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Abstract
In this paper, we study a general linear networked system that contains a tunable
memory subsystem; that is, it is decoupled from an optical field for state
transportation during the storage process, while it couples to the field during the
writing or reading process. The input is given by a single photon state or a
coherent state in a pulsed light field. We then completely and explicitly char-
acterize the condition required on the pulse shape achieving the perfect state
transfer from the light field to the memory subsystem. The key idea to obtain this
result is the use of zero-dynamics principle, which in our case means that, for
perfect state transfer, the output field during the writing process must be a
vacuum. A useful interpretation of the result in terms of the transfer function is
also given. Moreover, a four-node network composed of atomic ensembles is
studied as an example, demonstrating how the input field state is transferred to
the memory subsystem and what the input pulse shape to be engineered for
perfect memory looks like.
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1. Introduction

Quantum memory is, in a wide sense, a device that stores or freezes a quantum state both
spatially and in time. A highly successful example is that a light pulse is frozen in a cloud of
atoms [1–5]. Also quantum memory is of technological importance particularly in quantum
information science, such as the quantum repeater for quantum communication [6–8]. Because
of this scientific/technological importance, the field of quantum memory has experienced
significant progress in both theory and experiment. We refer to for instance [9–11] for
reviewing the current situation of this very active research area.

Now let us see a basic and general schematic of an ideal quantum memory in an abstract
way. First of all, we assume that the system contains a subsystem that can store any quantum
state without loss over a long period of time; we call this specific component the memory
subsystem. Ideally, the memory subsystem should be completely decoupled from the other
system components and surrounding environment while it stores the state; i.e., it is decoherence
free (DF) [12–15]. Note that, in this storage stage, the memory subsystem is decoupled even
from the channel used for transferring an input state or retrieving the stored state. Hence, the
second assumption is that, during the writing/reading process, the system can be tuned so that
the memory subsystem couples to that transportation channel. That is, the system should be one
that contains a tunable port switching the opening/closing of the memory subsystem. Indeed
this basic schematic is employed in each specific memory device. In the case of atoms based on
the electromagnetic induced transparency (EIT) effect, an isolated memory subsystem is served
by a set of metastable collective atomic states, and an external control field (with Rabi
frequency ω t( )) can switch the coupling ON/OFF between the metastable states and the optical
field for state transportation [1–4, 16, 17]. We also find successful demonstrations in optical
cavity or optomechanical oscillator arrays [18–22], where the switching mechanism is served by
adiabatic frequency detuning of the memory subsystem. Further, a similar switching procedure
is employed in the photon echo quantum memory [10]. Note that, if the system does not contain
a switching mechanism, it is generally impossible to perfectly transfer an unknown state to a
memory subsystem (i.e. DF subsystem) [23].

The above-mentioned basic schematic for quantum memory is illustrated in figure 1. In the
writing stage (a), an input state is sent to the system over an input channel with mode b(t). Let
us here assume that, by devising a ‘certain nice procedure’, all the input state is transferred to

Figure 1. Basic schematic of an ideal quantum memory. aM denotes the mode of the
memory subsystem used for the storage, while aB is the mode of the buffer subsystem,
which transports the input state to (from) the memory subsystem from (to) the optical
field with mode b(b̃). The system structure can be switched from stage (a) to (b), or
from (b) to (c), by tuning some controllable parameters. In stage (b), aM is decoupled
from aB and thus the optical field, implying that aM is decoherence free. In stages (a)
and (c), on the other hand, aM couples to the field for state transportation.
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the memory subsystem with mode aM. We then close the port, and aM becomes df. In this
storage stage (b), ideally, the memory subsystem can store the state for a long time. Finally, in
the reading stage (c), by opening the port again we can retrieve the state at any later time, which
is sent over the output channel with mode b̃ t( ).

So what is a ‘certain nice procedure’ to achieve the best or hopefully perfect state transfer?
For some typical quantum memories such as EIT and off-resonant Raman memories, we can
explicitly formulate this problem; that is, the question is what is the optimal temporal shape of
the pulsed light field carrying the input state. This optimization problem is very important and
actually has been deeply investigated in several papers; for instance, towards the most efficient
atomic memory with EIT, in [24–27] the input wave packet as well as the controllable Rabi
frequency ω t( ) (see the second paragraph) are carefully designed, although the method is a
heuristic one based on iterative tuning of the parameters. It is also notable that the so-called
rising exponential type function is found as an effective pulse shape [28–30]. This is a pulse
with exponential increase of, e.g., the probability density of photon counting or the amplitude of
a coherent field, which can be physically implemented [31–33]. Motivated by these results and
further the fact that a large-scale quantum memory is required for constructing practical
quantum communication architecture, the following questions naturally arise. Is there a pulse
shape for achieving perfect state transfer for general and large-scale quantum memory
networks? Is there a general yet simple guideline for synthesizing such desirable pulse shape?
What is the fundamental origin of the rising exponential function as a desirable pulse shape? Is
the rising exponential pulse optimal in a certain sense? Also, is it effective even for a large-scale
network? Solving these problems should accelerate the progress of quantum memory research
in its deeper understanding and practical implementation.

In this paper, we consider a general passive linear system, which models a wide variety of
systems such as optical systems [18–20, 22, 34, 35], nano-mechanical oscillators [21, 36, 37],
vibration mode of a trapped particle [38, 39], and atomic ensembles [24–29, 40–45]. As
mentioned before, the system is assumed to contain a tunable memory subsystem; that is, by
tuning a certain parameter, we can switch opening/closing of the memory subsystem, which is
DF during the storage period. Note that in our case this DF subsystem corresponds to a system
having the so-called dark mode [46, 47]. Another assumption is that an unknown input state to
be transferred is encoded in a continuous-mode single-photon field or a coherent field. With
these setups, we give answers to all the questions posed in the above paragraph. The essential
idea is the use of zero-dynamics principle. This concept originates from the classical notion of
‘zero’ of a transfer function, which is a fundamental tool used in systems and control theory
[48]. More precisely, for a general linear classical system

˙ = + = +x Ax Bu y Cx Du, ,

where u is the input, y is the output, and A B C D( , , , ) are matrices, its input–output relation is
simply characterized by a transfer function = + − −H s D C sI A B[ ] ( ) 1 as =y s H s u s[ ] [ ] [ ] (see
section 4.3 for detailed description); then, if the input is given by =u t e( ) zt, where z is a zero of
the transfer function (meaning =H z[ ] 0), we have = =y t H z e( ) [ ] 0zt under some additional
conditions. That is, the zero-dynamics is a system whose output is always zero. In fact, the
concept of zero-dynamics is very important in analysis and synthesis for even general nonlinear
systems [49, 50].

Actually, the zero-dynamics principle described above can be directly applied to general
quantum memory problem; if the state transfer is perfectly carried out, the input field must be
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completely absorbed in the system, and the output field must not contain any small pieces of the
input field. That is, as a principle, the output should be ‘zero’ during the writing and storage
stages. Surprisingly, this simple zero-dynamics principle leads us to prove, very easily, that a
rising exponential function is a unique pulse shape achieving the perfect state transfer for
general (and thus large-scale) linear passive networks. Moreover, based on this first main result,
we give an explicit, simple and general procedure for designing the wave packet carrying an
unknown state that is as a result perfectly absorbed in the memory subsystem.

This paper is organized as follows. Section 2 provides some preliminaries, describing
general passive linear systems, optical field states and linear DF subsystems. Also the problem
is explicitly formulated in section 2.4. In section 3, we study a simple single-mode oscillator as
a memory system, to show the fact that a rising exponential function appears as a unique pulse
shape achieving the perfect state transfer; based on this result, the idea of zero-dynamics
principle is discussed. Section 4 provides our first main result; for general passive linear
systems, we derive the rising exponential pulse from the zero-dynamics principle. Also we give
a useful interpretation of this fact in terms of the transfer function. In section 5, we present our
second main result, showing the concrete procedure for perfect writing, storage and reading;
this explicitly shows the pulse shape to be synthesized for perfect state transfer from the optical
field to the memory subsystem. Section 6 is devoted to derive the time evolution equations of
some statistical quantities of the dynamics, which is useful for numerical simulation. In
section 7, we study a linear network composed of atomic ensembles trapped in a cavity, which
contains a tunable memory subsystem; this example shows what the designed pulse actually
looks like and how the state transfer from the optical field to the atomic ensembles evolves in
time. Section 8 summarize the paper and discusses some future works. In appendix A, we
briefly examine the case of an active linear memory system. Appendix B provides a case study
comparing the zero-dynamics principle and the so-called dark state principle.

Notation: We use the following notations: for a matrix =A a( )ij , the symbols †A , ⊤A , and
♯A represent its Hermitian conjugate, transpose and complex conjugation in elements of A,

respectively; i.e., = *†A a( )ji , =⊤A a( )ji , and = *♯A a( )ij . For a matrix of operators we use the
same notation, in which case *aij denotes the adjoint to aij. For a time-dependent variable x(t), we
denote ˙ =x t x t t( ) d ( )/d .

2. Preliminaries and problem formulation

2.1. Passive linear systems

In this paper, we study a general linear open system composed of n oscillators with mode
= … ⊤a a a[ , , ]n1 that couples to an optical field with continuous mode b(t); hence they satisfy

δ=*a a[ , ]i j ij and δ= −*b s b t s t[ ( ), ( )] ( ). The system is driven by a quadratic Hamiltonian
Ω= †H a a with Ω an n-dimensional Hermitian matrix. The system and the field instantaneously

couple through the interaction Hamiltonian = −* † †H t i b t Ca a C b t( ) [ ( ) ( )]int with C an n-
dimensional complex row vector. Then the unitary operator

∫= ← ⎯⎯⎯⎯ − +
⎡
⎣⎢

⎤
⎦⎥( )U t t i H H s s( , ) exp ( ) d (1)

t

t

0 int
0

(t0 is the initial time) produces the Heisenberg equations of = *a t U t t a t U t t( ) ( , ) ( ) ( , )i i0 0 0 and
˜ = *b t U t t b t U t t( ) ( , ) ( ) ( , )0 0 as follows;
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˙ = − ˜ = +†a t Aa t C b t b t Ca t b t( ) ( ) ( ), ( ) ( ) ( ), (2)

where = … ⊤a t a t a t( ) [ ( ), , ( )]n1 and Ω= − − †A i C C /2. The second term in A stems from the
Ito-correction. Note also that, due to the ideal Markov property, the optical field b(t) does not
have its own dynamical time evolution; rather b̃ t( ) represents the output of the system.

The above open system with input b(t) and output b̃ t( ) is called the passive linear system in
the sense that it does not contain any active component such as an optical parametric amplifier
in the optics case. As mentioned in section 1, a passive linear system can model a wide variety
of systems. The main reason why we focus on this class of general systems is that it preserves
the total energy during the interaction between the system and the field. This implies that the
perfect state transfer is equivalent to the perfect energy transfer, which as a result allows us to
use the zero-dynamics principle to characterize the perfect memory; this will be discussed in
detail in section 4. Also in appendix A, we show a brief case study where the system contains an
active component. For a general treatment of passive linear systems, see [35, 51, 52]; the
notation used in this paper follow these references, where in general C is an ×m n complex
matrix representing m input optical fields.

2.2. Input field states

In this paper, we consider the case where the input is given by a single photon state or a
coherent state, which is carried by an optical pulse field with continuous-mode b(t). They are
described as follows.

