr>
<td>4.5.1.2 Acid Titrated MCM-41 Preparation</td>
<td>91</td>
</tr>
<tr>
<td>4.5.2 Washed & Dried and Calcined Materials from Heated Preparations</td>
<td>93</td>
</tr>
<tr>
<td>4.5.2.1 Unstirred System</td>
<td>93</td>
</tr>
<tr>
<td>4.5.2.2 Stirred System</td>
<td>95</td>
</tr>
<tr>
<td>4.5.2.3 Acid Titrated Preparations</td>
<td>97</td>
</tr>
<tr>
<td>4.6.2.4 Coherence Length</td>
<td>102</td>
</tr>
<tr>
<td>4.5.3 Electron Microscopy</td>
<td>104</td>
</tr>
<tr>
<td>4.6 Breakdown of Structure</td>
<td>113</td>
</tr>
<tr>
<td>4.6.1 Results and Discussion for Breakdown of MCM-41</td>
<td>118</td>
</tr>
<tr>
<td>4.7 Discussion</td>
<td>125</td>
</tr>
<tr>
<td>4.7.1 Ordinary MCM-41 Syntheses</td>
<td>125</td>
</tr>
<tr>
<td>4.7.2 Acid Titrated MCM-41 Syntheses</td>
<td>128</td>
</tr>
<tr>
<td>4.7.2.1 Structure</td>
<td>128</td>
</tr>
<tr>
<td>4.7.2.2 Counter Ion Effects</td>
<td>131</td>
</tr>
<tr>
<td>4.7.2.3 Effect of pH</td>
<td>132</td>
</tr>
<tr>
<td>4.8 Conclusions</td>
<td>133</td>
</tr>
<tr>
<td>4.9 References</td>
<td>134</td>
</tr>
</tbody>
</table>

Chapter 5

Description of MCM-41 Structure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>140</td>
</tr>
<tr>
<td>5.2 Macroscopic Structure</td>
<td>142</td>
</tr>
<tr>
<td>5.3 Mesoscopic Structure</td>
<td>143</td>
</tr>
<tr>
<td>5.3.1 Synchrotron X-Ray Study</td>
<td>143</td>
</tr>
<tr>
<td>5.3.1.1 Background</td>
<td>143</td>
</tr>
</tbody>
</table>
Chapter 6
Characterisation of Molecules in MCM-41 Channels................................. 178

6.1 Methane in MCM-41.. 179
6.2 Quasielastic Neutron Scattering from Methane... 179
 6.2.1 Background ... 179
 6.2.2 Results ... 181
6.3 Inelastic Scattering from Methane.. 187
6.4 Methane Adsorption Isotherms ... 188
6.5 Discussion ... 189
6.6 Hydrogen in MCM-41.. 191
6.7 Quasielastic & Inelastic Neutron Scattering From Hydrogen 191
 6.7.1 Results and Discussion .. 192
6.8 Nitrogen and Hydrogen Adsorption Isotherms... 195
 6.8.1 Results and Discussion .. 197
6.9 Conclusions .. 199
6.10 References ... 200

Chapter 7
Conclusion... 203

Appendix: Compositions of Preparations ... 206