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Abstract
The negatively charged nitrogen-vacancy ( −NV ) centre in diamond has many
exciting applications in quantum nano-metrology, including magnetometry,
electrometry, thermometry and piezometry. Indeed, it is possible for a single

−NV centre to measure the complete three-dimensional vector of the local
electric field or the position of a single fundamental charge in ambient condi-
tions. However, in order to achieve such vector measurements, near complete
knowledge of the orientation of the centreʼs defect structure is required. Here, we
demonstrate an optically detected magnetic resonance (ODMR) technique
employing rotations of static electric and magnetic fields that precisely deter-
mines the orientation of the centreʼs major and minor trigonal symmetry axes.
Thus, our technique is an enabler of the centreʼs existing vector sensing appli-
cations and also motivates new applications in multi-axis rotation sensing, NV
growth characterization and diamond crystallography.
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1. Introduction

The negatively charged nitrogen-vacancy ( −NV ) centre is a remarkable point defect in diamond
[1] that is at the frontier of quantum technology. In particular, the −NV centre has many exciting
applications as a highly sensitive quantum sensor in nano-metrology, including magnetometry
[2–5], electrometry [6, 7], thermometry [8–12], piezometry [13], and gyroscopy [14–16]. High
sensitivity is principally achieved by the long-lived coherence of the centreʼs electron spin,
which persists in ambient and extreme conditions [8, 17, 18]. Nanoscale sensing is enabled by
the atomic size of the −NV centre, its bright fluorescence that allows single centres to be located
with nano-resolution and its mechanism of optical spin-polarization/readout that allows the
magnetic resonance of its electron spin to be optically detected [1].

Single −NV centres have demonstrated the ability for three-dimensional vector sensing of
electric fields [6] with single fundamental charge sensitivity [7]. −NV electrometry is achieved
by observing the spin resonances as an applied magnetic field is rotated. Each vector component
of the unknown electric field can be determined from its combined effect with the applied
magnetic field, as long as the precise orientation of the magnetic field with respect to the defect
structure of the −NV centre is known. The latter requirement has not yet been fulfilled and, as a
consequence, complete −NV vector electrometry has not been possible. In principle, vector
magnetic field sensing could also be achieved using a single −NV centre by an analogous
technique, where an applied electric field is rotated in place of an applied magnetic field, but
this is yet to be demonstrated. Whilst vector magnetic field sensing has been demonstrated
using an ensemble of at least four differently orientated −NV centres [22–27], a demonstration
using a single −NV centre is likely to have several advantages due to the superior spin
coherence of the single centre and its potential for greater spatial resolution. Here, we describe a
technique for the measurement of the defect structure orientation of a single −NV centre relative
to applied electric/magnetic fields, which is key to the realization of high-sensitivity −NV vector
sensing.

More generally, this technique will also prove useful for material science because it is
prototypical for measuring the defect structure of spin defects with trigonal symmetry, such as
(hh) or (kk) divacancies in silicon carbide [19]. The ability to precisely characterize which
orientations of −NV centres are formed as the result of different fabrication methods will
provide an invaluable tool to the study of the −NV growth mechanisms [20]. Such detailed
knowledge of the growth mechanisms can be used to improve the fabrication of homogeneous
ensembles of −NV centres, within which all centres are aligned and therefore can be more
effectively employed in hybrid quantum devices (e.g. coupled superconducting resonators and

−NV spin ensembles [21]). Measuring the structure of a single −NV centre also allows for local
characterization of the diamond lattice. In this way, the structure of nanodiamonds or
polycrystalline sectors can be non-invasively determined.

The orientation measurement technique described here may be directly used to realize
three-axis rotation sensing using a single −NV centre. Three-axis rotation sensing can be
achieved in two different geometries (see figure 1): (1) the −NV diamond rotates with respect to
a fixed apparatus of electric and magnetic fields or (2) the apparatus rotates with respect to a
fixed −NV diamond. A possible example of the first geometry is the sensing of the rotational
dynamics of a nanodiamond within a biological cell [28]. An example of the second geometry is
a high sensitivity rotation sensor for a micro-mechanical system, where one element of the
system is free to rotate with respect to another element that contains a −NV diamond.
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Notably, there has been related proposals of single-axis gyroscopy using single −NV
centres [14] and −NV ensembles [15, 16]. There has also been a proposal of three-axis
gyroscopy using the N14 nuclear spins of a −NV ensemble [16]. These proposals differ from the
one made here because they measure the rotational frequency about a fixed rotational axis or, in
the case of the latter, both the rotational frequency and axis. Our proposal instead measures the
rotational coordinates of a rotation about all three rotational axes. As a consequence, rotational
sensing technique and the previously proposed gyroscopy techniques are suited to applications
with different regimes of rotational dynamics: slow and fast, respectively. A further difference
from the proposal of three-axis gyroscopy [16], is that our three-axis rotational sensing
technique does not require any apparatus fixed to the diamond. Consequently, our technique is
more appropriate for applications that require a microscopic sensor and stand-off control
apparatus, such as bio-sensing.