Single photon field state: The single photon state in a single mode system is, as is well
known, produced by acting with a creation operator *a on the ground state 0 ; i.e.

= *a1 0 .

To describe the continuous-mode single photon field state, we define the annihilation and
creation process operators

∫ ∫ξ ξ ξ ξ= =* * *
−∞

∞

−∞

∞
B t b t t B t b t t( ) ( ) ( ) d , ( ) ( ) ( ) d . (3)

ξ t( ) is an associated function in , representing the shape of the optical pulse field. Also ξ t( )
satisfies the normalization condition ∫ ξ∣ ∣ =

−∞

∞
t t( ) d 12 . Due to this, ξB( ) and ξ*B ( ) satisfy the

usual CCR; ξ ξ =*B B[ ( ), ( )] 1. The single photon field state is, in a similar way as above,
produced by acting the creation process operator on the vacuum field 0 F as follows [53–57]:

∫ξ ξ∣ 〉 = =* *
ξ

−∞

∞
B t b t t1 ( ) 0 ( ) ( ) d 0 . (4)F F F

Due to the normalization condition of ξ t( ), we find that 〈 ∣ 〉 =ξ ξ1 1 1F F . Also note the relation
ξ〈 ∣ ∣ 〉 = ∣ ∣*

ξ ξb t b t t1 ( ) ( ) 1 ( )F F
2; thus, ξ t( ) has the meaning of the wave function with ξ∣ ∣t( ) 2 the

probability of photo detection per unit time. Let us now assume that the pulse shape ξ t( ) can be
expanded as

∑ξ γ=
=

t s t( ) ( ). (5)
k

n

k k
1

The coefficient ∈sk represents (unknown) classical information encoded in the optical field,
which satisfies ∑ ∣ ∣ =s 1

k k
2 , and γ = …t{ ( )}

k k n1, , is a set of orthonormal functions satisfying
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∫ γ γ δ=*
−∞

∞
t t t( ) ( ) d . (6)

j k jk

Note that n is the number of modes of the system. Then the single photon field state (4) can be
written as

∫∑ ∑ ∑γ γ∣ 〉 = = = ∣ 〉* *
ξ γ

= −∞

∞

= =

s t b t t s B s1 ( ) ( ) d 0 ( ) 0 1 . (7)F
k

n

k k F
k

n

k k F
k

n

k F
1 1 1

k

∣ 〉γ1 Fk
is called the single photon code state with pulse shape γ t( )

k
[54]; from the condition (6),

they are orthonormal, i.e. δ〈 ∣ 〉 =γ γ1 1F F jkj k
. Also the field operator γB ( )

k
satisfies the CCR

γ γ δ=*B B[ ( ), ( )]
j k jk.
Coherent field state: Another important state is a coherent state. A coherent state in a

single mode system is generated by acting a displacement operator α α−* *
e a a on the ground state

as follows;

α = α α*− *
e 0 ,a a

where α ∈ denotes the amplitude of α . Likewise, a coherent field state is defined in terms of
the creation and annihilation process operators as follows;

∫= = −* ** −

−∞

∞⎡
⎣⎢

⎤
⎦⎥( )f e f t b t f t b t t0 exp ( ) ( ) ( ) ( ) d 0 ,F

B f B f
F F

( ) ( )

where f(t) is a complex-valued function, representing the amplitude of the state; that is, this is a
coherent pulse field modulated with envelope function f(t). Note that f(t) is not necessarily
normalized, but its power ∫ ∣ ∣

−∞

∞
f t t( ) d2 is finite. Now we assume that f(t) is given, in terms of the

orthonormal functions γ = …t{ ( )}
k k n1, , , by

∑α γ=
=

f t t( ) ( ), (8)
k

n

k k
1

where α ∈k represents (unknown) classical information to be stored. The power of ∣ 〉f F, i.e.
the mean photon number in unit time, is then given by ∫ α∣ ∣ = ∑ ∣ ∣

−∞

∞
f t t( ) d

k k
2 2. The coherent

field state is as a result described by

∫∑ α γ α γ= = −* * *∑ α γ α γ* − *

= −∞

∞⎡
⎣⎢

⎤
⎦⎥( )( ) ( )

f e t b t t b t t0 exp ( ) ( ) ( ) ( ) d 0 . (9)F

B B

F
k

n

k k k k F
1

k
k k k k

Note that this is not a superposition of the coherent field states γ∣ 〉
k F, unlike the single photon

field state (7).

2.3. DF subsystem as a memory

Let us reconsider the linear system (2), which is composed of n oscillators. Note again that this
is an open system with b(t) representing the environment field. Therefore, while the system
works as a memory, ideally some of its component, the memory subsystem with mode

= …+
⊤a a a[ , , ]m nM 1 , must be decoupled from the field b(t); this means that the memory

subsystem is exactly a DF subsystem [12–15]. But the other component, the buffer subsystem
with mode = … ⊤a a a[ , ]mB 1 , still couples to b(t). In contrast to aM, the state of the buffer
subsystem decoheres due to the coupling to b(t). As a result, in the storage stage, the dynamical
equation of the system, equation (2), should be of the form

6
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= − ˜ = +
†⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥t

a t

a t
A O

O O

a t

a t
C

O
b t b t C a t b t

d
d

( )

( )

( )

( )
( ), ( ) ( ) ( ). (10)B

M

B B

M

B
B B

This equation clearly shows that a t( )M is DF, and its state is preserved. Note that a t( )M does not
appear in the output equation, implying that the energy contained in the memory subsystem
does not leak out into the field.

The general theory of DF subsystems states that, if a DF subsystem exists, then the system
Hilbert space is decomposed to = ⊗ ⊕   ( )1 2 3, where any observable in2 evolves
unitarily. In our case, the decomposition is of the form = ⊗  B M; thus the system
variables are, more precisely, represented by ⊗a IB and ⊗I aM. This special class of
continuous-variable DF subsystems appears in several situations [46, 47, 58–60]. Also, for a
general theory of the linear DF subsystem, including a necessary and sufficient condition for a
given linear system to have a DF mode, see [61].

2.4. Problem description

Here we describe the problem discussed throughout the paper.
Our system is the general passive linear system (2), and it is assumed to be tunable; that is,

by appropriate tuning of its parameter(s), a part of the system, the memory subsystem, couples
or decouples to the optical field carrying the information. Hence the memory subsystem can be
switched to be a DF or a non-DF subsystem. As mentioned in section 2.3, the memory
subsystem stores the state while it is in the DF mode, while it should be in the non-DF mode
when we transfer the input state or retrieve the stored state. In particular, we assume that the
matrix Ω= − − †A i C C /2 in the writing/reading stages is Hurwitz, i.e., the real parts of all the
eigenvalues of A are negative; as will be shown later, this condition is necessary for perfect state
transfer. On the other hand, in the storage stage, the dynamical equation takes the form (10),
thus A is not Hurwitz.

The fieldʼs initial state is given by ∣ 〉ξ1 F in the case of single photon input field or f F in the
case of coherent input field. The systemʼs initial state ϕ S is assumed to be separable, hence it is
given by ϕ ϕ ϕ∣ 〉 = ∣ 〉 ⊗ ⋯ ⊗ ∣ 〉S S n S1 n1

. In particular, we will set it to be the ground state
ϕ∣ 〉 = 0

i S Si i
satisfying =a 0 0i Si

.
At time t0, the system and the field start to interact, via the unitary operatorU t t( , )0 given in

equation (1). The composite state at time t1 is then given by Ψ ϕ∣ 〉 = ∣ 〉ξt U t t( ) ( , ) 1S F1 0 1 or
Ψ ϕ∣ 〉 =t U t t f( ) ( , ) S F1 0 1 . In this writing stage, the memory subsystem is in the non-DF
mode, so it couples to the field. But once the state transfer has been completed, then we switch
the system parameters so that the memory subsystem becomes DF, and its state is preserved
during the storage stage. Hence, it would be desirable if the state Ψ∣ 〉t( )1 is of the separable form

Ψ ϕ ϕ ψ= ′ ″t t t t( ) ( ) ( ) ( ) ,
F1 1 B 1 M 1

and the memory subsystemʼs state ϕ∣ ″ 〉t( )1 M contains the full information of the input field state
∣ 〉ξ1 F or f F . Therefore, our goal is to appropriately synthesize the pulse shape ξ t( ) or f(t), or
more precisely their basis functions γ = …t{ ( )}

k k n1, , , so that the above desirable transition from the
fieldʼs initial state to ϕ∣ ″ 〉t( )1 M occurs.

Lastly we remark on the switching configuration. In general, the system matrices Ω and C
(and thus A) can change in time (i.e. time varying) in order to realize high quality quantum
memory. For instance, in [24–27], the authors consider the time varying system matrices

7
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depending on the control field with frequency ω t( ), which is optimized via a heuristic method.
On the other hand, in this paper, we assume that Ω and C are time varying, but they are constant
in each stage of the memory procedure; that is, they are piecewise constant. In particular, we
will take the same system matrices in the writing and reading stages.

3. Perfect state transfer in a single-mode passive linear system

In this section, we examine a simple case where the memory system is given by a single-mode
passive linear system. As will be shown later, this system does not contain a tunable DF
component, so it does not work as a perfect storage device. Rather the purpose here is that by
focusing only on the writing stage, requiring perfect state transfer uniquely determines the pulse
shape of the input optical field. Based on this result, we then derive the explicit form of the
output field, and show the notion of zero-dynamics in this case. Here we study only the single-
photon input case, but it is straightforward to obtain a similar result in the case of coherent field
state.

3.1. Pulse shaping for perfect state transfer

Let us consider the following single-mode (i.e. n = 1) linear system interacting with an optical
field, which is obtained by setting Ω = 0 and κ=C in equation (2):

κ κ κ˙ = − − ˜ = +a t a t b t b t a t b t( )
2

( ) ( ), ( ) ( ) ( ), (11)

where κ is the interaction strength; in the optics case, this system is typically given by an optical
cavity with κ proportional to the transmissivity of the coupling mirror. The goal is to send a
single photon state over the input pulse field and write it perfectly down to the system. Note
that, however, clearly this system does not contain a tunable DF component, hence our interest
here is only in the state transfer.

The input state is given by equation (7), which is now essentially ∣ 〉 = ∣ 〉ξ γ1 1F F1
. Thus in this

case let us take a superposition of the vacuum and the single photon field state

α β+ ∣ 〉ξ0 1 ,F F

where α β ∈, are the encoded (unknown) classical information. Recall that the systemʼs
initial state is set to the ground state 0 S.

