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ABSTRACT

We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at
late epochs, including previously unpublished photometric and spectroscopic observations of
SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the objects of our sample
show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve
break at ~ 150-200 d. The latter is likely the result of flux redistribution into the infrared,
possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of
superluminous SNe Ia are characterized by weak or absent [Fe n1] emission, pointing at a low
ejecta ionization state as a result of high densities. To constrain the ejecta and *°Ni masses of
superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with
synthetic model light curves, focusing on the radioactive tail after ~60 d. Models with enough
%Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient
mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN
2009dc because of too much y-ray trapping. We instead propose a model with ~1 M of *°Ni
and ~2 Mg of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass
white dwarf (WD) enshrouded by 0.6-0.7 M@ of C/O-rich material, as it could result from a
merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc
well. A flux deficit at peak may be compensated by light from the interaction of the ejecta

with the surrounding material.

Key words: radiative transfer —supernovae: general —supernovae: individual: SN 2006gz —
supernovae: individual: SN 2007if — supernovae: individual: SN 2009dc — supernovae: indi-

vidual: SNF20080723-012.

1 INTRODUCTION

Type Ia supernovae (SNe Ia) are powerful distance indicators and
have been used to infer the accelerating expansion of the Universe
(Riess et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999).

*Based on observations at ESO Paranal, Prog. 281.D-5043, 083.D-0728
and 085.D-0701.
1 E-mail: tauben @mpa-garching.mpg.de

© 2013 The Authors

They are considered amongst the most promising tools to distin-
guish between a Cosmological Constant and other forms of Dark
Energy (Goobar & Leibundgut 2011). Normal SNe Ia (Branch,
Fisher & Nugent 1993) are excellently suited for this purpose ow-
ing to their remarkable homogeneity in peak luminosity and light-
curve shape. However, not all SNe Ia are so ‘well behaved’. Several
subclasses (e.g. Filippenko et al. 1992; Leibundgut et al. 1993; Li
et al. 2003; Howell et al. 2006; Foley et al. 2010; Ganeshalingam
et al. 2012) are known to defy normalization through the usual rela-
tions between light-curve width and peak luminosity (Phillips 1993;
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Table 1. Spectra of SNe 2007if, SNF20080723-012 and SN 2009dc.

uT date MID SN Epoch®  Telescope/Instrument Setup Exposure time
2008 Sep24 547332 SN 2007if 358.2 VLT + FORS2 300V 2850s x 2
2008 Oct22 547612 SN 2007if 3843 VLT + FORS2 300V 2850 x 3
2009 Apr26 549473 SNF 2479 VLT + FORS2 300V 2880 s x 4
2009 May 22 54973.9 SNF 2727 VLT + FORS2 300V 2850 x 3
2009 Jun 19 55001.2 SNF 298.1 VLT + FORS2 300V 2850s x 3
2010 May 10 553262 SN 2009dc  371.6 VLT + XShooter UVB,VIS,NIR 1350 s x 4

“Phase in rest-frame days with respect to B-band maximum [MJD = 54 348.4 for SN 2007if (Scalzo et al. 2010),
MID = 54 680.9 for SNF20080723-012 (Scalzo et al. 2012), MID = 54 946.6 for SN 2009dc (Taubenberger et al.

2011)].

Phillips et al. 1999), one of them being the group of superluminous
SNe Ia.

Compared to normal SNe Ia, superluminous SNe Ia are charac-
terized by a bright light-curve peak, a slow light-curve evolution
during the photospheric phase and moderately low ejecta velocities
(Branch 2006; Howell et al. 2006; Hicken et al. 2007; Yamanaka
et al. 2009; Scalzo et al. 2010; Yuan et al. 2010; Silverman et al.
2011; Taubenberger et al. 2011). Modelling suggests ejecta masses
far in excess of the Chandrasekhar-mass (Mcy,) limit of non-rotating
white dwarfs (WDs) and the production of about 1.5 M, of SONi,
precluding the interpretation of these events as thermonuclear ex-
plosions of Chandrasekhar-mass (Mc) WDs. For this reason, they
are commonly referred to as ‘super-Chandrasekhar’ SNe Ia in the
literature (Branch et al. 2006; Howell et al. 2006).

Models of thermonuclear explosions are severely challenged by
superluminous SNe Ia. Proposed explanations range from the ex-
plosions of differentially rotating massive WDs (e.g. Howell et al.
2006) to WD mergers (Hicken et al. 2007) with possible inter-
action between the actual SN ejecta and surrounding circumstel-
lar medium (CSM) left by the merger (Scalzo et al. 2010, 2012;
Hachinger et al. 2012), and thermonuclear explosions in the de-
generate cores of AGB stars (Taubenberger et al. 2011). However,
none of these models is without problems. In particular, there is no
evidence of ejecta—CSM interaction in the form of narrow emission
lines in the photospheric spectra of any of these SNe. The problems
to explain superluminous SNe Ia with thermonuclear explosions
even led to the speculation that these objects might instead have a
core-collapse origin, with the early light curve possibly powered by
magnetar heating (Taubenberger et al. 2011).

Great power to discriminate different explosion scenarios has
traditionally been ascribed to nebular spectra. Sampling also the
inner ejecta, differences between a thermonuclear explosion and a
core-collapse event should become evident in nebular spectra, given
the entirely different nucleosynthetic footprint. Moreover, from late-
time light curves a refined estimate of the S6Ni mass can be made,
complementing the estimates based on the light-curve peak.

So far, only few late-time observations of superluminous SNe
Ia have been published. For SNe 2007if (Scalzo et al. 2010; Yuan
et al. 2010) and 2009dc (Yamanaka et al. 2009; Tanaka et al. 2010;
Silverman et al. 2011; Taubenberger et al. 2011) nebular spectra
were shown by Yuan et al. (2010); Silverman et al. (2011) and
Taubenberger et al. (2011). These spectra were dominated by [Fe 11]
emission lines, [Fe 1] features were quite weak. For SN 2006gz
(Hicken et al. 2007) Maeda et al. (2009) presented a nebular spec-
trum that seemed to lack completely the prominent [Fe 11] and [Fe 1]
emission lines shortward of 5500 A, normally the hallmark features
of SNe Ia at late epochs. At the same time, SN 2006gz was unex-
pectedly dim one year after maximum light, indicating an enhanced
fading after the photospheric phase. A similar trend, though less

extreme, was reported for SN 2009dc after ~200 d (Silverman et al.
2011; Taubenberger et al. 2011).

In this work, additional late-time data of the superluminous SNe
Ta SN 2007if, SN 2009dc and SNF20080723-012 (Scalzo et al.
2012) are presented and analysed. Complemented by the published
data of SN 2006gz (Maeda et al. 2009), a first systematic comparison
of these objects during the nebular phase is performed, revealing
significant diversity in the spectral appearance and the luminosity
and decline rate of the radioactive tail of the light curve. The paper
is organized as follows. In Section 2, the methods used to reduce
and calibrate the new data are described. Section 3 presents the late-
time luminosity evolution, Section 4 the properties and peculiarities
of the nebular spectra. In Section 5, the findings are discussed,
synthetic bolometric light curves for a set of models are compared
to the observations, and an attempt is made to propose a uniform
model for at least some superluminous SNe Ia. A summary and
conclusions are given in Section 6.