In this paper, we demonstrate such a technique for measuring the defect structure
orientation of a single −NV centre. After further introduction to the properties of the −NV
centre, we first derive the relationship between the spin resonances of a −NV centre in the
presence of combined electric and magnetic fields and its defect structure. The orientation
measurement technique arises naturally form the derivation and we subsequently demonstrate
the technique by measuring the defect structure orientation of a single −NV centre. The latter
measurement, in essence, mimics our second proposed geometry for rotation sensing. Based
upon our demonstration, we finally examine the application of the technique to three-axis
rotation sensing using single −NV centres.

2. Theory of the orientation measurement technique

The −NV centre is a C v3 point defect in diamond consisting of a substitutional nitrogen atom
adjacent to a carbon vacancy trapping an additional electron (refer to figure 2(a)). The
orientation of the centreʼs defect structure is characterized by the directions of its major and
minor symmetry axes. The trigonal structure of the centre has a 111 major symmetry axis that
is defined by the direction joining the nitrogen and vacancy. For a given crystal orientation, the

Figure 1. Two possible geometries of three-axis −NV rotation sensing: (a) a fixed
apparatus and a rotating −NV (nano-) diamond, and (b) a fixed −NV diamond and a
rotating apparatus in a micro-mechanical system. In each geometry, the apparatus
contains the necessary elements to generate electric and magnetic fields at the −NV
centre.
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centreʼs [111] major symmetry axis has four possible alignments (see figure 2(b)). The centreʼs
minor symmetry axis is defined as being orthogonal to its major symmetry axis and also
contained within one of the centreʼs three reflection planes (e.g. ¯[112]), which corresponds to
the direction joining a point on the centreʼs major symmetry axis and one of the vacancyʼs
nearest neighbour carbon atoms. Considering an isolated single −NV centre, if the alignment of
its major symmetry axis is known (i.e. via magnetic field alignment), then even with knowledge
of the crystal orientation, the orientation of the centreʼs defect structure is not fully determined.

As depicted in figure 3(a), the one-electron orbital level structure of the −NV centre
contains three defect orbital levels (a1, ex and ey). EPR observations and ab initio calculations

indicate that these defect orbitals are highly localized to the centre [29–32]. Figure 3(b) shows
the centreʼs many-electron electronic structure generated by the occupation of the three defect
orbitals by four electrons [33, 34], including the zero phonon line energies of the optical
(1.945 eV/637 nm) [35] and infrared (1.190 eV/1042 nm) [36–38] transitions. The energy
separations of the spin triplet and singlet levels ( ↔A E2

3 1 and ↔A E1
1 3 ) are unknown.

As depicted in the inset of figure 3(b), the ground A2
3 level exhibits a zero field fine

structure splitting between the =m 0s and ±1 spin sub-levels of ∼D 2.87 GHz, which is
principally due to first-order electron spin–spin interaction [39]. The spin quantization axis is
thus defined by the trigonal unpaired electron spin density distribution of the ground A2

3 level to

be parallel to the centreʼs major symmetry axis. Spin–orbit and spin–spin mixing of the A2
3 and

E3 levels makes the A2
3

fine structure susceptible to electric fields, yet does not significantly
perturb the g-factor of the spin magnetic interaction from its free electron value [40].

A detailed derivation of the spin-Hamiltonian that describes the A2
3

fine structure in the
presence of electric and magnetic fields has been previously reported [40]. The spin-
Hamiltonian derived in [40] is

γ= + − + ⃗ · ⃗ − − + +( ) ( )( )( )H D k E S S B k E S S k E S S S S2 3 , (1)z z z e x x x y y y x y y x
2 2 2

Figure 2. (a) A diamond unit cell depicting the four possible alignments of the NV
defect structureʼs major symmetry axis. (b) The defect structure of an NV centre,
including its major trigonal, symmetry axis z, its reflection planes and one (of the three
possible) definitions of its minor symmetry axis x.
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where ⃗S are the S = 1 dimensionless electron spin operators, γ μ= g h/
e e B

, μ
B
is the Bohr

magneton, ∼g 2.003
e

is the electron g-factor [30], h is the Planck constant, ⃗B and ⃗E are the

magnetic and electric fields, respectively, and =k 3.5 (2)z kHz μm −V 1 and

= = =⊥k k k 170 (30)x y kHz μm −V 1 are the electric susceptibility parameters [41].