The dynamical equation (11) has the following solution:

∫κ= −κ κ κ− − −a t e a t e e b s s( ) ( ) ( ) d ,( )t t t

t

t
s

1
2

0
2 21 0 1

0

1

where =t t1 is the time we stop the interaction. This can be rewritten as

∫ ν= + −* * *κ κ− − − −a t e a t e s b s s( ) ( ) 1 ( ) ( ) d , (12)( ) ( )t t t t

t

t

1
2

0
1 0 1 0

0

1

where

ν κ ν= −
−

⩽ ⩽ = ⩽ ⩽κ κ
κt

e e
e t t t t t t t t( ) ( ), ( ) 0 ( , ).t t

t 2
0 1 0 11 0

8
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Note that ∫ ∫ν ν∣ ∣ = =
−∞

∞
t t t t( ) d ( ) d 1

t

t2 2

0

1
. Equation (12) can be further represented as

ν= ⊗ + − ⊗* * * *κ κ− − − −U t t a t U t t e a t I e I B( , ) ( ) ( , ) ( ) 1 ( ). (13)( ) ( )t t
F

t t
S0 1 0 0 1

2
0

1 0 1 0

ν*B ( ) is the field creation operator with pulse shape ν t( ), which is defined in equation (3), and
U t t( , )0 1 is the unitary operator given in equation (1). From the above equation we find that, in
the limit → −∞t0 , the field creation operator ν*B ( ) is completely mapped to the system
creation operator *a t( )1 . This means that the perfect state transfer from the optical pulse field to
the system mode can be carried out as shown below. In the Schrödinger picture, the whole state
at time =t t1 is given by

Ψ α β α β ξ

α β ξ

α β ξ

= + = ⊗ + ⊗

= ⊗ + ⊗

= ⊗ + ⊗

*

* *

* *

ξ
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )

( )

t U t t U t t I I I B

U t t I I I B U t t U t t

I I U t t I B U t t

( ) ( , ) 0 0 1 ( , ) ( ) 0 0

( , ) ( ) ( , ) ( , ) 0 0

( , ) ( ) ( , ) 0 0 ,

S F
F

S F S S F

S F S S F

S F S S F

1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

where in the last equality =U t t( , ) 0 0 0 0S F S F0 1 is used. Let us now set the input pulse
shape to be ξ ν=t t( ) ( ). Then, from equation (13), we have

Ψ α β

β

α β

β

= ⊗ +
−

⊗

−
−

= +
−

⊗

−
−

*

* *

* *

κ

κ

κ

κ

κ

κ

− −

− −

− −

− −

− −

− −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

t I I
e

a t I

e

e
U t t a t U t t

e

e

e
U t t a t U t t

( )
1

( )

1
( , ) ( ) ( , ) 0 0

0
1

1 0

1
( , ) ( ) ( , ) 0 0 .

( )

( )

( )

( )

( )

( )

S F
t t

F

t t

t t
S F

S
t t

S F

t t

t t
S F

1 0

2

0 1 0 0 1

2

0 1 0 0 1

1 0

1 0

1 0

1 0

1 0

1 0

Therefore, in the limit → −∞t0 , we have

Ψ α β∣ 〉 = + ⊗[ ]t( ) 0 1 0 ,S S F1

which means that the input field state is completely transferred to the system state. In particular,
in the case → − ∞t0 and =t 01 , the input pulse shape is given by

ξ κ ξ= − ⩽ = <κt e t t t( ) ( 0), ( ) 0 (0 ). (14)t 2

This is called the rising exponential pulse [24, 28–33]. It is clear from the above discussion that
the rising exponential is the unique pulse shape for perfect state transfer from the single photon
field to the system.

3.2. Explicit form of the output field

Let us further study the final state Ψ α β∣ 〉 = −∞ + ∣ 〉ξt U t( ) ( , ) 0 ( 0 1 )S F F1 1 , where the input
pulse shape is now set to
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ξ γ ξ= − ⩽ = <γt e t t t( ) ( 0), ( ) 0 (0 ). (15)t 2

It is possible to obtain the explicit solution:

Ψ ψ ψ= +t t t( ) 0 ( ) 1 ( ) ,S
F

S
F

1
(1)

1
(0)

1

where

∫ψ α β β ξ ψ β
κ

ξ= + − ′ = − ′*
ξ

−∞
t s b s s t t( ) 0 1 ( ) ( ) d 0 , ( ) ( ) 0 ,

F
F

F

t

F
F

F
(1)

1
(0)

1 1

1

with

ξ
κ γ

κ γ
ξ

κ γ
κ γ

′ =
−

+
⩽ ′ =

−
+

<γ κ−t e t t e t( )
2

( 0), ( )
2

(0 ).t t2 2

First, at =t 01 , we have

Ψ α β κ γ
κ γ

κβ
κ γ

γ
κ

= ⊗ + −
+

+
+ξ

⎡
⎣⎢

⎤
⎦⎥(0) 0 0 1

2
1 0 ,S F

F
S F

which becomes Ψ α β= + ⊗(0) ( 0 1 ) 0S S F only when κ γ= . That is, the frequency
bandwidth of the input pulse shape has to be exactly equal to that of the memory system to
attain the perfect state transfer. This is a form of the so-called impedance matching for efficient
energy transfer; in section 7, we will discuss the matching condition in a more practical setup
where the system is composed of a cavity and atomic ensemble.

Next, in the limit → ∞t1 , the whole state again becomes separable:

Ψ α β∞ = ⊗ + ξ̃( )( ) 0 0 1 ,S F
F

where

ξ κ γ
κ γ

γ ξ κ
κ γ

γ˜ = −
+

⩽ ˜ =
+

<γ κ−t e t t e t( ) ( 0), ( )
2

(0 ).t t2 2

This ξ̃ t( ) represents the pulse shape of the output optical field over the whole period. Hence, if
κ γ= , the output field is vacuum in the writing stage ⩽t 0; this means that the single photon
input field is completely absorbed into the system, and the output field does not contain any
pieces of the input state. In the optics case where the system is given by a cavity, a physical
meaning of this fact is destructive interference between the light field reflected at the coupling
mirror and the transmissive light field leaking from the cavity; as a result, the output field of the
cavity is always in vacuum, i.e. ‘zero’, while the systemʼs state still dynamically changes in
time. In general, the dynamics of a system whose output is always zero is called zero dynamics
[48–50]. Hence in this case the cavity dynamics during the writing process is exactly zero
dynamics.

4. Zero-dynamics principle for perfect state transfer

In this section, based on the so-called energy-balanced identity, we show the notion of zero-
dynamics principle as a guideline for perfect state transfer in general passive linear systems.
Then, we prove that the zero-dynamics principle readily leads to the rising exponential function
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as a unique pulse shape. Further, a useful view of the zero-dynamics principle in terms of the
transfer function is provided.

Note that the zero-dynamics principle is essentially equivalent to the so-called dark state
principle; this idea was first employed in [62] for the application to a lossless node-to-node state
transfer in a cavity QED network, and later several applications were developed, e.g. lossless
gate operation [63]. Appendix B provides a detailed case study comparing the zero-dynamics
principle and the dark state principle and then discusses their difference.

4.1. Input–output relation of the pulse shape

First we remark that the pulse shape of the single-photon input field, ξ t( ), and that of the output
field, say ξ̃ t( ), can be connected through a dynamical equation having the same form as
equation (2). Actually, by multiplying ϕ∣ 〉 ∣ 〉ξ1S F by equation (2) from the right hand side and
using the relation ξ∣ 〉 =ξb t t( ) 1 ( ) 0F F, we find that the mean photon number of the output
field is given by

∫ϕ ϕ ξ ξ˜ = ˜ ˜ = −*
ξ ξ

−∞

− †n t b t b t t Ce e C s s( ) , 1 ( ) ( ) , 1 ( ) ( ) d .At
t

As
2

By definition this should be written as ξ˜ = ∣ ˜ ∣n t t( ) ( ) 2, hence ξ t( ) and ξ̃ t( ) are related through the
following dynamics:

η η ξ ξ η ξ˙ = − ˜ = +†t A t C t t C t t( ) ( ) ( ), ( ) ( ) ( ), (16)

where η t( ) is a n-dimensional c-number vector. Note that η t( ) does not have a particular
physical meaning, unlike the vector m(t) appearing just below.

The same classical dynamical equation holds for the case of coherent input field; noting
that ϕ ϕ =f b t f f t, ( ) , ( ), we readily see that the vector of mean amplitudes,

= 〈 〉 … 〈 〉 ⊤m t a t a t( ) [ ( ) , , ( ) ]n1 with ϕ ϕ〈 〉 =a t f a t f( ) , ( ) ,i i , follows

˙ = − ˜ = +†m t Am t C f t f t Cm t f t( ) ( ) ( ), ( ) ( ) ( ), (17)

where f̃ t( ) is the amplitude of the output field b̃ t( ). This equation has the same form as
equation (16), hence in what follows we use equation (16) when discussing the input–output
relation of the corresponding wave packets.

4.2. The zero-dynamics principle and rising exponential pulse

To pose the zero-dynamics principle, it is important to first remember that, for the general
passive linear system (2), the following energy balance identity [64] holds:

∫ ∫˜ ˜ + = +* *† †b s b s s a t a t b s b s s a t a t( ) ( ) d ( ) ( ) ( ) ( ) d ( ) ( ). (18)
t

t

t

t

0 0
0 0

This indicates that the total energy contained in the system and the field is preserved for all time.
Indeed, from equation (18) we immediately have

∫ ∫ξ ξ∣ ˜ ∣ + = ∣ ∣ +† †s s a t a t s s a t a t( ) d ( ) ( ) ( ) d ( ) ( ) ,
t

t

t

t
2 2

0 0
0 0

where the mean is taken for the state ϕ∣ 〉ξ, 1 . Now we assume 〈 〉 =†a t a t( ) ( ) 00 0 . Then, for the
energy of the input pulse field to be completely transferred to the system, we need ξ̃ =t( ) 0 for
∀ ∈t t t[ , ]0 1 with t1 the stopping time of the writing process. This is a rigorous description, in
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the case of passive linear systems, of the zero-dynamics principle; that is, for the general
quantum memory problem with a passive system, the output field must be vacuum (i.e. ‘zero’)
for perfect state transfer. Surprisingly, this simple condition uniquely determines the form of the
input pulse shape ξ t( ) as shown below.

First, from the requirement ξ η ξ˜ = + =t C t t( ) ( ) ( ) 0, we have η ξ+ =† †C C t C t( ) ( ) 0,
which further leads to

η η Ω η η˙ = + = − + = −† † †⎜ ⎟⎛
⎝

⎞
⎠( )t A C C t i C C t A t( ) ( )

1
2

( ) ( ). (19)

This has the solution η η= − −†

t e( ) ( )A t t
1

1 , with η
1
a fixed vector. Thus, again from the condition

η ξ+ =C t t( ) ( ) 0, we have

ξ η η η= − = − = −⊤ ⊤ ⊤ − − ⊤♯

t C t t C e C( ) ( ) ( ) .( )A t t
1

1

Note that the input is sent during the writing stage ⩽t t1, and ξ =t( ) 0 in the storage and reading
stages in ⩽t t1 . Taking this into account, we end up with the expression

ξ η Θ= − −⊤ − − ⊤♯

t e C t t( ) ( ), (20)( )A t t
1 1

1

where Θ t( ) is the Heaviside step function taking 1 for ⩾t 0 and 0 for <t 0. Since A is Hurwitz,
as assumed in section 2.4, the real parts of all the eigenvalues of − ♯A are strictly positive. Hence
equation (20) is a generalization of the rising exponential function. In fact, this immediately
recovers the result (14) in the example, where κ= −A /2, κ=C and particularly =t 01 .
Lastly we remark that the zero dynamics is given by equation (19), which is defined up to time
t1.

4.3. Transfer function approach

Let us define the (two sided) Laplace transform of a signal x(t) by

∫= ∈
−∞

∞
−x s x t e t s[ ] ( ) d , .st

Note that, when ω ω= ∈s i ( ), this represents the Fourier transformation. Then the Laplace
transformation of equation (16) gives

ξ ξ˜ = = − − − †s G s s G s C sI A C[ ] [ ] [ ], [ ] 1 ( ) . (21)1

The transfer functionG s[ ] characterizes the input–output relation of the linear system (16) in the
Laplace domain. As explained in section 1, the zero-dynamics principle originates from the
classical notion of ‘zero’ of a transfer function [48], and we can now explicitly describe this
fact.