2 OBSERVATIONS AND DATA REDUCTION

The late-time data presented here were obtained with the FORS2
instrument mounted at the 8.2 m Very Large Telescope (VLT) UT-1,
with XShooter at the 8.2 m VLT UT-2, and with CAFOS at
the 2.2 m Telescope of the Calar Alto Observatory. The CAFOS
and FORS2 data were reduced following standard procedures
within IrRAF, including bias subtraction and flat-fielding. An op-
timal, variance-weighted extraction (Horne 1986) of the spectra
(Table 1) was performed, and arc-lamp exposures were used
to determine the dispersion solution. The XShooter observations
(Table 1) were pipeline-processed’ to create linearized, sky-
subtracted, wavelength-calibrated 2D spectra (for each of the UVB,
VIS and NIR channels) out of the curved Echelle orders of XShooter.
The 2D spectra were then optimally extracted. Telluric-feature re-
moval and a rough flux calibration were accomplished using obser-
vations of spectrophotometric (UVB, VIS) or telluric [near-infrared
(NIR)] standard stars. The flux calibration of all optical spectra
was checked against the photometry and adjusted when necessary.
Lacking contemporaneous photometry, this was not possible for the
XShooter NIR spectrum, which was instead scaled to match the VIS
spectrum in the region of overlap. Since this region is small, noisy
and affected by the steep transmission edge of the dichroic, the ob-
tained calibration is estimated to be no more precise than to a factor
of ~2.

Uhttp://www.eso.org/observing/dfo/quality/XShooter/pipeline/pipe_gen.
html
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Figure 1. V-band image of the SNF20080723-012 field (top panel) and
I-band image of the SN 2007if field (bottom panel), taken with the VLT
UT-1 4+ FORS2 on ut 2009 May 22 and 2008 September 24, respectively.
The fields of view are 4.2 x 2.7 arcmin?, and the regions around the SNe
are triply enlarged in the insets. North is up and east to the left. The local
sequence stars around SNF20080723-012 (Table A1) are indicated.

2.1 Host-galaxy subtraction

2.1.1 SNF20080723-012

SNF20080723-012 was located within a spiral host galaxy (Fig. 1,
top). Luckily, it was sufficiently off-set from the bright spiral
arms that a direct point spread function (PSF) fitting measurement
was feasible under very good seeing conditions. Such conditions
[~0.5 arcsec full width at half-maximum (FWHM)] were met on
2009 May 22 with the VLT + FORS2. In the images of that night,
a direct PSF-fitting measurement of the SN magnitudes was per-
formed. At the same time, the PSF-subtracted images were used
as pseudo-templates to perform a host-galaxy subtraction at earlier
epochs when the seeing conditions were poorer. The possible error
introduced by residual SN flux in the pseudo-templates is estimated
to be small (0.1 mag) for the VLT photometry of 2009 April 26
and negligible for the earlier Calar Alto photometry.

2.1.2 SN 2007if

Background contamination is a more severe problem in the late-
time observations of SN 2007if. Its dwarf host galaxy at redshift
z = 0.074 has an almost stellar PSF, and the SN has no discernible
offset (Fig. 1, bottom; see also Childress et al. 2011). By the time
of our observations, the SN had faded below the brightness of
the host. Accordingly, PSF-fitting magnitudes were dominated by

host-galaxy light, and the extracted spectra showed clear evidence
of an underlying continuum.

The continuum in the spectra was removed by rescaling and
subtracting a spectral template of the host galaxy as presented by
Childress et al. (2011). In doing so, we assumed near zero flux in
those spectral regions where emission lines from the SN are not
expected.

Since no sufficiently deep imaging templates were available in our
photometric bands to perform a conventional template subtraction,
we applied what may be called a numerical host subtraction. To this
aim, we derived synthetic host magnitudes in the BVRI bands from
the host-galaxy spectral template of Childress et al. (2011), scaled
to match the g-band magnitude of the 07if host as reported by the
same authors and Scalzo et al. (2010). We then measured the ‘SN +
host” magnitudes in our VLT images using aperture photometry
with a 2.5 arcsec radius, large enough to include virtually all the
light from the host (and the high-z background galaxy reported by
Childress et al. 2011). Subtraction of the synthetic host fluxes from
the ‘SN + host’ fluxes finally yielded SN magnitudes in each band.?

Since the method described above is very sensitive to errors
related to the measurement or calibration of either the ‘SN + host’
or host magnitudes, it provided questionable results in bands where
the SN contribution was small compared to that of the host. We
therefore decided to calibrate only the V-band SN magnitude in this
way, since this is the band where the strongest emission lines are
located in nebular SN Ia spectra at z = 0.074, and where therefore
the contrast between the SN and the background is best. Our B, R
and / magnitudes were instead synthesized from our background-
subtracted, flux-calibrated (with respect to the V-band photometry)
spectrum of SN 2007if taken during the same night.

2.2 Photometric calibration; S- and K-correction

Our single-epoch photometry of SN 2007if was obtained under
photometric conditions, and the zero-points were derived from
a Stetson (2000) standard field observed on the same night. For
SNF20080723-012, we had four epochs of photometry, not all of
them obtained in photometric conditions. Therefore, a sequence of
stars in the SN field (indicated in Fig. 1, top) was calibrated with
respect to Stetson (2000) standards observed during the photometric
nights on 2009 April 26 and May 22 (Table Al). The SN magni-
tudes in all individual nights were then determined relative to this
sequence of stars.

To correct for deviations of the instrumental filter responses from
the standard Johnson—Cousins systems (Bessell 1990) and the non-
negligible redshift of our targets, S- and K-corrections (Table A2)
were derived from our nebular spectra and applied to the SN pho-
tometry. Since our photometric observations of SNF20080723-012
started already 55 d after the B-band maximum, but we had no spec-
tra at that epoch, we instead used a spectrum of SN 2007if [actually
a combination of the +51 d, 462 d and 467 d spectra presented by
Scalzo et al. (2010)] to calculate the S- and K-corrections. The S-
and K-corrections for the 187 d photometry of SNF20080723-012
were then derived by linear interpolation between the 55 d and 248 d
values.

2 Note that Yuan et al. (2010) obtained a somewhat fainter host g-band
magnitude than Scalzo et al. (2010) and Childress et al. (2011), which would
result in brighter SN magnitudes. The difference between the two numbers
has been taken into account in the error assigned to the host magnitude, and
propagated to the error of the SN magnitudes.
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Table 2. S- and K-corrected photometry of SN 2007if and SNF20080723-012.

ut date MID SN Epoch® B 1% R I Telescope  Seeing”
2008 Sep 24 54733.2 SN 2007if 3582 24.89 £0.65¢ 24.79+041 25.14+£0.65° 2436£0.65° VLT 1.0
2008 Sep 30 54739.8 SNF 548 20.72+0.16 2023+020 20.01 £0.10 CAHA 1.6
2009 Feb20 54 882.2 SNF 1873 2335+030 23.16+£0.20 23.17+0.31 CAHA 1.2
2009 Apr26 549474 SNF 2480 24.184+0.17 23924014 2476+0.12  2402+0.17 VLT 0.7
2009 May 22 54 973.2 SNF 272.0 2440+0.14 2428 £0.12 25.25 £0.22 24.69 £0.21 VLT 0.5

“Phase in rest-frame days with respect to B-band maximum [MJD = 54348.4 for SN 2007if (Scalzo et al. 2010) and MJD = 54 680.9 for
SNF20080723-012 (Scalzo et al. 2012)]. "Stellar FWHM (arcsec). “Magnitudes obtained from an integration of the redshift-corrected and flux-
calibrated spectrum with Bessell BRI filters.