Although the spin-Hamiltonian derivation in [40] is detailed, there is limited discussion of
the relationship between the spin-Hamiltonian and the defect structure of the −NV centre, in
particular, the physical basis for the adopted coordinate system and the behaviour of the spin-
Hamiltonian under coordinate transformations. Consequently, we present a brief review of the
spin-Hamiltonian derivation in appendix A. The derivation proceeds by the application of
perturbation theory to the fine structure interactions of the −NV centre and ends in the definition
of each of the spin-Hamiltonian parameters in terms of integrals of the centreʼs orbital
wavefunctions. The key outcome of the review is the identification of the implicit coordinate
system definition in (1) as the choice of the z and x coordinate axes as being directed along the
centreʼs major and minor symmetry axes, respectively, such that the electric susceptibility
parameters are positive. As demonstrated in appendix B, a simple molecular orbital argument
can be applied to the evaluation of the orbital integrals of the electric susceptibility parameters
to show that they are positive when the z coordinate axis is directed from the nitrogen towards
the vacancy and when the x coordinate axis is directed from the z coordinate axis towards one of
the vacancyʼs three nearest-neighbour carbons (see figure 2(a)). Since there are three equivalent
choices of the x coordinate direction due to the centreʼs trigonal symmetry, the spin-
Hamiltonian (1) is invariant under C3 rotations about the major symmetry axis.

Having established the relationship between the spin-Hamiltonian and the centreʼs defect
structure, we now discuss the orientation dependence of the centreʼs observable spin resonances

Figure 3. (a) The −NV one-electron orbital level structure depicting the diamond
valence and conduction bands and the three defect orbitals (a1, ex, and ey) within the
bandgap. (b) Schematic of the centreʼs many-electron electronic structure, including the
optical 1.945 eV and infrared 1.190 eV ZPL energies. The electronic configurations of
the many-electron levels are indicated in parentheses. Inset: the fine structure of the
ground A2

3 level: at zero field with a single splitting of ∼D 2.87 GHz; and in the
presence of magnetic and/or electric fields, with a further field dependent splitting.
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in the presence of electric and magnetic fields. The zero-field spin states ±{ 0 , 1 } (defined
by Sz spin-projection) are mixed in the presence of electric and magnetic fields to form a new
state basis ±{ 0 , } (refer to figure 3(b)) [40]. The frequencies ±f of the ↔ ±0 spin

transitions are [7]

Λ Λ α β Λ⃗ ⃗ = + + ± − +±  ( )f E B D k E, 3 sin cos , (2)z z
2 2

where Λ γ= ⊥B D/2
e
2 2 , γ= + ⊥ ⊥ B k E

e z
2 2 2 2 , = +⊥B B Bx y

2 2 , = +⊥E E Ex y
2 2 ,

α γ= ⊥ ⊥k E Btan /
e z, β ϕ ϕ= +2

B E
, ϕ = B Btan /

B y x and ϕ = E Etan /
E y x. Note that the validity of

the above expression is constrained by the conditions Λ ≪ D, .
In the presence of either an electric or a magnetic field, the spin frequencies reduce to

γ
θ γ θ

γ
θ θ

θ θ

⃗ ⃗ = + ± +

⃗ ⃗ = + ±

±

± ⊥

( )
( )

f B D
B

D
B

B

D

f E D k E k E

0,
3

2
sin cos 1

4
tan sin

, 0 cos sin , (3)

e
B e B

e
B B

z E E

2 2
2

2 2

2
2 2

where = + ⊥E E Ez
2 2 , = + ⊥B B Bz

2 2 , θ = ⊥E Etan /E z and θ = ⊥B Btan /B z. In each case, the spin

frequencies depend on the alignment of the electric/magnetic field with the centreʼs major
symmetry axis (i.e. θE and θB), but do not depend on the transverse orientation of the electric/
magnetic field (i.e. ϕ

E
and ϕ

B
). This invariance to the transverse orientation of an individual field

is due to the equal spin susceptibility to x and y field components, which is itself a consequence
of the centreʼs trigonal symmetry.

If the electric/ magnetic field is near alignment to the centreʼs major symmetry axis, the
spin frequencies obtain their maximum/minimum values, such that

Δ θ γ θ

Δ θ θ

= ⃗ ⃗ − ≈ ±

= ⃗ ⃗ − ≈

± ±

± ±

( )
( )

( )

( )

f f B D B

f f E D k E

0, cos

, 0 cos , (4)

B e B

E z E

which may be used as a condition to identify the orientation of the symmetry axis. However,
noting that Δ θ π Δ θ+ =± ∓( ) ( )f fB B , it can not be determined whether the magnetic field is

parallel (θ = 0B ) or anti-parallel (θ π=B ) with the z coordinate axis because the absolute value
of the splitting between Δ +f and Δ −f only depends on the magnitude of the magnetic field B and

not its direction. This is not the case for the electric field, where the observable sign of the
common shift θk E cosz E of Δ ±f is directly dependent on whether the electric field is parallel or

anti-parallel with the z coordinate axis. Hence, whilst either electric or magnetic fields can be
used to determine the orientation of the centreʼs major symmetry axis, only an electric field can
differentiate the precise direction of the centreʼs z coordinate axis.