First, to see the idea let us return to the example studied in section 3. The input pulse shape
is given by equation (14), whose Laplace transformation is ξ κ κ= −s s[ ] /( /2). Also in this
case the transfer function is given by

κ
κ

κ
κ

= −
+

= −
+

G s
s

s

s
[ ] 1

2
2
2

. (22)

12

New J. Phys. 16 (2014) 073032 N Yamamoto and M R James



Hence, the output is computed as

ξ κ
κ

κ
κ

κ
κ

˜ = −
+ −

=
+

s
s

s s s
[ ]

2
2 2 2

,

and its inverse Laplace transform then yields

ξ ξ κ˜ = ⩽ ˜ = <κ−t t t e t( ) 0 ( 0), ( ) (0 ).t 2

Thus, we again see that the input field is completely absorbed in the system during ⩽ =t t 01 ;
i.e. the perfect state transfer has been carried out. The most notable point is clearly that the zero
of G s[ ] is erased (in general, if for a transfer function H z[ ] there exists a z satisfying =H z[ ] 0,
then z is called a zero).

Now we can generalize the above fact; for simplicity, we set =t 01 . The transfer function
of the general passive linear system is given by equation (21). Also the Laplace transformation
of the rising exponential function (20) is given by

∫ξ η η= − = +
−∞

⊤ − ⊤ − † −♯ ( )s e C e t C sI A[ ] d .A t st
0

1

1

1

Therefore, the output is computed as

ξ ξ η

η η

η

˜ = = − − +

= + − − − − + +

= −

− † † −

† − − † † −

−

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
( ) ( ) ( )

s G s s C sI A C C sI A

C sI A C sI A sI A sI A sI A

C sI A

[ ] [ ] [ ] 1 ( )

( ) ( )

( ) .

1 1

1

1

1
1 1

1

1
1

Since A is Hurwitz, the output ξ̃ s[ ] does not contain a zero, implying ξ̃ = ∀ ⩽t t( ) 0, 0.
In general, if a transfer function contains a (transmission) zero, then there alway exists an

input signal such that the corresponding output takes zero [48]. Therefore, we have the
following interpretation of the zero-dynamics principle for quantum memory in terms of
transfer function; in general, a linear memory system needs to have a zero for perfect state
transfer, and the input state is sent over an optical field whose pulse shape is characterized by
that zero. This view would be useful particularly in the case of multi input channels.

5. Perfect memory procedure in passive linear system

In this section, we provide a detailed procedure to achieve the perfect memory, which is
composed of the following three stages; the perfect state transfer from the input field to the
memory subsystem (writing), DF preservation of the transferred state (storage), and the
appropriate retrieving of the system state into the output field (reading). The setup was
described in section 2.4; note again that the system matrices Ω and C (thus A) change
depending on the memory stage, but they are piecewise constant. Also, as motivated by the
result obtained in section 3, we will take → −∞t0 , while keeping general t1.

One of the main questions is as follows; although we have derived the rising exponential
function (20) from the zero-dynamics principle, it still contains some parameters that should be
chosen appropriately; more precisely, it is given by ξ η Θ= − −⊤ − − ⊤♯

t e C t t( ) ( )( )A t t
1 1

1 , and we
need to determine η

1
so that the input field state is completely transferred to the memory

subsystem. In this section, we will see that this synthesis problem is clearly solved.
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5.1. The writing stage

The solution of the general linear equation (2) is explicitly given by

∫= −− − †a t e a t e e C b s s( ) ( ) ( ) d .( )A t t At

t

t
As

0
0

0

Since A is Hurwitz, we can take the limit → −∞t0 , which yields

∫= − *♯

−∞

− ⊤♯ ♯

a t e e C b s s( ) ( ) d ,A t
t

A s
1

1
1

where again t1 is the stopping time of the writing process. Let us now define the following
vector of rising exponential functions:

ν Θ= − −− − ⊤♯

t e C t t( ) ( ). (23)( )A t t
1

1

Then the above solution of ♯a t( )1 can be expressed as

∫ ν ν ν= = ⊗ … ⊗* * *♯

−∞

∞ ⊤⎡⎣ ⎤⎦a t t b t t I B I B( ) ( ) ( ) d ( ), , ( ) .S S n1 1

This is a vector of creation operators *a t( )k 1 , implying that it has to satisfy the canonical
commutation relation − =† ♯ ⊤ ⊤aa a a I( ) ; actually, we have

∫ ∫ ∫
∫ ∫

ν τ ν τ τ ν ν− = =

= = =

*† ♯ ⊤ ⊤

−∞

∞

−∞

∞
♯ ⊤

−∞

∞
♯ ⊤

−∞

− † −

−∞

− −† † † †

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( )

( )aa a a s b s b s s s s

e e C Ce s e e
s

e e s e I

( ) ( ), ( ) ( ) d d ( ) ( ) d

d
d
d

d .At
t

As A s A t At
t

As A s A t1
1

1 1
1

1

This relation shows that ν s( )i are orthonormal; ∫ ν ν δ=*
−∞

∞
s s s( ) ( ) di j ij.

Case I: single photon state. We consider the case where the input is the single photon
field state (7). Also the system is assumed to be in the separable ground state at initial time t0.
Then, through the interaction (see figure 2(a)) the whole state changes to

∑

∑

∑

Ψ γ

γ

γ

= −∞ … = −∞ … ⊗

= −∞ ⊗ …

= −∞ ⊗ −∞ …

*

*

* *

ξ

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

( )

( )

( )

t U t U t s B

U t s I B

s U t I B U t

( ) ( , ) 0, , 0 1 ( , ) 0, , 0 0

( , ) 0, , 0 0

( , ) ( , ) 0, , 0 0 ,

S
F

S
k

k k F

k
k S k S F

k
k S k S F

1 1 1

1

1 1

whereU t t( , )0 1 denotes the unitary time evolution (1). We here set the basis functions γ t( )
k

to the
rising exponential functions ν t( )k given in equation (23), meaning that the input pulse shape (5)
is chosen as

∑ξ ν=t s t( ) ( ). (24)
k

k k

Then, noting that ν= −∞ −∞ −∞ = ⊗* * * *a t U t a U t I B( ) ( , ) ( ) ( , ) ( )k k S k1 1 1 , we obtain

∑ ∑Ψ = −∞ … = ⊗*
⎡
⎣⎢

⎤
⎦⎥t s a s( ) ( ) 0, , 0 0 1 0 , (25)

k
k k S F

k
k

k

S
F1

( )
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where ∣ 〉 = … …1 0, , 1, , 0k
S S

( ) with 1 appearing only in the kth entry. Therefore, through the
interaction, at time =t t1 the system completely acquires the input code state with coefficient
s{ }k ; the resulting system state is highly entangled among the nodes (see figure 2(b)). The
optimal input pulse shape is given by the rising exponential function of the form (20), as
expected in section 4.2. But the point here is that we now know that the parameter vector η

1
in

equation (20) exactly corresponds to the superposition coefficients s{ }k . Together with the
structure of the memory subsystem, this fact tells us how we should design the input pulse
shape ξ t( ); this will be more precisely discussed in the next subsection.

Case II: coherent state. Next, let us consider the case where the input is the coherent field
state (9). Again the system is in the ground state at → −∞t0 . Then, through the interaction the
whole state becomes

Ψ = −∞ … ⊗

= −∞ −∞ …*

∑

∑

α γ α γ

α γ α γ

* − *

* − *

( ) ( )

( ) ( )

t U t e

U t e U t

( ) ( , ) 0, , 0 0

( , ) ( , ) 0, , 0 0 .

S
B B

F

B B
S F

1 1

1 1

k k k k k

k k k k k

Therefore, by setting the basis functions γ t( )
k

to the rising exponential (23), i.e.

∑α ν α ν α Θ= = = − −⊤ ⊤ − − ⊤♯

f t t t e C t t( ) ( ) ( ) ( ), (26)( )

k
k k

A t t
1

1

Figure 2. The perfect memory procedure for the single photon input state in a 5-node
passive linear network. The system can be tuned so that the (3, 4, 5) nodes become
decoherence free; hence these nodes constitute the memory subsystem. The (1, 2) nodes
are the buffer subsystem. (a) The single photon code state with = =s s 01 2 is sent
through the input optical field with pulse shape ν t( ). (b) At time =t t1, the perfect state
transfer has been completed. The system is then modulated and the memory subsystem
is decoupled. (c) The transferred state is preserved during the period t t[ , ]1 2 . (d) At =t t2

the memory subsystem is again coupled to the buffer subsystem and thus the optical
field. (e) The perfect copy appears in the output optical field with pulse shape ν̃ t( ).
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and again noting that ν= −∞ −∞ −∞ = ⊗* * * *a t U t a U t I B( ) ( , ) ( ) ( , ) ( )k k S k1 1 1 , we obtain

Ψ α α= … = …∑ α α* −∞ − * −∞t e( ) 0, , 0 0 , , 0 . (27)a a
S F n S F1

( ) ( )
1

k k k k k

That is, the system state is changed to the product of coherent states α∣ 〉k . Hence, similar to the
single photon case, the perfect state transfer is possible by sending the information α{ }k over the
rising exponential pulse field.

5.2. The storage stage

As mentioned in sections 1 and 2.4, the key architecture of an ideal memory device is that the
system contains the tunable memory subsystem that can be switched to DF mode in the storage
stage or non-DF mode in the other two stages; now we are in the storage stage. Especially to
describe the idea explicitly, let us consider the case n = 5 only in this subsection and assume
that, after the writing process has been completed at time =t t1, the system can be immediately
switched so that its dynamical equation is of the following form:

= − ˜ = +
†⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥t

a
a

A O

O O

a
a

C

O
b t b t C a t b t

d
d

( ), ( ) ( ) ( ),B

M

B B

M

B
B B

where = ⊤a a a[ , ]B 1 2 is the buffer mode and = ⊤a a a a[ , , ]M 3 4 5 is the memory mode. Clearly, aM

constitutes a DF subsystem. Hence, in the single photon input case, the whole state ∑ ∣ 〉= s 1
k k

k
S1

5 ( )

cannot be preserved, but only its (3, 4, 5) components can be. This means that the original field
state ∣ 〉ξ1 F with = =s s 01 2 can be perfectly transferred and stored in the memory subsystem;
hence the input pulse shape should be synthesized by multiplying the classical information
s s s( , , )3 4 5 with the basis functions ν ν νt t t( ( ), ( ), ( ) )3 4 5 , generating as a result

ξ ν ν ν= + +t s t s t s t( ) ( ) ( ) ( )3 3 4 4 5 5 . Indeed, in this case, the whole state just after the writing
process is given by

Ψ = ⊗ + + ⊗[ ]t s s s( ) 0, 0 1, 0, 0 0, 1, 0 0, 0, 1 0 ,F1 3 4 5

and thus the state + +s s s1, 0, 0 0, 1, 0 0, 0, 13 4 5 is preserved; see figure 2(c).
The idea is the same for the coherent input case. That is, the state

Ψ α α α= ⊗ ⊗t( ) 0, 0 , , 0 F1 3 4 5

can be perfectly transferred and stored in the memory subsystem.