The final, S- and K-corrected magnitudes of SN 2007if and
SNF20080723-012 are given in Table 2, along with their associ-
ated photometric errors.

3 LUMINOSITY EVOLUTION

Absolute BVRI light curves of the candidate super-Chandrasekhar
SNe 2006gz, 2007if, 2009dc and SNF20080723-012 are presented
in Fig. 2, and compared to those of SNe 2003du and 1991T as
prototypes of a normal and a luminous SN Ia, respectively. The

Absolute magnitude

—22

absolute magnitudes shown in that figure were computed using the
distance moduli and colour excesses reported in Table 3.

It can readily be seen from the panels of Fig. 2 that for all SNe
the late-phase B-, V-, R- and I-band light curves are quite similar
to one another, so that the important trends are preserved when
moving on to bolometric light curves. We therefore limit ourselves
to discussing in detail the pseudo-bolometric light curves of all the
objects, which are presented in Fig. 3. They were obtained by trans-
forming the absolute magnitudes into monochromatic luminosities
at the effective wavelengths of the filters, interpolating the spectral
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Figure 2. Absolute BVRI light curves of the proposed super-Chandrasekhar SNe 2006gz (Hicken et al. 2007; Maeda et al. 2009), 2007if (Scalzo et al. 2010),
2009dc (Silverman et al. 2011; Taubenberger et al. 2011) and SNF20080723-012 (Scalzo et al. 2012), the ‘classical’ luminous SN Ia 1991T (Lira et al. 1998;
Altavilla et al. 2004) and the normal SN Ta 2003du (Stanishev et al. 2007). Large symbols with error bars are data newly presented in this work (Table 2). The
phase is given in rest-frame days with respect to B-band maximum.
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Table 3. Basic properties of proposed super-Chandrasekhar SNe Ia.

SN 2006gz SN 2007if SNF20080723-012 SN 2009dc
Redshift zhel 0.0237¢ 0.0742b 0.0745b 0.0214¢

Distance modulus 1 (mag) 35.03 £0.06¢  37.45 £ 0.05® 37.46 £ 0.05° 34.86 + 0.08¢
Colour excess E(B — V) (mag)  0.18 £ 0.05¢ 0.079% ¢ 0.064¢ 0.17 £ 0.07¢
Amys(B) 0.69 + 0.04¢ 0.71 £ 0.06¢ 0.93 +0.04/ 0.71 £ 0.03¢

“Hicken et al. (2007). "Heliocentric redshift from He emission in the host galaxy, distance modulus from zpe].
¢Silverman et al. (2011); Taubenberger et al. (2011). 4Scalzo et al. (2010). *Galactic colour excess (Schlegel,

Finkbeiner & Davis 1998)./Scalzo et al. (2012).
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Figure 3. BVRI-integrated pseudo-bolometric light curves of the same SNe
as in Fig. 2. The peak phase is enlarged in the inset. Epochs are given in
rest-frame days after B-band maximum.

energy distribution linearly and integrating over wavelength. Zero
flux was assumed at the integration boundaries (i.e. the blue edge
of the B band and the red edge of the I band). The resulting BVRI
bolometric light curves are expected to account for ~50-75 per
cent of the total bolometric flux at maximum light when the IR
contributes ~10 per cent in SN 2009dc (Taubenberger et al. 2011)
and ~10-15 per cent in normal SNe Ia (Mezrag et al. in prepara-
tion), and the UV contribution blueward of the U band should have
dropped below the 10 per-cent level (Silverman et al. 2011). At late
phases, we may miss a significant amount of IR flux, but lack of
late-time IR photometry of superluminous SNe Ia prevents a more
quantitative assessment.

Focusing on the early light curves (inset in Fig. 3), SN 2003du
has the narrowest and least luminous peak (L &%, ~ 0.8 x 10%
erg s~!) in our sample of objects, in line with the expectations for a
normal SN Ia. SN 1991T is clearly more luminous and more slowly
declining than SN 2003du, and interestingly quite similar to the
proposed super-Chandrasekhar SNe 2006gz and SNF20080723-
012 (see also Scalzo et al. 2012). These three SNe reach peak
luminosities of L5, ~ 1.2 x 10* erg s!. Finally, SNe 2007if
and 2009dc outshine all the other SNe, being more than twice as
luminous as SN 2003du at peak (L 5%, ~ 1.9 x 10 erg s~"). The
early-time pseudo-bolometric light curves of these two objects are
essentially identical.

During the early nebular phase, between ~100 and 200 d after
maximum, all SNe evolve as expected from their behaviour around
peak brightness. SNe 2007if and 2009dc, which feature the brightest
peak, are also most luminous at these phases. SNF20080723-012
and SN 1991T lie between normal SNe Ia and SNe 2007if and
2009dc. The light-curve decline of all these SNe is quite similar, a
bit faster in normal SNe Ia and a bit slower in the superluminous
SNe, but always somewhat faster than the decay rate of 3*Co, which
is expected in the case of increasing y-ray losses. No data are
available for SN 2006gz during the early nebular phase.

The simple hierarchical picture that seems to emerge from study-
ing the luminosity evolution out to ~200 d, however, does not
easily fit the data thereafter. SNe 2003du, 1991T, 2007if and
SNF20080723-012 still decline with a nearly constant slope be-
tween 200 and 400 d after maximum. Among these SNe the lu-
minosity differences observed at earlier times are approximately
preserved, though SNF20080723-012 now appears a little fainter
than SN 1991T. SN 2006gz, on the other hand, fades dramatically
sometime between the peak phase and the nebular phase (Maeda
et al. 2009), and a year after the explosion it is a factor of ~4
less luminous than the normal SN Ia 2003du and almost an order
of magnitude less luminous than SN 1991T. SN 2009dc seems to
share the destiny of SN 2006gz, though to a lesser extent. Around
200 d after maximum, its light curve starts to decline more rapidly
than before (Silverman et al. 2011; Taubenberger et al. 2011), and,
while not fading as rapidly as SN 2006gz, at 400 d after maximum
it is no longer more luminous than SN 2003du.

4 SPECTROSCOPIC COMPARISON

Nebular spectra of our sample of superluminous SNe Ia, SN 1991T
and SN 2003du are shown in Fig. 4. In general, the spectral evo-
lution during the nebular phase is slow, but not negligible. Since
the spectra in Fig. 4 have been taken at very different epochs, evo-
lutionary effects and intrinsic differences between SNe have to be
disentangled. This is straightforward for those objects for which
multi-epoch spectroscopy is available.