This conclusion forms the basis of a technique for measuring the orientation of the z
coordinate axis (refer to figure 4). Since the magnetic susceptibility of the ground state spin is
much greater than its electric susceptibility, the most sensitive method is to first rotate a known
magnetic field until it is aligned with the centreʼs major symmetry axis and then apply a parallel
electric field to determine the direction of the z coordinate axis. Although the electric field shift
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θk E cosz E is typically small, as long as it can be detected, it will be sufficient because only its
sign is relevant.

It is clear from equation (2), that the spin frequencies become dependent on the transverse
orientations of electric and magnetic fields if they are simultaneously applied. This dependence
obtains a maximum when the fields are transverse to the major symmetry axis

Λ Λ ϕ Λ

Λ ϕ ϕ

⃗ ⃗ = + ± − +

≈ + ± ∓ +
± ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

( )
( )

f E B D k E k E

D k E

, 3 cos

(3 1) cos 2 , (5)
B E

2 2 2

where the approximation in the second line has been taken in the limit Λ ≫ ⊥ ⊥k E , which is
relevant to typical experimental conditions [6, 7]. For an explanation of the transverse
susceptibility see appendix A.

Since the second term of (5) leads to a splitting of the ±f spin frequencies that is

independent of the transverse field orientations, the variations of the spin frequencies as the
fields are rotated may be individually observed and are governed by the third term, such that

Δ ϕ ϕ Λ ϕ ϕ≈ ⃗ ⃗ − − ± = ∓ +± ± ⊥ ⊥ ⊥ ⊥( )( ) ( )f f E B D k E, , (3 1) cos 2 . (6)
B E B E

Figure 5 depicts Δ ϕ ϕ− ( )f ,
B E

for the cases where the orientation of one field is fixed and the

other is rotated. As discussed in the demonstrations of −NV vector electrometry [6] and single
charge detection [7], the mixed argument of the cosine function implies that to determine the

Figure 4. Axial orientation technique. Magnetic and electric fields ( ⃗B and ⃗E) are
oriented (except for misalignment angle θ) parallel (a) or anti-parallel (b) to the NV
major symmetry axis. The response of the spin transition frequencies Δ ±f does not
depend on the parallel or anti-parallel orientation of the magnetic field (blue solid line)
but it does depend on the electric field orientation (orange dashed line).
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transverse orientation of an unknown electric field by observing Δ −f as a transverse magnetic
field is rotated, one requires knowledge of the orientation of the transverse magnetic field with
respect to the centreʼs coordinate system (i.e. ϕ

B
). The opposite is also true for the measurement

of the transverse orientation of an unknown magnetic field via a rotation of a transverse electric
field. This interdependence motivates the simultaneous rotation of transverse electric and
magnetic fields as a means to determine the transverse orientation of the centreʼs coordinate
system/ defect structure.

Defining the combined electric-magnetic field angles γ ϕ ϕ= +( )/2
B E

and

δ ϕ ϕ= −( )/2
B E

, the orientation dependence of the spin frequencies become

Δ γ δ γ δ≈ ∓ +± ⊥ ⊥f k E( , ) cos (3 ). (7)

If δ is fixed whilst γ is varied by the fields being simultaneously rotated in the same
direction at the same rate, the variation of Δ −f (see figure 5) immediately reveals the trigonal
structure of the −NV centre. Indeed, if the fields are parallel, such that δ = 0, the three maxima
of Δ −f directly correspond to when the fields are directed along the three equivalent x coordinate
axes of the centre (i.e. the directions from the major symmetry axis to the vacancyʼs three
nearest-neighbour carbons).

This conclusion forms the basis of a technique for measuring the orientation of the x
coordinate axis (refer to figure 6). Having first determined the orientation of the centreʼs major
symmetry axis z using the technique discussed previously, parallel electric and magnetic fields
can be aligned such that they are transverse to the z-axis. If the fields are rotated together as
above, the direction of the x coordinate axis can be identified as the field direction
corresponding to one of the three maxima of Δ −f .