5.3. The reading stage

Suppose that the state has been perfectly stored during the period t t[ , ]1 2 ; hence the reading stage
starts at time =t t2 with the initial state Ψ∣ 〉 = ∑ ∣ 〉 ⊗t s( ) 1 0

k k
k

S F2
( ) for the single photon

input case or Ψ α α∣ 〉 = ∣ … 〉 ⊗t( ) , , 0n S F2 1 for the coherent input case; see figure 2(d). Note
that, as described in section 5.2, only some elements of s{ }k or α{ }k , which represents the
classical information of the stored state, are not zero. To retrieve this initial state, we switch the
system matrices so that the memory subsystem again couples to the buffer subsystem and thus
the optical field; in particular, we take the same system matrices Ω and C (and thus A) as in the
writing stage. Thus note that A is Hurwitz.
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To describe the reading stage, first, we particularly focus on the following quantity:

∫ ∫

∫ ∫

∫ ∫ ∫

∫

˜ = +

= − +

= −

+

∞
− †

∞
− †

∞
− † − − †

∞
− † −

∞
− † − †

∞
− †

† †

†

† †

†

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

e C b t t e C Ca t b t t

e C C e a t e e C b s s b t t

e C Ce t a t e C Ce e C b s s t

e C b t t
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t
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The first term is a t( )2 . For the second and the third terms, by defining ∫= − †K t e C b s s( ) : ( ) d
t

t As

2

,
which leads to = − †K t t e C b td ( )/d ( )At , we find that they become

∫ ∫ ∫− + =

= − =

∞
− †

∞
− −

∞† † † †⎡⎣ ⎤⎦e C Ce K t t e e
K t

t
t e

t
e e K t t

e K t

( ) d
d ( )

d
d

d
d

( ) d

( ) 0.

( ) ( )
t

A t t At

t

A t t At A t

t

A t At

At
2

2

2

2

2 2

2

2

As a result, we have

∫ ∫ ν= ˜ = ˜ ˜* *♯
∞

− ⊤

−∞

∞⊤

a t e C b t t t b t t( ) ( ) d ( ) ( ) d , (28)( )
t

A t t
2

2

2

where

ν Θ˜ = −− ⊤⊤

t e C t t( ) ( ). (29)( )A t t
2

2

As in the previous case, ν̃ t( )i are orthonormal; ∫ ν ν δ˜ ˜ =*
−∞

∞
t t t( ) ( ) di j ij. Note that ν̃ t( ) is a

generalization of a decaying exponential function. Moreover, equation (28) leads to

∫
∫
∫ ∫

ν

ν

ν ν

ν ν

∞ ∞ = ˜ ∞ ˜ ∞

= ˜ ∞ ∞

= ˜ ∞ ∞ = ˜

= ⊗ ˜ … ⊗ ˜

* * *

* * *

* * *

* *

♯

−∞

∞

−∞

∞

−∞

∞

−∞

∞

⊤⎡⎣ ⎤⎦

U t a t U t t U t b t U t t

t U t U t t b t U t t U t t

t U t b t U t t t b t t

I B I B

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) d

( ) ( , ) ( , ) ( ) ( , ) ( , ) d

( ) ( , ) ( ) ( , ) d ( ) ( ) d

( ), , ( ) .S S n

2 2 2 2 2

2 2 2 2

1

Case I: Single photon state. The initial state is now Ψ∣ 〉 = ∑ ∣ 〉 ⊗t s( ) 1 0
k k

k
S F2

( ) . Then,
through the interaction, this state changes to:
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∑ ∑

∑

∑ ∑

Ψ

ν

∞ = ∞ ⊗ = ∞ …

= ∞ ∞ …

= ⊗ ˜ … = … ⊗

*

* *

*
ν̃

⎡
⎣⎢

⎤
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⎡
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⎤
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⎤
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k
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k
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k
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2
( )

2 2
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k

Therefore, certainly the field state recovers the input state (7), which is now carried by the
output field with pulse shape (29). The system state returns to the ground state; see figures 2(d),
(e).

Case II: Coherent state. The initial state is Ψ α α∣ 〉 = ∣ … 〉 ⊗t( ) , , 0n S F2 1 . Then,
through the interaction, this state changes to:

Ψ α α∞ = ∞ … ⊗ = ∞ …

= ∞ ∞ …

= … = … ⊗ ˜

*

∑

∑

∑

α α

α α

α ν α ν

* − *

* − *

* ˜ − * ˜

U t U t e

U t e U t

e f

( ) ( , ) , , 0 ( , ) 0, , 0 0

( , ) ( , ) 0, , 0 0

0, , 0 0 0, , 0 ,

( ) ( )

( ) ( )

( ) ( )

n S F
a t a t

S F

a t a t
S F

B B
S F S

F

2 1 2

2 2

k k k k k

k k k k k

k k k k k

2 2

2 2

where f̃
F
is a coherent field state with pulse shape

∑α ν˜ = ˜f t t( ) ( ).
k

k k

Thus, similar to the single photon input case, the stored coherent states α α∣ … 〉, , n S1 leak into the
output field with pulse shape (29), and we can retrieve the full information about α{ }k contained
in the coherent field state ∣ ˜ 〉f F.

6. Statistical equations in the writing stage

Here we derive the time evolution equations of the statistics in the writing stage. These
equations are useful for numerical simulation, as demonstrated in the next section.

Case I: single photon state. In the case of a single photon state, we evaluate the following
matrix of operators:

= = ⋮ …
*

*

♯ ⊤

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

[ ]N a a
a

a

a a, , .

n

n

1

1

The photon is distributed in the system according to the statistics represented by the correlation
matrix = 〈 ∣ ∣ 〉*

ξ ξN a a( 0, 1 0, 1 )i j11 . The time-evolution equation of N 11 is, together with the
vector 〈 〉 = 〈 ∣ ∣ 〉 … 〈 ∣ ∣ 〉* *

ξ ξ
♯ ⊤a a a[ 0, 1 0, 0 , , 0, 1 0, 0 ]n10 1 , given by

ξ ξ= + − −*♯ ⊤ ⊤ ♯ † ♯ ♯

t
N A N N A t C a t a C

d
d

( ) ( ) , (30)11 11 11
10 10

ξ= − *♯ ♯ ♯ ⊤

t
a A a C t

d
d

( ). (31)
10 10
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The solution of equation (31) is readily obtained as

∫ ξ= − *♯ − ⊤♯ ♯

a t e e C s s( ) ( ) d ,A t

t

t
A s

10
0

where 〈 〉 =♯a t( ) 00 10 is used. In general, the Lyapunov differential equation
= + +†Q t AQ QA Rd /d , with = †R t R t( ) ( ) time varying, has the solution of the form

∫= +− − − −† † †⎛
⎝⎜

⎞
⎠⎟Q t e Q t e e e R s e s e( ) ( ) ( ) d .( ) ( )A t t A t t At

t

t
As A s A t

0
0 0

0

If A is Hurwitz, in the limit of → −∞t0 , this becomes

∫=
−∞

− − † †
⎜ ⎟⎛
⎝

⎞
⎠Q t e e R s e s e( ) ( ) d .At

t
As A s A t

Using this result and expression (23), we have

∫ ∫ξ ν ξ ν=
−∞

∞
†

†

−∞

∞
†⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠N t t t t t t t( ) ( ) ( ) d ( ) ( ) d .1 11

If we send the single photon code state over the input field with rising exponential pulse shape
ξ ν= ∑t s t( ) ( )

k k k , then we have 〈 〉 = *N t s s( ) ( )i j1 11 due to ∫ ν ν δ=*
−∞

∞
t t t( ) ( ) di j ij. This means that

the input single photon state is distributed among the network so that the kth node has the mean
photon number ∣ ∣sk

2 at time t1.
Case II: coherent state. In this case the statistics is more convenient, because a coherent

state is completely characterized only by its mean and variance. In particular, the dynamics of
the mean, =m t a t( ) ( ) , was already obtained in equation (17), with f (t) particularly given by

αΘ= − −− −†

f t Ce t t( ) ( )( )A t t
1

1 in equation (26). Hence it can immediately be obtained that the
solution in ⩽t t1 is:

∫

∫ α

α α
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† †

† †
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A t t At

t

t
As A s A t

A t t A t t A t t A t t

0

0

0

0

0

0

0

1

0 1 0 1 0

Hence, by taking the limit → −∞t0 , we have α=m t( )1 ; i.e. α〈 〉 =a t( )k k1 . Also, we evaluate
the covariance matrix Δ Δ= 〈 〉♯ ⊤V a a with Δ = −a a a , which takes zero if and only if the
state is a coherent state. Similar to the single photon case, we find that V(t) obeys

= +♯ ⊤V t t A V t V t Ad ( )/d ( ) ( ) , which readily yields = →− −♯ ⊤

V t e V t e O( ) ( )( ) ( )A t t A t t
0

0 0 as
→ −∞t0 . As a result, the kth node becomes the coherent state α∣ 〉k at time =t t1. We note

that the mean of the output field is ˜ = + =f t Cm t f t( ) ( ) ( ) 0 for all ⩽t t1; thus the zero-
dynamics principle is certainly satisfied.

7. Example: perfect memory network with atomic ensembles

This section is devoted to study a passive linear network composed of atomic ensembles, which
contains a tunable DF component. A numerical simulation will demonstrate how the input field
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state is transferred to the memory subsystem and what the input pulse shape to be engineered
for perfect memory looks like.

7.1. The atomic ensembles trapped in a cavity

The system is three large atomic ensembles trapped in a single-mode cavity, depicted in
figure 3; a detailed description of this system is found in, e.g., [40–45]. The annihilation
operator a1 represents the cavity mode and =a k( 2, 3, 4)k is the annihilation operator
approximating the collective lowering operator of the kth ensemble. The internal cavity light
field and the kth ensemble interact with each other through external pulse lasers with Rabi
frequencies ωk and ω′k. The coupling Hamiltonian is given by

∑μ
δ

ω ω= + +* ′ *ϕ ϕ

=

′⎡⎣ ⎤⎦( )H
N

a e a e a
2

h.c. , (32)
k

k
i

k k
i

kac
2

4

1
k k

where ϕ π∈ [0, 2 )
k

is the laser phase, N is the number of atoms in each ensemble, μ is the
coupling strength and δ is the detuning. The spontaneous emission of each atom is negligible
for typical atoms such as 87Rb. We also assume that the second and third ensembles can be
manipulated via external magnetic fields, which introduce the self-Hamiltonian

Δ Δ= −* *H a a a aa 2 2 3 3 with Δ denoting the tunable strength of the magnetic field. We here
set the parameters as ω ω ω= > ′ =0, 0k k and ϕ π= /2

k
for =k 2, 3, 4, and define

μω δ=g N /2 ; then, the total system Hamiltonian is given by

Δ Δ

Δ
Δ

Ω

= + = − + + + − + +

=
−
− −
−

=

* * * * * *

* * * * †⎡⎣ ⎤⎦
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )H H H a a a a iga a a a ig a a a a

a a a a

ig ig ig
ig
ig
ig

a
a
a
a

a a

( )

, , ,

0
0 0

0 0
0 0 0

.

a ac 2 2 3 3 1 2 3 4 2 3 4 1

1 2 3 4

1

2

3

4

The cavity field couples to an external optical field with continuous mode b(t) used for state
transfer, at the beam splitter with transmissivity proportional to κ; this means that the system–

field coupling Hamiltonian = −* † †H t i b t Ca a C b t( ) [ ( ) ( )]int , which was defined above
equation (1), is specified with κ=Ca a1. Consequently, the system matrices are given by

Figure 3. The passive linear network composed of three large atomic ensembles and a
ring cavity. a1 denotes the cavity mode and =a k( 2, 3, 4)k is the annihilation operator
approximating the collective lowering operator of the kth atomic ensemble.
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Ω

κ
Δ

Δ
κ= − − =

−
− −
−
−

=†

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

A i C C

g g g
g i
g i
g

C
1
2

2
0 0

0 0
0 0 0

, [ , 0, 0, 0].