Concentrating first on the early nebular phase (left-hand panel of
Fig. 4), we see that the superluminous SNe Ia 2007if and 2009dc are
relatively similar to each other and also to the normal SN Ia 2003du.
The same [Fe ], [Fe 1] and [Co ni] emission lines are detected in
all three SNe (see e.g. Maeda et al. 2010; Mazzali et al. 2011, for
a detailed identification of emission lines in nebular SN Ia spectra).
Differences are evident in the width of spectral features, with many
lines being resolved into double or multiple peaks in SN 2009dc
that are just blended into a single broad feature in SN 2003du. Also
the ionization state is noticeably different, with weaker [Fe m1] and
more prominent [Fe 11] lines in SN 2009dc compared to SN 2003du.
In both respects, SN 2007if takes an intermediate position between
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Figure 4. Nebular spectra of SNe 2007if (Blondin et al. 2012; this work), 2009dc (Silverman et al. 2011; Taubenberger et al. 2011; this work) and
SNF20080723-012 (this work; cf. Table 1), compared to those of the proposed super-Chandrasekhar SN 2006gz (Maeda et al. 2009), the luminous SN Ia
1991T (Gémez & Lépez 1998) and the normal SN Ia 2003du (Stanishev et al. 2007). Phases are given in rest-frame days with respect to B-band maximum.
Left panel: spectra ~120-160 d after maximum. For presentation purposes, the spectrum of SNe 2007if and the +162 d spectrum of SN 2009dc have been
smoothed by 500 and 2500 km s~ !, respectively. Right panel: spectra ~250-400 d after maximum. The two spectra of SN 2009dc and the spectra of SN 2007if
and SNF20080723-012 have been smoothed by 300, 1300, 1000 and 1000 km s~!, respectively. The gap in the +-372 d spectrum of SN 2009dc is the region

between the XShooter UVB and VIS channels, with very low signal in both.

SNe 2003du and 2009dc, but in terms of ionization closer to SN
2009dc.

During the later nebular phase (right-hand panel of Fig. 4), the ob-
served differences become more pronounced. In normal SNe la such
as SN 2003du, the most important evolution between four months
and one year after the explosion is the fading of Co emission lines
due to the radioactive decay of *Co into °Fe with #,,(**Co) =
77.2 d (Kuchner et al. 1994). The same is also observed in the
superluminous SNe 2007if and 2009dc, but here a lower ejecta ion-
ization state is seen as an additional effect. The hallmark feature
of nebular SN Ia spectra, the prominent [Fe mi] blend at ~4700 A
(Axelrod 1980; Spyromilio et al. 1992; Mazzali et al. 1998), is

merely a stump in SNe 2007if and 2009dc. Instead, most of the
emission blueward of 5500 A probably originates from [Fe 1] tran-
sitions.

In normal SNe Ia, the features between 7000 and 7500 A are
attributed to forbidden transitions of iron-group elements (IGEs),
notably [Fe 1] A7155 and [Ni u] A7378, which often form a double-
peaked structure as observed in SN 2003du (Maeda et al. 2010;
Tanaka et al. 2011). In the nebular spectrum of SN 1991T, oth-
erwise very similar to that of SN 2003du, there is only a single,
rounded, broad peak from 7000 to 7500 A, which may be the ef-
fect of a distribution of IGEs out to higher velocities in SN 1991T
(Mazzali, Danziger & Turatto 1995). In SNe 2007if and 2009dc,
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the emission in that region is stronger than that in the previously
mentioned objects. The SN 2007if spectrum is too noisy to study the
line profiles in detail, but in SN 2009dc there are two pronounced,
sharp emission peaks. The blue peak can be explained by [Fe u]
17155, whereas the redder at ~7305 A is not at the right position
for [Ni 1] A7378 emission. We instead suggest a significant contri-
bution of [Ca 1] AA7291, 7324. These lines are typically weak or
absent in normal SNe Ia, but have been identified in peculiar SNe
Ia, in particular in subluminous, 91bg-like events (Mazzali et al.
1997; Mazzali & Hachinger 2012). The fact that in SN 2009dc the
7000 to 7500 A region shows an unusual triple-peaked structure at
phases around day 150 (Fig. 4, left-hand panel) suggests that [Ca 11]
emission might be present already at those epochs and strengthen
with time.

The nebular spectrum of SN 2006gz shares similarities with those
of SNe 2007if and 2009dc, especially in the strength of the 7000 to
7500 A emission. However, the flux in the blue part of the spectrum
is strongly suppressed, and individual features cannot be identified
as a consequence of the low signal-to-noise ratio. Note that the SN
2006gz spectrum as presented here and in Maeda et al. (2009) is
binned over 16 px/22 A. The SNF20080723-012 spectrum, on the
other hand, is very similar to the spectrum of SN 1991T, includ-
ing the broad single-peaked emission between 7000 and 7500 A.
It thus deviates strongly from the spectra of the other proposed
super-Chandrasekhar SNe Ia. Taking into account the light-curve
properties discussed in the previous section, one may therefore
speculate that SNF20080723-012 might be a 91T-like object rather
than a true member of the class of ‘super-Chandrasekhar’ SNe Ia,
as already discussed by Scalzo et al. (2012).

At NIR wavelengths (Fig. 5) only a few features can be safely
identified in the spectrum of SN 2009dc as a consequence of the low
signal-to-noise ratio. The detected [Fe u] 1.257, 1.279 um, [Fe 1]
1.533 um / [Co n] 1.547 wm and [Fe 1] 1.644 pm emission lines
are characteristic of nebular NIR spectra of SNe Ia, and prominent
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FigureS. Nebular NIR spectrum of SN 2009dc, compared to the normal SN
Ta 1998bu (Spyromilio et al. 2004). Phases are given in rest-frame days with
respect to B-band maximum. The spectrum of SN 2009dc has been smoothed
by 2000km s~!, and regions with strong telluric features are omitted.

also in the normal SN Ia 1998bu (Spyromilio et al. 2004) which is
included in Fig. 5 for comparison. A contribution of [Si1] 1.646 um
to the 1.64 um line (e.g. Mazzali et al. 2011) cannot be excluded in
SN 2009dc, though the feature is not stronger than in SN 1998bu
where it was explained by [Fe 11] alone (Spyromilio et al. 2004). An
additional emission feature is identified in SN 2009dc at ~1.17 um,
which has no discernible counterpart in SN 1998bu. It is located
in a region devoid of strong telluric absorptions, and is similarly
pronounced as other lines discussed before. Hence, we tend to be-
lieve that it is not a mere reduction artefact, but cannot provide a
conclusive identification without detailed modelling.

5 DISCUSSION

5.1 Ionization state in the nebular phase

The ionization state of SN Ia ejecta during the nebular phase can
be assessed by studying the flux ratio of the emission blends close
to 4700 and 5200 A. As discussed in detail e.g. by Mazzali et al.
(2011), the 4700 A blend is clearly dominated by [Fe mi] emis-
sion, whereas the 5200 A blend has a significant contribution of
[Fe u] next to [Fe m], making the ratio a sensitive ionization indi-
cator. In order to reproduce the large observed A4700/A5200 ratio
in the normal or slightly subluminous SN 2003hv with synthetic
spectra, Mazzali et al. (2011) had to assume a reduced central den-
sity compared to that of the one-dimensional Chandrasekhar-mass
explosion model W7 (Nomoto, Thielemann & Yokoi 1984), lead-
ing these authors to speculate about a sub-Chandrasekhar-mass or
merger origin of SN 2003hv. In an analogous way, the low ioniza-
tion found in SNe 2007if and 2009dc might be indicative of high
central ejecta densities, leading to enhanced recombination. This
should be a direct consequence of the low ejecta expansion veloc-
ities determined from both early- and late-time spectra (Yamanaka
et al. 2009; Scalzo et al. 2010; Silverman et al. 2011; Taubenberger
et al. 2011; see also Section 4).