3. Demonstration of the orientation measurement technique

In this section we present a proof-of-principle demonstration of the measurement of the minor
symmetry axis orientation of a single −NV centre. We do not demonstrate the measurement of
the centreʼs major symmetry axis orientation because this technique simply requires the
addition of an aligned electric field to the regular practice of aligning a magnetic field with the

Figure 5. Transverse (B- and E-) field orientation dependence of Δ −f : (a) ϕ
B
increased

and ϕ π=
E

fixed, (b) ϕ
E
increased and ϕ π= /2

B
fixed, (c) γ increased and δ = 0 fixed,

and (d) δ increased and γ = 0 fixed. Using different values for the fixed angles would
simply rotate the patterns according to equations (6) and (7). Blue and red arrows sketch
the rotations of the transverse B and E fields, respectively.
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major axis (for example see [20]). The orientation of the centres major symmetry axis was
instead deduced from x-ray crystallography measurements and the transverse field measure-
ments. We performed ODMR measurements on an as-grown single −NV centre in a bulk CVD
diamond sample with a 111 orientated surface. We independently verified the crystallographic
directions by x-ray diffraction. However, note that this is no requirement for our method. Our
experimental setup is sketched in figure 7(a). Three orthogonal magnetic field coils allowed a
magnetic field of ≈ 55 G to be aligned and rotated in the transverse plane. A two-dimensional
quadrupole electrode microstructure was engineered onto the diamond surface using gold
lithography and similarly allowed an electric field to be aligned and rotated in the transverse
plane. Microwaves were applied to the sample by two orthogonal wires underneath the diamond
sample. Optical excitation with 532 nm light and red-shift fluorescence collection were achieved
using a confocal microscope.

The dependence of Δ −f on the orientation of the transverse electric and magnetic fields was
observed using a modified spin-echo ODMR pulse sequence (see figure 7(b)). In the modified
sequence, the last π /2-pulse is phase-shifted by °90 to the other two pulses (indicated by the
subscripts x and y of the pulses in figure 7(c)) to enable the measurement of the sign of the
accumulated phase (i.e. the direction of the energy level shift). The microwave pulses were
separated by a fixed delay time τ ≈ 70 μs, during which the transverse electric field was
applied with a sinusoidal magnitude π τ=E t E t( ) sin /0 . The application of the electric field
during the pulse sequence results in a net accumulated phase difference
Φ τ γ δ τΔ= + =⊥ −k E f8 cos (3 ) 80 between 0 and − , which is converted into an optically
detectable population difference between the spin states Φ∝ − sin by the final π /2y -pulse.

Figure 7(c) depicts the spin-echo ODMR signal as E0 is increased for δ = 0 and two opposing
field angles γ = °0, 180 . This figure demonstrates that the spin-echo signal is dependent on the
sign of the accumulated phase Φ τΔ= −f8 , and thus the sign of Δ −f , which is determined by the
transverse orientation γ of the fields.

Figure 8 depicts the observed behaviour of Δ −f corresponding to four different rotations of
the transverse electric and magnetic fields. In each case, the measurements agree well with the
theoretical prediction and any small differences can be explained by small deviations of the
fields from transverse alignment as they are rotated. The strength of the measured electric field
could be calculated to =E 0.64max μ −V m 1 for the maximum applied voltage of ±15 V, which

Figure 6. The transverse orientation measurement technique. (a) Parallel electric and
magnetic fields are rotated in the transverse plane whilst Δ −f is observed. (b) The
observed trigonal pattern of Δ −f directly corresponds to the centreʼs trigonal defect
structure.
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compares to a simulated electric field strength of = −E 0.5 0.75sim μ −V m 1 for such a
quadrupole structure, depending on the exact position of the NV centre within the structure. As
discussed in the previous section, because the electric and magnetic fields are parallel (δ = 0),
the trigonal pattern of figure 8(c) directly corresponds to the orientation of the centreʼs trigonal
defect structure and would be shifted by °180 for a differently oriented NV. ODMR and
crystallographic results concerning the direction of the minor symmetry axis coincide within the
error margins.

4. Discussion of applications in multi-axis rotation sensing

The proposed concept of three-axis rotation sensing using a single −NV centre is to employ
iterations of the orientation measurement technique to measure the orientations of the centreʼs x
and z coordinate axes at discrete intervals (refer to figure 9). To demonstrate this concept, we
focus on a simple measurement scenario involving a rotating NV diamond and adjustable
electric and magnetic fields whose orientations are precisely known in the lab frame (see
figure 1(a)). Assuming that the rotational dynamics are sufficiently slow, we estimate the
centreʼs z and x directions using two orientation measurements of each. Starting from the
expected/previous z axis we apply magnetic fields with θ≈ 60° and two ϕ