Note that this passive linear system can be physically realized in some other systems, such as a
mechanical oscillator array connected in a single mode cavity.

7.2. The perfect memory procedure

We can prove that, when Δ ≠ 0, the matrix A is Hurwitz; i.e. the real part of all the eigenvalues
of A is negative. A convenient way to see this fact is to use the property that the controllability
matrix …† † − †C AC A C[ , , , ]n 1 is of full rank iff A is Hurwitz [52]. Thus the system does not
contain a DF component when Δ ≠ 0. On the other hand, if we turn off the magnetic field and
set Δ = 0, then a DF subsystem appears, as shown below. Let us take the following unitary
matrix:

=
−
− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

U

1 0 0 0
0 1 3 2 6 0

0 1 3 1 6 1 2

0 1 3 1 6 1 2

.

This transforms the system equation to

˙′ = ′ ′ − ′ ˜ = ′ ′ +†a t A a t C b t b t C a t b t( ) ( ) ( ), ( ) ( ) ( ),

where

κ
Δ Δ

Δ Δ Δ
Δ Δ Δ

κ

′ = =
+ +
− −

−

′ = =

−
− −

− − −
−

′ = =

†

†

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

( )a U a

a

a a a

a a a

a a

A U AU

g

g i i

i i i

i i i

C CU

( ) 3

2 6

( ) 2

,

2 3 0 0

3 0 2 2 6 6

0 2 2 2 3 6

0 6 6 3 6 2

,

[ , 0, 0, 0]. (33)

1

2 3 4

2 3 4

3 4

Therefore, when Δ = 0, the system takes a form of equation (10). That is, = ′ ′ ⊤a a a[ , ]M 3 4 is not
affected by the incoming field b(t) and it does not appear in the output field b̃ t( ); hence

= ′ ′ ⊤a a a[ , ]M 3 4 is the memory subsystem that can be switched to a DF or non-DF subsystem, just
by controlling the external magnetic field. This two-mode subsystem works as a perfect
memory that preserves any state of the form +s s0, 0, 1, 0 0, 0, 0, 13 4 in the case of single
photon state or α α∣ 〉0, 0, ,3 4 in the case of coherent state. Note that ′a3 and ′a4 depend on the
atomic modes a a a( , , )2 3 4 and not on the cavity mode a1, implying that the state is indeed stored

21

New J. Phys. 16 (2014) 073032 N Yamamoto and M R James



in the atomic ensembles. Also it should be remarked that ′a3 and ′a4 take the form of continuous-
variable syndromes used for quantum error correction [65, 66].

Here we describe the concrete procedure of the writing, storage and reading processes, in
the case of single photon input; see figure 4.

• A single photon field state is prepared in the form ∣ 〉 + ∣ 〉ν ν′ ′s s1 13 43 4
, where ν′ t( )3 and ν′ t( )4 are

the third and fourth elements of the vector of rising exponential functions
ν Θ′ = − ′ −− ′ − ⊤♯

t e C t t( ) ( )( )A t t
1

1 with ′A and ′C given in equation (33). Note in this stage
the magnetic field is ON; Δ ≠ 0.

• The field couples to the system until ⩽t t1. The perfect state transfer is achieved in the end,
at =t t1, by sending the input state over the optical field with pulse shape ν′ t( ) described
above. The whole state changes to ⊗ + ∣ 〉 ⊗s s0, 0 ( 1, 0 0, 1 ) 0 F3 4 .

• We turn off the magnetic field and set Δ = 0; then the memory subsystem with modes
′ ′a a( , )3 4 becomes DF and its state +s s1, 0 0, 13 4 is preserved during an arbitrary time

interval t t[ , ]1 2 .

• At a later time t2, we turn on the magnetic field (i.e. set Δ ≠ 0) to retrieve the stored state.
Then the memory subsystem again couples to the optical field, and the perfect copy

Figure 4. The memory procedure for the passive linear network composed of three
atomic ensembles trapped in a single-mode cavity. The number ′k indicates the
subsystem with mode ′ak . (a) The single photon state is sent through the input optical
field with pulse shape ν′ t( ), where in this stage the magnetic field is turned on (Δ ≠ 0).
(b) At time =t t1 the system acquires the state +s s0, 0, 1, 0 0, 0, 0, 13 4 ; that is,
the input state is perfectly transferred into the third and fourth nodes. (c) Then the
magnetic field is turned off (Δ = 0) so that the memory subsystem with modes ′ ′a a( , )3 4
is decoupled from the buffer subsystem with modes ′ ′a a( , )1 2 and the input–output
optical field; hence it becomes decoherence free and the transferred state is perfectly
preserved. (d) At =t t2 we again set Δ ≠ 0. The memory subsystem again couples to
the buffer subsystem and the optical field. (e) The perfect copy appears in the output
field with the pulse shape ν̃′ t( ).
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∣ 〉 + ∣ 〉ν ν˜ ˜′ ′s s1 13 43 4
appears in the output field with the pulse shape specified by

ν Θ˜′ = ′ −′ − ⊤⊤

t e C t t( ) ( )( )A t t
2

2 .

Recall that the optimal input pulse shape is determined by the properties (zeros) of the
memory system and this corresponds to the impedance matching mentioned in section 3.2. Now
we should note that an additional matching condition is not imposed on the interaction between
the cavity mode and the atomic ensembles, although perfect state transfer from the former to the
latter is certainly achieved. This result seems to be inconsistent with the fact obtained in
[68–71], showing that perfect state transfer from a cavity to an inhomogeneously broadened
(IB) atomic ensemble requires strict impedance matching between them. But there is a clear
difference between our case and those studies; in the case dealing with the IB ensemble, due to
the matching condition, an input field state with arbitrary (yet within a finite band-width)
temporal shape is allowed to be completely absorbed into the ensemble (see, e.g., [10, 72] for
the recent experimental results), while in our case the optimal pulse shape has to be strictly
specified. Exploring a combined schematic of these two memory procedures, which would
allow weaker pulse shaping and weaker impedance matching, should be an interesting future
work.

7.3. Numerical simulation

Here we demonstrate a numerical simulation of the writing stage of the above memory
procedure. The parameters are set to κ = 2, g = 1 and Δ = 1; note again in this stage Δ ≠ 0 and
there is no DF subsystem. The input is a single photon field state with coefficients

= =s s 1/ 23 4 , which is carried by the optical field with pulse shape ν′ t( )3 and ν′ t( )4 as
mentioned above. The initial time is κ = −t /2 400 and the stopping time is =t 01 .

First, figure 5(a) shows the absolute values of ν′ t( )3 and ν′ t( )4 . These are the pulse shapes we
need to correctly engineer for the desirable perfect state transfer. A notable point is that they are
no longer of a rising exponential shape such as equation (14); in particular, they take the value

Figure 5. (a) Time evolution of the absolute values of ν′ t( )3 (red) and ν′ t( )4 (green). (b)
Time evolution of the mean photon number at the ith nodes, 〈 ′ 〉 = 〈 ′* ′ 〉n t a t a t( ) ( ) ( )i i i .
The blue, black, red and green lines represent the time evolution of
〈 ′ 〉 〈 ′ 〉 〈 ′ 〉n t n t n t( ) , ( ) , ( )1 2 3 and 〈 ′ 〉n t( )4 , respectively.
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zero at the stopping time =t 01 . A similar non-rising exponential pulse function was also found
in [67], achieving perfect state transfer in an integrated quantum memory system. It looks as if
we can realize this kind of pulse shape by combining some Gaussian wave packets, which
might be a desirable feature from the engineering viewpoint.

Next, figure 5(b) shows the time-evolutions of the mean photon number of each node, i.e.
〈 〉 = 〈 〉 =′ ′* ′n t a t a t i( ) ( ) ( ) ( 1, 2, 3, 4)i i i , which can be computed by numerically solving
equations (30) and (31). As expected from the theory, the memory subsystem with modes

′ ′a a( , )3 4 perfectly acquires the photon with mean photon number 〈 〉 = 〈 〉 =′ ′n n(0) (0) 0.53 4 at
=t 01 . We should note that the transportation of the photon from the input field to the memory

subsystem occurs rapidly only in the last few periods; in fact, almost all the energy contained in the
input pulses ν′ t( )3 and ν′ t( )4 is confined in this short period. Hence, we need to be very careful to
stop the writing process at the accurate time =t 01 , because the desired state

⊗ +0, 0 ( 1, 0 0, 1 )/ 2 is fragile in the following sense. For instance if we turn off the
magnetic field a bit earlier than =t 01 , say κ= = −t t /2 11 1 , then the whole systemʼs state
generated is roughly + + +0.1 1, 0, 0, 0 0.1 0, 1, 0, 0 0.52 0, 0, 1, 0 0.4 0, 0, 0, 1
(unnormalized); thus the state of the memory subsystem becomes a mixed state (unnormalized)

ρ = + + +′ ′ 0.01 0, 0 0, 0 (0.52 1, 0 0.4 0, 1 ) (0.52 1, 0 0.4 0, 1 )3 4

due to the decoherence added to the buffer subsystem with modes ′ ′a a( , )1 2 during the storage
period. Hence, an important future work is to find a suitable set of parameters κ Δg( , , ) so that
the time-evolutions of the mean photon numbers of the memory subsystem become as flat as
possible at the stopping time t1.

8. Conclusion

In this paper, for a general passive linear system, we have provided a designing method of input
pulse shape that perfectly transports a single photon or coherent field state to a memory
subsystem, which can be switched to a DF subsystem. The method is general and simple, so it
can be directly applied to a large-scale network; in fact, in the example studied in section 7, we
found that the explicit forms of ν′ t( )3 and ν′ t( )4 are readily obtained. The results are based on the
zero-dynamics principle. Although in this paper this principle was used only for synthesizing
the input pulse shape, it is indeed a wide concept that works in a more general situation. For
example, the zero-dynamics principle can be applied to the case where, instead of pulse shaping
of the input field, some time-varying controllable parameters of the system should be
engineered due to practical limitation; also the system can be nonlinear; further, we could deal
with an IB atomic ensemble memory that allows an arbitrary temporal shape for perfect state
transfer, which was discussed in section 7.2. In any case, following the zero-dynamics principle,
we should design the system so that the output is zero or more generally the output is
minimized. Moreover, the zero-dynamics corresponds to the time-evolution of a state free from
any energy loss, thus it represents a coherent, yet non-unitary, gate operation on the system state
for quantum information processing; that is, designing a desired manipulation of a state in an
open system is no more than designing a desired zero-dynamics. All these problems will be
addressed in future works.
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Appendix A. Active memory system

In this paper, we thoroughly study a passive linear system, but there are many systems
containing an active component. In general, for such an active system the energy balance
identity (18) does not hold, hence the zero-dynamics principle does not anymore mean the
perfect energy transfer. Hence, it should be worth doing a case study to see if an active system
could allow perfect state transfer.

Let us consider the following active system:

κ ϵ
ϵ κ κ= − −

− −* * *
⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦ ⎡
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⎤
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⎡
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⎤
⎦⎥t

a
a

a
a

b
b

d
d

1
2

.