In Fig. 6, the flux ratio of the emission lines near 4700 and 5200 A
is investigated as a function of Am,s(B) (which in normal SNe Ia
may be taken as a proxy for the peak luminosity; see Phillips 1993).
Normal and 91T-like SNe (including SNF20080723-012) show flux
ratios between 1.3 and 1.9, SNe 2007if and 2009dc between 1.0
and 1.1. The only other SNe with similarly low flux ratios (and
hence ionization) are subluminous 91bg-like SNe. Their nebular
spectra, however, show a complex structure with very narrow [Fe 1]
lines superimposed on broad [Fe 11] emission (Mazzali et al. 1997;
Mazzali & Hachinger 2012).

The inferred low ionization is also consistent with the likely de-
tection of [Ca nm] AA7291, 7324. The first and second ionization
potentials of Ca are lower than those of Fe. Accordingly, in regions
with significant Fe 11 content, Ca should be doubly ionized to almost
100 per cent, which is probably why [Ca 1] lines are absent from
the nebular spectra of normal SNe Ia. The lower ionization in su-
perluminous and 91bg-like SNe Ia, however, should favour Ca 11 as
the dominant ionization state. Indeed, [Ca 11] emission is observed
in exactly those objects.

5.2 Late-time dust formation

In Section 3, we discussed the diverse light-curve decline of super-
luminous SNe Ia at late phases. Once on the radioactive tail ~50 d
after maximum light, SN 2007if fades at a nearly constant rate for
more than 300 d. SN 2009dc shows a steeper decline after ~200 d,
and is about a factor of 3 less luminous than SN 2007if after one
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Figure 6. Relation between Ams(B) and the flux ratio of the [Fe 1] / [Fe 11]
emission lines near 4700 and 5200 A, determined in the nebular spectra
closest to day 300 after maximum. The line fluxes have been measured
from zero intensity through a multiple-Gaussian deblending of the 4500—
5500 A region as described by Mazzali et al. (1998). The red symbols stand
for subluminous SNe Ia, blue symbols for proposed super-Chandrasekhar
events and black symbols for normal or 91T-like SNe Ia.

year, though it had the same peak luminosity (Fig. 3). SN 2006gz
fades even more rapidly, being about a factor of 15 less luminous
than SN 2007if one year after maximum, though the difference at
peak was merely a factor of 1.6.

Following the reasoning of Taubenberger et al. (2011), the ac-
celerated decline observed in the BVRI-bolometric light curve of
SN 2009dc (and probably also SN 2006gz) at those late phases is
unlikely to be a true bolometric effect. As long as the light-curve
tail is powered by radioactive decay and positrons are fully trapped,
the decline may slow down (when a longer lived radioactive isotope
starts to dominate the energy deposition), but not accelerate (cf.
Ruiz-Lapuente & Spruit 1998 for the case of incomplete positron
trapping). Instead, the observed luminosity drop is probably the out-
come of flux redistribution into regimes that are not observed, most
likely the IR. This could be accomplished by an early IR catastrophe
or by dust formation.

Though never observed in SNe Ia to date, an IR catastrophe
(Axelrod 1980; Fransson, Houck & Kozma 1996) is an inevitable
consequence of the decreasing energy deposition by radioactive
decay and the expansion of the SN ejecta. Below a critical temper-
ature T, the upper levels of forbidden transitions in the optical and
NIR can no longer be populated. The cooling is henceforth dom-
inated by ground-state fine-structure transitions of Fe in the mid-
and far-IR, accompanied by a rapid temperature decrease of the
ejecta. An IR catastrophe is favoured by low densities (as a conse-
quence of the density dependence of T.). In the high-density ejecta
of SN 2009dc, an early onset of the IR catastrophe is therefore not
expected. Moreover, even one year after maximum, when the BVRI-
bolometric luminosity of SN 2009dc is already significantly below
that of SN 2007if, the spectra are still similar, showing prominent
[Fe 1] emission throughout the optical and NIR wavelength range.

Dust formation, on the other hand, is usually associated with
core-collapse SNe and has rarely been discussed in the context of
thermonuclear SNe (Nozawa et al. 2011). In superluminous SNe Ia,
however, it seems to be compatible with observations. Early-time
spectra of SNe 2006gz and 2009dc show C 1 lines with a strength
unprecedented in thermonuclear SNe. This suggests that at least a
moderate amount of carbon is present in the ejecta (Hachinger et al.
2012 reproduced the spectral time series of SN 2009dc with carbon
mass fractions between 1 and 10 per cent). The carbon may give rise
to the formation of graphite dust, but can also pave the way for dust
formation in general through prior CO molecule formation, which
opens an efficient cooling channel, the emission in molecular bands.
Dust formation should also be promoted by the comparatively high
densities that the slowly expanding ejecta of superluminous SNe
retain at late phases (Nozawa et al. 2011). The luminosity drop in
SN 2009dc comes along with an evolution towards redder colours
(Fig. 2), again consistent with dust formation. Interestingly, even the
seemingly unique nebular spectrum of SN 2006gz with its apparent
lack of features in the blue could find a natural explanation within
this scenario. This is shown in Fig. 7, where the late-time spectra
of SNe 2007if and 2009dc have been artificially reddened to sim-
ulate the effect of more pronounced dust formation in SN 2006gz.
Nothing can be said about individual features blueward of ~6000 A
since the spectrum of SN 2006gz is too noisy in that region, but from
the overall spectral shape it is plausible that the late-time spectra
of SNe 2006gz, 2007if and 2009dc are all intrinsically similar, and
differ just by the amount of reddening caused by newly formed dust
in the ejecta.

Note that changes in the profiles of nebular emission lines, usually
another signature of dust formation within the ejecta, are neither
observed nor expected in SN 2009dc. If dust formation occurs,
it would be most effective in the carbon- and silicon-rich zones,
which, according to the velocity evolution of the C 11 26580 and
Si 1 16355 lines presented by Taubenberger et al. (2011), should be
located outside ~6000kms~'. The [Fe 1] emission in the nebular
spectrum of SN 2009dc, however, comes from below 6000 km s
emission above that velocity would result in the nebular lines being
too broad. Accordingly, all parts of the nebular [Fe 1] emission
would be attenuated by the same amount.

Under the premise that dust formed in the ejecta of SN 2009dc,
some of its properties can be estimated. To calculate the dust mass
resulting in an extinction Ay = 0.93 mag [E(B — V) = 0.3 mag, Ry =
3.1] on day 372 after peak, we have assumed that the dust is located
in a (infinitesimally) thin shell at radius R. For this geometry, the
optical depth that corresponds to this value of Ay (i.e. Ty = 0.86)
can be expressed as

Qv(a) Ta* Maus

ey — W
grain
where a is the dust-grain radius, Mg, the dust-grain mass, Mg, the
total dust mass and Qy(a) the extinction efficiency in the V band. It
follows that
My = ml R2 Pgrain @
3 QOvy(a)

very similar to equation 6 of Lucy et al. (1989), but with a different
pre-factor reflecting the different geometry (a thin shell here versus
a homogeneous sphere there). For small grains Qy(a) is approxi-
mately proportional to a (Lucy et al. 1989), and hence the expression
for My, becomes largely independent of a. Assuming a dust-grain
density of pgrin =2.9 g cm™? (appropriate for a mixture of graphite

v, @)
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Figure 7. Comparison of the late-time spectrum of SN 2006gz with that of SN 2009dc, artificially reddened by E(B — V) = 0.2 mag (upper-left panel), and
that of SN 2007if, artificially reddened by E(B — V) = 0.5 mag (upper-right panel; Ry = 3.1 assumed in both cases). The residuals after subtracting the spectra

(lower panels) hardly show any differences exceeding the noise level.

and silicates®), a grain size of 0.01 wm, and adopting a Qy of 0.07
from fig. 4a of Draine & Lee (1984), we have evaluated equation (2)
for different radii of the dust shell, between 6000 and 10 000 km s '
in velocity space. The resulting dust mass ranges from ~1 x 10~*
to ~4 x 10™* M, similar to what has been reported for some
core-collapse SNe in the literature (e.g. for SN 2004et; Kotak et al.
2009).