B
values which differ

Figure 7. (a) Sketch of the experimental setup, including: the diamond sample with an
NV centre aligned perpendicular to the sample surface, a gold quadrupole electrode
microstructure for transverse electric field (yellow) generation, a microwave wire
(green) for spin manipulation and an exemplary magnetic field coil (blue). (b) ac-
electrometry ODMR sequence comprising a modified spin-echo pulse sequence
interleaved by a modulated electric field π τ=E t E t( ) sin /0 . The spin-echo consists of
two microwave π /2-pulses about orthogonal axes xrot and y

rot
of the rotating frame and

an intermediate π-pulse about xrot. The microwave pulses are separated by a delay time
τ. The optical readout and preparation pulse enables the detection and reinitialization of
the population difference between the spin states. (c) Spin-echo ODMR signal over
increasing electric field strength for two opposing field angles γ = °0, 180 (blue, red)
and equal field angle δ = 0 (see equation (7)). Please note that our modified spin-echo
sequence is sensitive to the sign of the accumulated phase and therefore the direction of
energy level shifts.
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by 90° (see figure 9(a)). For θ≈ 60° we achieve a decent, though not strongest, θ angle
dependence of Δ −f over a wide range of magnetic field strengths [43]. In addition, it is still
considerably smaller than 90° where angle results would start to be ambiguous. The result is an
updated/actual z direction. For the estimation of the x axis we apply parallel electric and
magnetic fields transverse to the actual z direction and with angles ϕ ϕ= = ± °30

E B
with

respect to the expected x axis (see figure 9(b)). For ϕ ϕ= = ± °30
E B

we achieve the strongest γ

Figure 8. The observed behaviour of Δ −f under four different rotations of the transverse
electric and magnetic fields (experimental data—points, theory—solid lines): (a) ϕ

B

rotated and ϕ π=
E

fixed, (b) ϕ
E
rotated and ϕ π= /2

B
fixed, (c) γ rotated and δ = 0

fixed, and (d) δ rotated and γ = 0 fixed. Note that the ‘two-leaf’ pattern of (a) differs
from the ‘four-leaf’ pattern observed in the previous electrometry demonstrations [6]
because our measurements were sensitive to both the sign and magnitude of Δ −f .
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angle dependence of Δ −f . Finally, z and x directions are updated. From the discrete set of

coordinate orientation measurements ⃗ ⃗{ }x t z t( ), ( )i i , the three-axis rotations β ⃗{ }( )R n,
i i that

occurred during each time interval, such that β⃗ = ˆ · ⃗+ ( )x t R n x t( ) , ( )i i i i1 and

β⃗ = ˆ · ⃗+ ( )z t R n z t( ) , ( )i i i i1 , can be reconstructed using

β

⃗ = ⃗ − ⃗ × ⃗ − ⃗

= ⃗ · ⃗ + ⃗ · ⃗ + ⃗ · ⃗ ⃗ · ⃗
− ⃗ · ⃗ ⃗ · ⃗

+ +

+ + + +

+ +

[ ] [ ]
[ ] [ ]

[ ] [ ]

n z t z t x t x t

x t x t z t z t x t x t z t z t

x t z t z t x t

( ) ( ) ( ) ( )

cos ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) , (8)

i i i i i

i i i i i i i i i

i i i i

1 1

1 1 1 1

1 1

where ⃗ni and β
i
are the axis and angle of the rotations.

The critical characteristic that defines the performance of our rotation sensing proposal is
the average time T required to perform an orientation measurement, which depends on the
average number of ODMR measurements for achieving a sufficient angle estimate for each axis
and the relevant coherence time Tc that determines the time of each ODMR measurement. −NV
quantum sensing is performed via the measurement of spin frequencies using ODMR pulse

Figure 9. Proposed concept of three-axis rotation sensing. (a) First the z direction is
estimated by measuring its actual θ1,2 angles with respect to magnetic fields ⃗B1,2. The
magnetic fields have an angle of ≈ °60 with the previous/expected z direction. (b) Next
the x direction is estimated by ac-electrometry using parallel electric ( ⃗E1,2) and magnetic
(not shown) fields transverse to z and with angles ϕ = ± °30

1,2
with the previous/

expected x direction. (c) Full measurement sequence for one three-axis orientation
estimate. Each angle estimate is composed of N ODMR pulse sequences in order to
reduce the relative photon shot noise and to improve accuracy.
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sequences, such as the Ramsey, spin-echo and more advanced dynamical decoupling
sequences. In essence, during a pulse sequence a coherent superposition of two spin states
(e.g. 0 and − ) acquires a phase with a certain frequency. The latter is then sensitive to various
quantities. For a single −NV centre and practical experimental parameters, the frequency
sensitivity is

δν ≈ · −C T , (9)c
1 2

where ≈C 12 given an average fluorescence photon count rate (under cw illumination with
readout laser intensity) of 200 k counts, an ODMR contrast of 30% and an exponential decay of
the Ramsey or spin-echo-like signal over the phase accumulation time τ [42]. For