In optics, this represents the dynamics of an optical parametric oscillator, where ϵ denotes the
squeezing strength [34, 35]. Note that the system becomes passive if ϵ = 0. The above equation
can be explicitly solved:

∫
ϵ ϵ
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− − + −
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Unlike the passive case, the field annihilation operator *b t( ) appears in the equation. Then under
the same setting taken in section 3 where the input field state is given by a superposition of the
vacuum and ∣ 〉ξ1 F1

with the pulse shape function ξ t( )1 given below, we obtain ( → − ∞t0 and
=t 01 )
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This equation implies that, when ϵ ≠ 0, perfect state transfer is impossible due to the third term,
which clearly stems from the active element of the system. To carry out efficient state transfer,
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we need some approximation; in the above case, if κ is much bigger than ϵ, then the system state
becomes approximately the desired one to be stored. Another example is found in [28], where
the system is an atomic ensemble containing an active component, but by introducing a fast
oscillating magnetic field it is approximated by a passive one, which was further shown to be a
perfect memory.

Appendix B. Dark state principle

The basic idea of the dark state principle is as follows. For a system coupled to a probe field, we
continuously monitor the system by a photo detector measuring the output field; then if the
detector counts no photon, this means that the system is in a dark state and has a time evolution
without loss of energy. Here we apply this dark state principle to the writing problem discussed
in section 3 and derive the same result; that is, in this sense, the zero-dynamics principle and the
dark state principle are equivalent, though there is a big difference in practice as shown below.

First let us consider the case where we want to send a coherent field state to the system. In
general, if we use a photon counter to estimate the system observables, our state (knowledge)
conditioned on the measurement results is updated by the following stochastic master equation
[73, 74] (the scattering operator is now set to be the identity):

ρ ρ ρ α ρ α

ρ α ρ αρ α ρ ρ

= + +

+ + + + ∣ ∣ − −

* *

* * *⎜ ⎟

⎡⎣ ⎤⎦
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where

ρ ρ ρ ρ ρ ρ α α α= − + − − = + + + ∣ ∣* * * * * *⎡⎣ ⎤⎦  ( )[ ]i H L L L L L L L L L L, /2 /2, Tr .2

α t( ) is the pulse shape of the input coherent light field and dY(t) is the measurement result (0 or
1) obtained during the small time interval +t t t[ , d ). Also H and L are the system operators.
Now since the ensemble averaging over the measurement results leads to a standard master
equation, we have  − =Y t(d d ) 0. Then, the counting probability of the measurement result
‘1’ during +t t t[ , d ) is given by  = = t Y t(d ) (d ) d1 . Hence if = ∀ t0 , the system is in a
dark state and loses no energy into the output field; the state satisfying this condition is called
the dark state. In our case, where the system is the single-mode passive linear system with H = 0
and κ=L a, the dark state can be specified to a coherent state ρ β β=t t t( ) ( ) ( ) because we
now know that the systemʼs state is always a coherent state. The condition = 0 then becomes
κ β κ αβ α β α∣ ∣ + + + ∣ ∣ =* *( ) 02 2 , which yields β α κ= − / . Now, under the dark state
condition the time evolution of the conditional state is identical to that of the averaged one,
which consequently leads to β κβ κ α˙ = − −/2 . These two equations yield α κα˙ = /2, thus the
input pulse shape must be a rising exponential function α α= κ −t e( ) ( )t t /2

0
0 .

Next let us consider the case where the input is a single photon field state. As in the above
case, the dark state principle is represented in terms of the conditional state subjected to the
single-photon stochastic master equation; see equation (43) in [74]. In this case the probability
to obtain the measurement result ‘1’ during +t t t[ , d ) is given by
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 ρ ρ ξ ρ ξ ρ ξ= = + + + ∣ ∣* * *  ( ) ( ) ( ) ( )t t L L L L I(d ) d , Tr Tr Tr Tr ,1
11 10 01 00 2

where ξ t( ) is the temporal pulse shape of the single photon field. ρ t( )ij are the operators
characterizing the conditional state. Under the dark state condition = 0, they obey

ρ ρ ρ ξ ρ ξ ρ ρ ρ ξ ρ ρ ρ ρ˙ = + + ˙ = + ˙ = =* * * *⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦   ( )L L L, , , , , , ,11 11 01 10 10 10 00 00 00 01 10

which are identical to the single-photon master equation [53]. The initial conditions are
ρ ρ= =(0) (0) 0 011 00 and ρ ρ= =(0) (0) 010 01 . In our case H = 0 and κ=L a, these
differential equations can be explicitly solved, yielding ρ = − +x x(1 ) 0 0 1 111 ,
ρ = z 0 101 , and ρ = 0 000 , where x(t) and z(t) satisfy κ κ ξ ξ˙ = − − + * *x x z z( ) and

κ κ ξ˙ = − − *z z/2 . Substituting these solutions ρ t( )ij for the dark state condition = 0, we
have κ κ ξ ξ ξ+ + + ∣ ∣ =* *x z z( ) 02 . Combining these three equations, we end up with the
relation ξ κξ˙ = /2 and thus see that the input pulse shape has to be a rising exponential function
ξ ξ= κ −t e( ) ( )t t /2

0
0 .

Summarizing, we have recovered the same result obtained in section 3, showing that the
dark state principle is equivalent to the zero-dynamics principle. Both principles require no
energy leaking from the system into the output field, but their approaches are different; the dark
state principle is represented in the Schrödinger picture, while the Heisenberg picture is used to
describe the zero-dynamics principle. As a result, in the former case we need to solve the master
equation, which is sometimes a hard task as demonstrated above especially in the single photon
field case. On the other hand, we have seen in section 4.2 that the zero-dynamics principle
allows us to derive the rising exponential function very easily, even in the general setup; also
the transfer-function-based treatment of the principle is notable and possibly very useful from
the viewpoint of the applicability of the linear response theory to quantum memory. Of course
these special advantages appear particularly in the linear case, and for more general nonlinear
memory systems we should be careful in choosing the approach.

References

[1] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Storage of light in atomic vapor
Phys. Rev. Lett. 86 783

[2] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Observation of coherent optical information storage in an
atomic medium using halted light pulses Nature 409 25

[3] Julsgaard B, Sherson J, Cirac J I, Fiurasek J and Polzik E S 2004 Experimental demonstration of quantum
memory for light Nature 432 482

[4] Chaneliere T, Matsukevich D N, Jenkins S D, Lan S-Y, Kennedy T A B and Kuzmich A 2005 Storage and
retrieval of single photons transmitted between remote quantum memories Nature 438 833

[5] Hedges M, Longdell J, Li Y and Sellars M 2010 Efficient quantum memory for light Nature 465 1052
[6] Briegel H J, Dur W, Cirac J I and Zoller P 1998 Quantum repeaters: the role of imperfect local operations in

quantum communication Phys. Rev. Lett. 81 26
[7] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Long-distance quantum communication with atomic

ensembles and linear optics Nature 414 413
[8] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Quantum repeaters based on atomic ensembles

and linear optics Rev. Mod. Phys. 83 1
[9] Lvovsky A I, Sanders B C and Tittel W 2009 Optical quantum memory Nat. Photonics 3 706

[10] Le Gouet J-L and Moiseev S A (ed) 2012 J. Phys. B: At. Mol. Opt. Phys. 45 (Special issue on quantum
memory)

27

New J. Phys. 16 (2014) 073032 N Yamamoto and M R James

http://dx.doi.org/10.1103/PhysRevLett.86.783
http://dx.doi.org/10.1038/35054017
http://dx.doi.org/10.1038/nature03064
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature09081
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1103/RevModPhys.83.33
http://dx.doi.org/10.1038/nphoton.2009.231


[11] Brennen G, Giacobino E and Simon C 2013 Focus on quantum memory New J. Phys. iopscience.org/1367-
2630/focus/Focus%20on%20Quantum%20Memory

[12] Beige A, Braun D and Knight P L 2000 Driving atoms into decoherence-free states New J. Phys. 2 22
[13] Kielpinski D, Meyer V, Rowe M A, Sackett C A, Itano W M, Monroe C and Wineland D J 2001 A

decoherence-free quantum memory using trapped ions Science 291 1013
[14] Lidar D A and Whaley K B 2003 Decoherence-free subspaces and subsystems Irreversible Quantum

Dynamics (Lecture Notes in Physics, vol 622) ed F Benatti and R Floreanini (Berlin: Springer) p 83
[15] Bacon D 2006 Operator quantum error-correcting subsystems for self-correcting quantum memories Phys.

Rev. A 73 012340
[16] Fleischhauer M and Lukin M D 2002 Quantum memory for photons: dark-state polaritons Phys. Rev. A 65

022314
[17] Chen Y-H et al 2013 Coherent optical memory with high storage efficiency and large fractional delay Phys.

Rev. Lett. 110 083601
[18] Xu Q, Dong P and Lipson M 2007 Breaking the delay-bandwidth limit in a photonic structure Nat. Phys. 3

406
[19] Tanaka Y, Upham J, Nagashima T, Sugiya T, Asano T and Noda S 2007 Dynamic control of the Q factor in a

photonic crystal nanocavity Nat. Mater. 6 862
[20] Elshaari A W, Aboketaf A and Preble S F 2010 Controlled storage of light in silicon cavities Opt. Express 18

3014
[21] Chang D E, Safavi-Naeini A H, Hafezi M and Painter O 2011 Slowing and stopping light using an

optomechanical crystal array New J. Phys. 13 023003
[22] Yoshikawa J, Makino K, Kurata S, van Loock P and Furusawa A 2013 Creation, storage, and on-demand

release of optical quantum states with a negative Wigner function Phys. Rev. X 3 041028
[23] Kielpinski D, Briggs R A and Wiseman H M 2013 Unavoidable decoherence in the quantum control of an

unknown state Quantum Meas. Quantum Metr. 1 1
[24] Gorshkov A V, Andre A, Lukin M D and Sorensen A S 2007 Photon storage in lambda-type optically dense

atomic media I. Cavity model Phys. Rev. A 76 033804
Gorshkov A V, Andre A, Lukin M D and Sorensen A S 2007 Photon storage in lambda-type optically dense

atomic media II. Free-space model Phys. Rev. A 76 033805
Gorshkov A V, Andre A, Lukin M D and Sorensen A S 2007 Photon storage in lambda-type optically dense

atomic media III. Effects of inhomogeneous broadening Phys. Rev. A 76 033806
[25] Novikova I, Gorshkov A V, Phillips D F, Sorensen A S, Lukin M D and Walsworth R L 2007 Optimal

control of light pulse storage and retrieval Phys. Rev. Lett. 98 243602
[26] Novikova I, Phillips N B and Gorshkov A V 2008 Optimal light storage with full pulse-shape control Phys.