The newly formed dust should also manifest in the emission of
a thermal continuum reflecting the temperature of the dust grains.
The emission would likely peak in the mid IR, but depending on
the dust temperature the NIR regime may also be affected by the
Wien tail of the blackbody spectrum. To derive limits on the dust
temperature in SN 2009dc, we have calculated blackbody curves
for different temperatures 7 and radii R of 6000 to 10 000 km s~
in velocity space. The luminosity can be expressed as

L ~ 41> R? B,(Tgp). 3

In Fig. 8, the derived blackbody curves are overplotted on the
optical-through-NIR spectrum of SN 2009dc taken 372 d after max-
imum light. The figure suggests that dust temperatures of 700 K or
more are excluded by the continuum level of the NIR spectrum,
whereas <600 K may be acceptable. Such temperatures correspond
to blackbody spectra peaking in the mid IR (at = 4 um). However,
the uncertainties in this estimate are large: not only the radius of
the dust shell is poorly constrained, but also the flux calibration of

3 When conditions are appropriate for dust formation in superluminous SNe
Ta, the presence of carbon and also silicon may allow for the formation of
carbonaceous dust as well as silicates (typical densities 2.2 and 3.5 g cm™3,
respectively; Weingartner & Draine 2001). Given our ignorance of the exact
dust composition, we assume a 1:1 mixture in our calculation; the resulting

uncertainty in the estimated dust mass is less than £25 per cent.

the NIR spectrum of SN 2009dc is uncertain by a factor of ~2 (see
Section 2).

In the end, mid-IR observations of superluminous SNe Ia during
the nebular phase will be the only way to prove or disprove dust
formation on solid grounds. If dust forms, excess emission in the mid
IR with a thermal spectral energy distribution should be detected.

5.3 Bolometric light-curve models

The bolometric light curves presented in Section 3 can serve as
a benchmark for models proposed for superluminous SNe Ia. To
enable such a model-data comparison, we have computed syn-
thetic bolometric light curves for a number of models using the
Monte Carlo radiative-transfer code Artis (Kromer & Sim 2009).
Full spectral calculations at late phases are not possible with ARTIS,
since non-thermal processes and a detailed treatment of collisions
and forbidden transitions are presently not implemented. However,
for the late-phase bolometric light curve, the deposition of y-rays
and positrons is the only relevant physical process. This is treated
with sufficient accuracy in ArTis. We have run our calculations with a
simple grey optical opacity (Sim 2007), which is a good approxima-
tion for the late bolometric light curve when time-dependent effects
are negligible (Cappellaro et al. 1997). The rise time, the detailed
shape of the light-curve peak and the peak luminosity, however,
may be altered by this approximation.

For our light-curve calculations, we have used the same mod-
els as in Hachinger et al. (2012). These authors used early-time
spectra of SN 2009dc to perform a tomographic study of the outer
layers of the ejecta for three explosion scenarios. The first type of
model investigated is the detonation of a rotating supermassive WD
with 2 M, represented by an AWD3det-based density structure
(Pfannes, Niemeyer & Schmidt 2010; Fink et al. in preparation).
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NIR spectrum of SN 2009dc.

The two alternative scenarios are a possible core-collapse origin of
SN 2009dc, represented by an empirically derived exponential den-
sity structure with 3 M) (‘09dc-exp’), and a model where part of the
luminosity is assumed to be generated by CSM interaction, based
on the W7 (Nomoto et al. 1984) density structure with 1.4 M) of
ejecta but a rescaled kinetic energy (‘09dc-int’). For the AWD3det-
based model, Hachinger et al. (2012) were not able to obtain a
consistent solution: the line velocities in the synthetic spectra were
too high, and the inferred abundance structure was inconsistent with
the kinetic energy of the underlying density profile. Accordingly,
this model was disfavoured on the basis of the early spectral evo-
lution. For the 09dc-exp and 09dc-int models, on the other hand,
more plausible solutions could be obtained.

In their tomographic study, Hachinger et al. (2012) used the
luminosity mostly as a free parameter. Synthetic bolometric light
curves thus provide an additional constraint on the structure of the
SN by constraining the total energy of the explosion. To compute
bolometric light curves for the models of Hachinger et al. (2012),
an assumption had to be made for the inner core of the ejecta
(below ~4000km s~!) whose composition was not constrained by
the tomography. Here we kept the mass fraction of stable iron the
same as in the innermost shell studied by Hachinger et al., and filled
the rest with “°Ni.

Fig. 9 shows synthetic bolometric light curves of the 09dc-exp
model (top panel) and the 09dc-int model (middle panel), compared
to the UBVRIJHK pseudo-bolometric luminosity evolution of SN
2009dc as presented by Taubenberger et al. (2011). Clearly, the
09dc-exp model manages to reproduce the peak luminosity of SN
2009dc (which is a consequence of the large 3Ni mass of almost
1.6 M), but it is also evident that the radioactive tail is much too
bright in the model owing to the large total mass of 3 M, that leads
to strong y-ray trapping. This is further illustrated by the red and
purple lines in Fig. 9, which give the individual contributions of

energy deposited by y-rays and positrons, respectively. The inter-
section thus marks the epoch where the y-ray trapping has decreased
to ~3 per cent, which is approximately the fraction of *°Co decay
energy carried by positrons. In 09dc-exp this level is reached very
late, ~440 d after the explosion. In contrast, the 09dc-int model fails
to reach the observed peak luminosity of SN 2009dc by quite some
margin, though in this case by purpose: the remainder is supposed
to be generated by ejecta—CSM interaction, and not included in the
synthetic bolometric light curve that shows only the contribution
from radioactive decay. However, also the light-curve tail of 09dc-
int seems much too dim at phases between 100 and 200 d when the
spectra with their lack of pseudo-continuum emission do not sup-
port significant ejecta—CSM interaction (Taubenberger et al. 2011).
The model, as considered here, has only Chandrasekhar mass, i.e.
it represents the exploded WD without any swept-up material (cf.
Hachinger et al. 2012). The low mass leads to inefficient y-ray
trapping (reaching 3 per cent already 280 d after the explosion),
insufficient to explain the observed luminosity between 100 and
200 d.

We now test whether the shortcomings of 09dc-int in fitting the
light-curve tail before the break at ~200 d can be overcome by
adding more mass. To this end, we have constructed a new model,
‘09dc-tail’ (Table 4 and bottom panel of Fig. 9). Its density pro-
file p(v) is a moderately steep exponential for v > 2500kms~",
but flattens below that velocity. This results in a total ejecta mass
of ~2 My, and a kinetic energy of 1.2 x 10°' erg. The density
profile of 09dc-tail is shown in Fig. 10, together with those of 09dc-
exp and 09dc-int. The Ni mass of 09dc-tail was adjusted to be
1 M, more than in 09dc-int (~0.6 M) but significantly less than
in 09dc-exp (~1.6 M). Thanks to the fairly steep density profile
and the high ejecta mass, the y-ray opacity is large, resulting in
3 per cent y-ray trapping at 390 d after the explosion. The bolomet-
ric light curve of the model provides a very good fit to the data of
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Figure 9. Synthetic bolometric light curves (black solid lines) for different
models compared to the observed UBVRIJHK-bolometric light curve of
SN 2009dc (Taubenberger et al. 2011, blue (in online version) data points,
assuming a B-band rise time of 23 d). The contributions of y-rays (red solid
lines in online version) and positrons (purple solid lines in online version)
to the synthetic bolometric light curves are shown individually.