τ = =T 1 ms,c this yields a frequency sensitivity of δν = 380 Hz/ Hz .
For an appropriate experimental setting we can convert this frequency sensitivity into an

angle sensitivity for θ or γ. In particular, we might perform combined ac-magnetometry as
depicted in figure 9(a) (see also reference [17]) and ac-electrometry as illustrated in figures 7
and 9(b). In that case, we divide the frequency sensitivity δν by the derivative of the frequency
shift Δ −f with respect to the angle θ or γ (assuming a superposition of spin states 0 and − ) at
the corresponding working point [42]

δθ
Δ
θ

δν≈
θ

−

≈ °

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )d f

d
(10)

60

1

δγ
Δ
γ

δν≈
γ δ

−

=± ° =

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )d f

d
. (11)

30 , 0

1

Using practical field magnitudes of =B 100 G and μ= −E 1 V m 1 we obtain

δθ ≈ · −8.0 10 deg Hz (12)5

δγ ≈ 0.043 deg Hz . (13)

Even higher sensitivities might be achieved when using superposition states of − and + .

In that case the derivatives in equations (10) and (11) do increase to θ−+ −( )d f f d/ and

γ−+ −( )d f f d/ respectively and we obtain for the sensitivities

δθ ≈ · −4.5 10 deg Hz (14)dq
5

δγ ≈ 0.021 deg Hz . (15)
dq

If we target at a similar accuracy for z and x we can neglect the time for the z estimation
measurement compared to the x estimation measurement because of the large mismatch of the
respective sensitivities. Therefore, the overall angle sensitivity for three-axis rotation sensing is
equal to δγ ≈ 0.02 deg/ Hz

dq
given the above assumptions. For a total three-axis rotation

measurement time of T = 1 s, this corresponds to an angular accuracy of 0.02°, which compares
favourably to a previous single-axis rotational sensing demonstration where the rotational
dynamics of a nanodiamond within a biological cell were ∼ ° −1 h 1 [28]. Faster rotational
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dynamics can be captured at the expense of angular accuracy. For example, if a much smaller
ODMR measurement time μ∼T 1c s is used, the total three-axis measurement rate is increased
by three orders of magnitude at the expense of a 33 fold decrease in angular accuracy. Of
course, in a real three-axis rotational sensing experiment, it is important to adjust the estimation
rate to the rotational dynamics in order to exploit maximum possible sensitivities. Furthermore,
it is expected that there exist more sophisticated and task specific rotation measurement
sequences other than the simple sequence discussed in this section. Given all of these
considerations, it is clear that since three-axis rotational sensing enables the rotational dynamics
of a nanodiamond to be almost completely reconstructed, the rotation sensing concept proposed
here may have significant applications in the study of the internal mechanics of biological cells.

5. Conclusion

In this paper, we have demonstrated an ODMR technique employing rotations of static electric
and magnetic fields that precisely measures the orientation of the −NV centreʼs defect structure.
We developed our technique through a theoretical examination of the relationship between the
centreʼs observable spin resonances and its defect structure and showed that, by observing the
variation of the spin resonances as parallel electric and magnetic fields are rotated, the fields can
be aligned with specific directions within the centreʼs defect structure. Whilst our technique is a
vital enabler of the centreʼs existing vector sensing applications, it also motivates new
applications in multi-axis rotation sensing, NV growth characterization and diamond
crystallography. Indeed, the application of our technique to multi-axis rotation sensing of
nanodiamonds within biological cells has significant potential in the study of internal cellular
mechanics.
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Appendix A. Spin-Hamiltonian derivation

In this appendix, we briefly review the detailed derivation of the ground state spin-Hamiltonian
(1) presented in [40]. Through the application of perturbation theory, it was shown in [40] that
spin–orbit and spin–spin coupling between the ground A2

3 and excited E3 levels results in the
ground state spin becoming susceptible to electric fields, but does not result in its g-factor being
significantly perturbed from the free electron value. Here, we present an abridged derivation
that highlights the relationship between the spin-Hamiltonian and the defect structure of the

−NV centre.
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We begin with the centreʼs electronic Hamiltonian

= + + + +
= +

H H V V V V

H H , (A.1)
NV o so ss E B

o f

where Ho is the purely orbital Hamiltonian that includes electronic kinetic energy and electron-
nucleus and electron–electron electrostatic interactions, Vso is spin–orbit interaction, Vss is
spin–spin interaction, VE is the electric dipole interaction, and VB includes orbital and spin
magnetic interactions. Note that Vss, VE and VB are spherically symmetric and invariant to
coordinate transformations and can each be written as linear combinations of products of orbital
and spin operators [33].