Rev. A 78 021802
[27] Phillips N B, Gorshkov A V and Novikova I 2008 Optimal light storage in atomic vapor Phys. Rev. A 78

023801
[28] Muschik C A, Hammerer K, Polzik E S and Cirac J I 2006 Efficient quantum memory and entanglement

between light and an atomic ensemble using magnetic field Phys. Rev. A 73 062329
[29] He Q Y, Reid M D, Giacobino E, Cviklinski J and Drummond P D 2009 Dynamical oscillator−cavity model

for quantum memories Phys. Rev. A 79 022310
[30] Wang Y, Minar J, Hetet G and Scarani V 2012 Quantum memory with a single two-level atom in a half

cavity Phys. Rev. A 85 013823
[31] Aljunid S A, Maslennikov G, Wang Y, Dao H L, Scarani V and Kurtsiefer C 2013 Excitation of a single atom

with exponentially rising light pulses Phys. Rev. Lett. 111 103001
[32] Bader M, Heugel S, Chekhov A L, Sondermann M and Leuchs G 2013 Efficient coupling to an optical

resonator by exploiting time-reversal symmetry New J. Phys. 15 123008
[33] Gulati G K, Srivathsan B, Chng B, Cere A, Matsukevich D and Kurtsiefer C 2014 Counterintuitive temporal

shape of single photons arXiv:1402.5800

28

New J. Phys. 16 (2014) 073032 N Yamamoto and M R James

http://www.iopscience.org/1367-2630/focus/Focus%20on%20Quantum%20Memory
http://www.iopscience.org/1367-2630/focus/Focus%20on%20Quantum%20Memory
http://dx.doi.org/10.1088/1367-2630/2/1/322
http://dx.doi.org/10.1126/science.1057357
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevA.65.022314
http://dx.doi.org/10.1103/PhysRevA.65.022314
http://dx.doi.org/10.1103/PhysRevLett.110.177204
http://dx.doi.org/10.1038/nphys600
http://dx.doi.org/10.1038/nphys600
http://dx.doi.org/10.1038/nmat1994
http://dx.doi.org/10.1364/OE.18.003014
http://dx.doi.org/10.1364/OE.18.003014
http://dx.doi.org/10.1088/1367-2630/13/2/023003
http://dx.doi.org/10.2478/qmetro-2013-0001
http://dx.doi.org/10.1103/PhysRevA.76.033805
http://dx.doi.org/10.1103/PhysRevA.76.033805
http://dx.doi.org/10.1103/PhysRevA.76.033805
http://dx.doi.org/10.1103/PhysRevLett.98.243602
http://dx.doi.org/10.1103/PhysRevA.78.021802
http://dx.doi.org/10.1103/PhysRevA.78.032307
http://dx.doi.org/10.1103/PhysRevA.78.032307
http://dx.doi.org/10.1103/PhysRevA.73.062329
http://dx.doi.org/10.1103/PhysRevA.79.022310
http://dx.doi.org/10.1103/PhysRevA.85.062304
http://dx.doi.org/10.1103/PhysRevLett.111.103001
http://dx.doi.org/10.1088/1367-2630/15/12/123008
http://arXiv.org/abs/1402.5800


[34] Gardiner C and Zoller P 2000 Quantum Noise (Berlin: Springer)
[35] Wiseman H M and Milburn G J 2010 Quantum Measurement and Control (Cambridge: Cambridge

University Press)
[36] Law C K 1995 Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation Phys.

Rev. A 51 2537
[37] Chen Y 2013 Macroscopic quantum mechanics: theory and experimental concepts of optomechanics J. Phys.

B: At. Mol. Opt. Phys. 46 104001
[38] Leibfried D, Blatt R, Monroe C and Wineland D J 2003 Quantum dynamics of single trapped ions Rev. Mod.

Phys. 75 281
[39] Jensen K et al 2011 Quantum memory for entangled continuous-variable states Nat. Phys. 7 13
[40] Duan L M, Cirac J I and Zoller P 2002 Three-dimensional theory for interaction between atomic ensembles

and free-space light Phys. Rev. A 66 023818
[41] Matsukevich D N, Chaneliere T, Jenkins S D, Lan S Y, Kennedy T A B and Kuzmich A 2006 Deterministic

single photons via conditional quantum evolution Phys. Rev. Lett. 97 013601
[42] Parkins A S, Solano E and Cirac J I 2006 Unconditional two-mode squeezing of separated atomic ensembles

Phys. Rev. Lett. 96 053602
[43] Dimer F, Estienne B, Parkins A S and Carmichael H J 2007 Proposed realization of the Dicke-model

quantum phase transition in an optical cavity QED system Phys. Rev. A 75 013804
[44] Li G, Ke S and Ficek Z 2009 Generation of pure continuous-variable entangled cluster states of four separate

atomic ensembles in a ring cavity Phys. Rev. A 79 033827
[45] Hammerer K, Sorensen A S and Polzik E S 2010 Quantum interface between light and atomic ensembles Rev.

Mod. Phys. 82 1041
[46] Dong C, Fiore V, Kuzyk M C and Wang H 2012 Optomechanical dark mode Science 338 1609
[47] Wang Y D and Clerk A A 2012 Using dark modes for high-fidelity optomechanical quantum state transfer

New J. Phys. 14 105010
[48] Zhou K and Doyle J C 1997 Essentials of Robust Control (Englewood Cliffs, NJ: Prentice Hall)
[49] Isidori A 1995 Nonlinear Control Systems 3rd edn (Berlin: Springer)
[50] Nijmeijer H and van der Schaft A 1996 Nonlinear Dynamical Control Systems 3rd edn (Berlin: Springer)
[51] Gough J E, Gohm R and Yanagisawa M 2008 Linear quantum feedback networks Phys. Rev. A 78 062104
[52] Guta M and Yamamoto N 2013 Systems identification for passive linear quantum systems: the transfer

function approach Proc. 52nd IEEE CDC (arXiv:1303.3771)
[53] Gheri K M, Ellinger K, Pellizzari T and Zoller P 1998 Photon-wavepackets as flying quantum bits Fortschr.

Phys. 46 401
[54] Milburn G J 2008 Coherent control of single photon states Eur. Phys. J. 159 113
[55] Munro W J, Nemoto K and Milburn G J 2010 Intracavity weak nonlinear phase shifts with single photon

driving Opt. Commun. 283 741
[56] Baragiola B Q, Cook R L, Branczyk A M and Combes J 2012 N-photon wave packets interacting with an

arbitrary quantum system Phys. Rev. A 86 013811
[57] Zhang G and James M R 2013 On the response of quantum linear systems to single photon input fields IEEE

Trans. Autom. Control 58 1221
[58] Prauzner-Bechcicki J S 2004 Two-mode squeezed vacuum state coupled to the common thermal reservoir

J. Phys. A: Math. Gen. 37 173
[59] Huang S 2014 Double electromagnetically induced transparency and narrowing of probe absorption in a ring

cavity with nanomechanical mirrors J. Phys. B: At. Mol. Opt. Phys. 47 055504
[60] Manzano G, Galve F and Zambrini R 2013 Avoiding dissipation in a system of three quantum harmonic

oscillators Phys. Rev. A 87 032114
[61] Yamamoto N 2014 Decoherence-free linear quantum subsystems IEEE Trans. Autom. Control 59 1845
[62] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Quantum state transfer and entanglement distribution

among distant nodes in a quantum network Phys. Rev. Lett. 78 3221

29

New J. Phys. 16 (2014) 073032 N Yamamoto and M R James

http://dx.doi.org/10.1103/PhysRevA.51.2537
http://dx.doi.org/10.1088/0953-4075/46/10/104001
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1038/nphys1819
http://dx.doi.org/10.1103/PhysRevA.66.023818
http://dx.doi.org/10.1103/PhysRevLett.97.013601
http://dx.doi.org/10.1103/PhysRevLett.96.053602
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevA.79.043204
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1126/science.1228370
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1103/PhysRevA.78.062104
http://arXiv.org/abs/1303.3771
http://dx.doi.org/10.1002/(ISSN)1521-3978
http://dx.doi.org/10.1140/epjst/e2008-00699-5
http://dx.doi.org/10.1016/j.optcom.2009.10.051
http://dx.doi.org/10.1103/PhysRevA.86.013811
http://dx.doi.org/10.1109/TAC.2012.2228036
http://dx.doi.org/10.1088/0305-4470/37/15/L04
http://dx.doi.org/10.1088/0953-4075/47/5/055504
http://dx.doi.org/10.1103/PhysRevA.87.032114
http://dx.doi.org/10.1103/PhysRevLett.78.3221


[63] Beige A, Braun D, Tregenna B and Knight P L 2000 Quantum computing using dissipation to remain in a
decoherence-free subspace Phys. Rev. Lett. 85 1762

[64] Hush M R, Carvalho A R R, Hedges M and James M R 2013 Analysis of the operation of gradient echo
memories using a quantum input–output model New J. Phys. 15 085020

[65] Braunstein S L 1998 Error correction for continuous quantum variables Phys. Rev. Lett. 80 4084
[66] Lloyd S and Slotine J J E 1998 Analog quantum error correction Phys. Rev. Lett. 80 4088
[67] Moiseev S A and Andrianov S N 2012 Photon echo quantum random access memory integration in a

quantum computer J. Phys. B: At. Mol. Opt. Phys. 45 124017
[68] Afzelius M and Simon C 2010 Impedance-matched cavity quantum memory Phys. Rev. A 82 022310
[69] Moiseev S A, Andrianov S N and Gubaidullin F F 2010 Efficient multimode quantum memory based on

photon echo in an optimal QED cavity Phys. Rev. A 82 022311
[70] Moiseev S A 2013 Off-resonant Raman-echo quantum memory for inhomogeneously broadened atoms in a

cavity Phys. Rev. A 88 012304
[71] Chaneliere T 2014 Strong excitation of emitters in an impedance matched cavity: the area theorem, π-pulse

and self-induced transparency Opt. Express 22 4423
[72] Tittel W et al 2010 Photon-echo quantum memory in solid state systems Laser Photon. Rev. 4 244
[73] Bouten L, van Handel R and James M R 2007 An introduction to quantum filtering SIAM J. Control Optim.

46 2199
[74] Gough J E, James M R, Nurdin H I and Combes J 2012 Quantum filtering for systems driven by fields in

single-photon states or superposition of coherent states Phys. Rev. A 86 043819

30

New J. Phys. 16 (2014) 073032 N Yamamoto and M R James

http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1088/1367-2630/15/11/113060
http://dx.doi.org/10.1103/PhysRevLett.80.4084
http://dx.doi.org/10.1103/PhysRevLett.80.4088
http://dx.doi.org/10.1088/0953-4075/45/12/124003
http://dx.doi.org/10.1103/PhysRevA.82.022310
http://dx.doi.org/10.1103/PhysRevA.82.022311
http://dx.doi.org/10.1103/PhysRevA.88.012304
http://dx.doi.org/10.1364/OE.22.004423
http://dx.doi.org/10.1002/lpor.200810056
http://dx.doi.org/10.1137/060651239
http://dx.doi.org/10.1103/PhysRevA.86.043819

	1. Introduction
	2. Preliminaries and problem formulation
	2.1. Passive linear systems
	2.2. Input field states
	2.3. DF subsystem as a memory
	2.4. Problem description

	3. Perfect state transfer in a single-mode passive linear system
	3.1. Pulse shaping for perfect state transfer
	3.2. Explicit form of the output field

	4. Zero-dynamics principle for perfect state transfer
	4.1. Input�&#x02013;�output relation of the pulse shape
	4.2. The zero-dynamics principle and rising exponential pulse
	4.3. Transfer function approach

	5. Perfect memory procedure in passive linear system
	5.1. The writing stage
	5.2. The storage stage
	5.3. The reading stage

	6. Statistical equations in the writing stage
	7. Example: perfect memory network with atomic ensembles
	7.1. The atomic ensembles trapped in a cavity
	7.2. The perfect memory procedure
	7.3. Numerical simulation

	8. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	References