Top panel: the 09dc-exp model of Hachinger et al. (2012).

Middle panel: the 09dc-int model of Hachinger et al. (2012).

Bottom panel: 09dc-tail (~2 M of ejecta, ~1 My of *Ni).

SN 2009dc between 60 and 190 d after the explosion. The model
remains more luminous than SN 2009dc at later epochs, but as dis-
cussed in the previous section this may be due to a significant IR
flux that was missed when the pseudo-bolometric light curve of SN
2009dc was constructed from the observed bands. As 09dc-int, the
model does not reach the observed peak luminosity of SN 2009dc.
It peaks at a flux 30-40 per cent too low.

5.4 Putting the pieces of the puzzle together

In the previous section, we have seen that the 09dc-exp model of
Hachinger et al. (2012) significantly overestimates the radioactive
tail with respect to the observations of SN 2009dc. Though this
is just a single model, the consequences of this finding are far-
reaching. This is because 09dc-exp is quite generic for models
that try to explain the peak luminosity of superluminous SNe Ia

by radioactivity (and hence need 21.5 Mg of %Ni), and at the
same time keep the kinetic energy per mass low (which requires
a significant amount of unburned material and a total ejecta mass
of >2.5 M(; see also Taubenberger et al. 2011). In these models,
there is no obvious way to avoid the strong y-ray trapping seen
in 09dc-exp. The consequence is that probably all models with
excessively large *°Ni masses will fail.

If this is true and the luminosity of superluminous SNe Ia around
peak does not solely come from radioactive decay, other processes
have to contribute. Especially ejecta—CSM interaction has to be
considered as a possibility, despite the known caveats that the CSM
would have to be H- and He-free in order to avoid narrow lines
of those elements in the spectra of superluminous SNe Ia, and that
even with a C/O CSM it is not evident that telltale spectroscopic
signatures can be avoided. The 09dc-int model of Hachinger et al.
(2012), as a first attempt in this direction, has too little flux during
the tail phase when the interaction should have come to an end.

The 09dc-tail model has been constructed so as to improve on
this aspect and reproduce the luminosity of SN 2009dc during the
tail phase between 60 and 180 d after the explosion. It has been
built with a physical picture in mind that is quite similar to that of
09dc-int: the kinetic energy of 1.2 x 10°! erg is typical of a normal
SN Ia from a Chandrasekhar-mass WD progenitor. Also the °Ni
mass of 1.0 M, is within the range normally observed in SNe Ia
(Stritzinger et al. 2006), though on the upper end. While the 09dc-
int model only represents the ejecta of an M, WD, the total ejecta
mass of 09dc-tail is significantly larger. The additional mass can be
interpreted as swept-up circumstellar material, leading to reduced
ejecta velocities and higher densities compared to a freely expanding
SN Ia. At the same time, a small fraction of the kinetic energy would
be transformed into light in the ejecta—CSM interaction, potentially
compensating the flux deficit of the 09dc-tail model at early phases.
Whether or not this may work and whether the resulting early-time
spectra would resemble those of superluminous SNe Ia can only
be decided in detailed radiation-hydrodynamics simulations (e.g.
Blinnikov & Sorokina 2010; Fryer et al. 2010; Noebauer et al.
2012), which go beyond the scope of this work.

Nevertheless, a few estimates on the required CSM properties and
a possible progenitor system can be made. The CSM would have to
be H- and probably He-free, since these elements are not detected
in the spectra of superluminous SNe Ia at any phase. Most likely it
would instead consist of a mix of C and O, which would be naturally
explained if it had been produced in a merger of two C/O WDs, with
the secondary being disrupted and its material being accreted slowly
on to the primary. The masses of these two WDs would have to sum
up to ~2 M. At the time the accreting primary approaches Mcy
and explodes, it would be surrounded by 0.6-0.7 M of CSM,
distributed in an extended spherical envelope supported by thermal
pressure (Schwab et al. 2012; Shen et al. 2012).* This scenario is
very similar to that studied by Fryer et al. (2010), who found that in
a SN Ia enshrouded by a C/O-rich CSM originating from a merger
event the light curve and spectra are altered substantially by shock
heating. The light-curve peak tends to become much broader and
a strong UV flux is generated, a feature that is also observed in
early spectra of superluminous SNe Ia (see e.g. Scalzo et al. 2010;
Silverman et al. 2011; Taubenberger et al. 2011).

4 We emphasize that our 09dc-tail model has been constructed in a self-
consistent way, in the sense that the kinetic energy of the ejecta agrees with
the energy release by nuclear burning (see Table 4 for the composition)
minus the binding energy of an Mc, WD.
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Table 4. Density profile and element abundances of 09dc-tail. The total mass of the model, 2.06 My, is distributed to C

(024 M@). 0 (047 M@), Si (0.25 M) S (0.05 M), Ca (0.01 M), stable Fe (0.05 M) and Ni (0.99 Mcy).

Shell va,  log(p)?  ME,, Ed X(C) X(O) X(Si) X(S) X(Ca) X(stable Fe)  X(°°Ni)
1 1000 072 0011 6.6x107> 0.000 0.000 0.000 0.000 0.000 0.050 0.950
2 2000 0.68 0082 19x107* 0.000 0.000 0.000 0.000 0.001 0.049 0.950
3 3000 0.64 0256 0.014 0.000  0.000 0.000 0.000 0.002 0.048 0.950
4 4000 0.52 0514 0.046 0.000  0.000 0.000 0.000  0.005 0.045 0.950
5 5000 032 0783 0.101 0.000  0.000 0.000 0.000  0.005 0.045 0.950
6 6000 0.12  1.035 0.178 0.020  0.100  0.100  0.020  0.005 0.035 0.720
7 8000 —0.18  1.447 0.386 0.100 0260  0.400 0.080  0.005 0.005 0.150
8 10000 —0.58 1718 0.608 0236 0.500 0200 0.040  0.002 0.002 0.020
9 12000 —0.98 1878 0.804 0.318 0.620 0.050 0.010  0.001 0.001 0.000

10 14000 —1.38  1.967 0.955 0.393  0.600 0.005 0.001  0.000 0.001 0.000
11 16000 —1.78 2015 1.062 0499  0.500 0.000 0.000  0.000 0.001 0.000
12 18000 —2.18  2.039 1.132 0.499  0.500  0.000 0.000  0.000 0.001 0.000
13 20000 —2.58 2051 1.175 0499  0.500 0.000 0.000  0.000 0.001 0.000
14 24000 —3.18  2.059 1.214 0.499  0.500  0.000 0.000  0.000 0.001 0.000

“4Quter boundary of the shell (km s~!). ”p in g cm™3. ‘Cumulative mass in Mg . dCumulative kinetic energy in 107! erg.

log(p) [g em™]
|
‘\“‘“"“\‘“‘“‘“\‘“‘“"Z‘\\]‘““““\““““‘\“““ T
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Figure 10. Density profiles of the models shown in Fig. 9, evaluated at a
reference time of 100 s after the explosion.

To reconcile the synthetic bolometric light curve of the 09dc-tail
model with observations, additional luminosity from interaction is
required during the first ~60 d after the explosion (Fig. 9, bottom
panel). This coincides with the duration of the peak phase, which
may suggest that there is not ongoing CSM interaction over this full
period of time, but that the photons are produced during an early
and comparatively short interaction episode, trapped in the optically
thick ejecta and released on photon-diffusion time-scales (see also
Scalzo et al. 2012).

Having swept up 0.6-0.7 M of material composed of up to
50 per cent of carbon, the ejecta of such an explosion would contain
at least an order of magnitude more carbon than ordinary delayed
detonations of a naked M, WD (Seitenzahl et al. 2013). The strong
and persistent C 1 features in the early spectra of superluminous
SNe Ia would in this scenario not come as a surprise. Moreover, the
same carbon might form dust at later phases, as already discussed
in Section 5.2, and thus explain the luminosity drop in at least some
superluminous SNe Ia during the nebular phase.

Of course, the proposed scenario is not free of problems. For ex-
ample, it is not clear how much fine-tuning is necessary to produce
a CSM with the right properties in a WD merger. As mentioned by
Fryer et al. (2010), besides the total mass also the density profile of

the circumstellar material has an enormous impact on the resulting
light curves and spectra. To explain observed superluminous SNe
Ia, one would need a configuration that boosts the light-curve peak
for ~60 d, slows down the light-curve evolution, but modifies the
spectra only moderately, preserving most characteristic SN Ia fea-
tures. Another critical point is that slow mergers of such massive
WDs might not exist. The closer the mass ratio of the primary to
the secondary WD is to unity, and the more massive the two WDs
are, the more likely the merger will proceed violently (Pakmor et al.
2012), not leading to an extended C/O envelope. Binary population
synthesis calculations do not predict primary WD masses above
1.3 Mg in C/O-WD mergers (Ruiter et al. 2013). To arrive at a
system mass of ~2 M), both WDs hence need to be relatively
massive. Finally, if non-violent mergers of C/O WDs do exist, the
primary may collapse to a neutron star owing to electron captures
rather than explode as an SN Ia (Saio & Nomoto 1985; Shen et al.
2012). Nonetheless, the proposed scenario of a slow merger of two
massive C/O WDs that leads to an My, SN Ia explosion enshrouded
by a C/O-rich CSM remains a promising explanation for superlu-
minous SNe Ia. Its biggest strength is its ability to describe many
thus far seemingly decoupled properties of superluminous SNe Ia in
a unified way as logical consequence of an enshrouded explosion,
with no need to resort to unreasonable *°Ni and ejecta masses.

6 CONCLUSIONS

The late-phase photometry and spectra of a group of proposed super-
Chandrasekhar SNe analysed in this work have highlighted interest-
ing trends. The superluminous SNe 2006gz, 2007if and 2009dc are
distinguished from normal and 91T-like SNe Ia by nebular spectra
with very weak [Fe mi] lines and a likely contribution of [Ca 1] to
the emission around 7300 A. The ejecta of these objects are appar-
ently not as highly ionized as in normal SNe Ia, which could be a
consequence of higher densities due to rather low expansion veloci-
ties. The proposed super-Chandrasekhar object SNF20080723-012
does not share these characteristics, and is instead very similar to
SN 1991T in both its nebular spectra and its light-curve evolution.
We are hence inclined to consider SNF20080723-012 as a classical
91T-like object rather than postulate fundamental diversity in the
late-time behaviour of superluminous SNe Ia. In fact, some diver-
sity is present also in the late-time spectral energy distribution and
light-curve decline of SNe 2006gz, 2007if and 2009dc, with two of
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these objects showing a light-curve break after ~150-200 d leading
to a more rapid fading thereafter. This, however, may be understood
in terms of different time-scales and intensities of dust formation.
Accepting this explanation, studying the light-curve tail before
the possible break (i.e., at phases when the light curves are presum-
ably powered by radioactive decay of %°Co and opacities to optical
photons are low) may be a promising way to constrain °Ni and
total ejecta masses of superluminous SNe Ia, and thus get a handle
on the nature of these objects. To this end, we have compared the
observed UBVRIJHK-bolometric light curve of SN 2009dc with
synthetic bolometric light curves of models proposed in the liter-
ature. We find that models that have enough *°Ni to explain the
light-curve peak by radioactive decay and at the same time enough
mass to avoid too high ejecta velocities, are almost inevitably too
luminous on the radioactive tail because of too strong y-ray trap-
ping. This dilemma may be overcome with models that assume
additional luminosity from ejecta—CSM interaction during the peak
phase. Improving on earlier work, we have presented one such toy
model with ~1 M of **Ni and ~2 M, of ejecta that provides
a convincing match to the observed light-curve tail of SN 2009dc.
This model may be interpreted as a ‘normal’ SN Ia explosion of an
My, WD enshrouded by 0.6-0.7 M) of C/O-rich material that is
swept up as the ejecta expand. Such a configuration could be the
outcome of a non-violent merger of two massive C/O WDs.
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APPENDIX A: TABLES

Table Al. Magnitudes of the local sequence stars in the field of SNF20080723-012 (Fig. 1,

top).

ID B Vv R I

1 20.97 £ 0.03 20.49 £+ 0.02 20.16 £ 0.02 19.84 £ 0.02

2 20.64 £ 0.03 19.15 £ 0.01

3 21.53 £0.02 21.01 £+ 0.03 20.68 £ 0.03 20.34 £+ 0.02

4 22.05+0.02 21.554+0.02 21.24 +0.02 20.86 + 0.03

5 21.55 4+ 0.03 20.54 +0.02 19.87 +0.03 19.36 + 0.05

6 19.26 & 0.04 18.81 +0.04

7 19.52 +0.02 18.92 +0.02

8 23.06 + 0.03 21.56 £ 0.03 20.40 £ 0.02 19.03 & 0.06

9 22.66 +0.03 21.72 +£0.02 21.10 & 0.04 20.554+0.03

10 22.59 4+ 0.04 22.09 £ 0.02 21.80 £ 0.05 21.42 £+ 0.06

11 22.00 + 0.04 20.56 +0.02 19.57 +0.02

12 20.32 4+ 0.04 19.28 4+ 0.01
Table A2. S- and K-corrections applied to the photometry of SN 2007if and SNF20080723-012.
MID SN Epoch“ Sp Sy SR S Kp Ky Kg K;  Telescope
54733.2 SN 2007if 358.2 —0.038 0.322 VLT
54739.8 SNF 54.8 0.042  —0.051 —0.004 —-0.261 —0.161  0.102 CAHA
54882.2 SNF 187.3 0.051 0.016 0.009 —0.481 0273 0.223 CAHA
549474 SNF 2480 —0.087 —0.086 —0.198 —0.004 —0.592 0.490 0.283 0.058 VLT
54973.2 SNF 2720  —0.087 —0.086 —0.198 —0.004  —0.592 0.490 0.283 0.058 VLT

“Phase in rest-frame days with respect to B-band maximum [MJD = 54 348.4 for SN 2007if (Scalzo et al. 2010) and MJD = 54 680.9
for SNF20080723-012 (Scalzo et al. 2012)].
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