The LS-coupling states corresponding to the triplet levels are [33]

Ψ Φ χ Ψ Φ χ Ψ Φ χ= = =, , , (A.2)A m A m E x m E x m E y m E y m, , , , , , ,s s s s s s2
3

2
3 3 3 3 3

where ΦΓ j, are orbital wavefunctions that transform as the jth row of the Γ irreducible

representation of theC v3 group and χ
ms
are the triplet spin states with = ±m 0, 1s . It is important

to note that the orbital wavefunctions are defined by the centreʼs defect structure. The labels x

and y recognise the fact that the orbital wavefunctions Φ Φ{ },E x E y, ,3 3 transform analogously to

the coordinates x y{ , } under the C v3 operations, if the coordinates are defined such that the z and
x coordinate directions are aligned with the centreʼs major and (one of the three) minor
symmetry axes. Hence, as in [40], it is natural to adopt this coordinate system that is aligned
with the centreʼs defect structure.

The LS-coupling states are eigenstates of Ho and thus form the basis for the perturbative
calculation of the fine structure interactions Hf . Since it was shown in [40] that only interactions

between the triplet levels perturb the ground state fine structure, the ground state spin-
Hamiltonian may be immediately constructed to second-order in terms of orbital integrals as

Φ Φ Φ Φ Φ Φ Φ Φ= − +( )H H
E

H H
1

, (A.3)A f A
o

A f E x E x E y E y f A, , , ,2
3

2
3

2
3 3 3 3 3

2
3

where ∼E 1.945o eV is the energy separation of the triplet levels and it is to be understood that
the spin operators of Hf that remain after the evaluation of the orbital integrals act upon the

triplet spin states χ
ms
. The above expression demonstrates that H is C v3 symmetric, since its

behaviour under a coordinate transformation will be determined by the behaviour of the C v3

symmetric orbital wavefunctions.
Evaluating the orbital integrals in the above yields the final expression of the spin-

Hamiltonian (1). Introducing the centreʼs defect orbitals (a1, ex and ey), the explicit expressions

for the electric susceptibility parameters in the adopted coordinate system are [40]

=

= +
⊥ ⊥

( )
k d D E

k s s d

8 2

, (A.4)

E o

z z2,5
2

2,6
2
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where

= = ⃗ ⃗

= ⃗ ⃗ − ⃗ ⃗
⊥ ( ) ( )

( ) ( ) ( ) ( )

d d a r ex e r

d e r ez e r a r ez a r , (A.5)

x x

z x x

1 1 1 1

1 1 1 1 1 1 1 1

are transverse and axial electric dipole moments,

μ μ
π

= ⃗ ⃗
−

⃗ ⃗ − ⃗ ⃗( )( ) ( ) ( ) ( ) ( ) ( )D
g

h
a r e r

x y

r
e r e r e r e r

3

32
,(A.6)E

B e
y x y y x

0
2 2

1 1 2
12
2

12
2

12
5 1 2 1 2

is an orbital integral of spin–spin interaction, e is the fundamental charge, μ
0
is the permeability

of free space, ⃗ = ˆ + ˆ + ˆr x x yy z zi i i i is the position of the ith electron,

⃗ = ⃗ − ⃗ = ˆ + ˆ + ˆr r r x x y y z z12 2 1 12 12 12 , and s2,5 and s2,6 are real spin-coupling coefficients formed
from linear combinations of spin–orbit and spin–spin interaction integrals (refer to [33, 40] for
further details).

The above demonstrates that the electric susceptibility parameters are products of the
electric dipole and spin–spin interactions between the triplet levels. Consequently, the electric
field interaction may be interpreted as resulting in the lowering of the symmetry of the ground
state spin density. As discussed in section 2, whilst the adopted coordinate system is aligned
with the centreʼs symmetry axes, there is still freedom to choose the precise coordinate
directions so that electric susceptibility parameters are positive. Since the spin-coupling
coefficients are real, and thus + >s s 02,5

2
2,6
2 , only the electric dipole dz determines the sign of kz.

Both the spin–spin and electric dipole contributions to ⊥k determine its sign. However, notably
the spin–spin interaction is invariant to a coordinate inversion because it is quadratic in the
coordinates. It is shown in appendix B that the electric susceptibility parameters are positive for
the coordinate system definition depicted in figure 2(a), where the z coordinate axis is directed
from the nitrogen towards the vacancy and when the x coordinate axis is directed from the z
coordinate axis towards one of the vacancyʼs three nearest-neighbour carbons.

Appendix B. Molecular orbital calculation of the electric susceptibility parameters

In this appendix, the well established molecular model of the centre [33, 34] is drawn upon to
perform a molecular orbital calculation of the sign of the electric susceptibility parameters.
Similar calculations have been used to establish basic aspects of the temperature and pressure
response of the ground state spin [12, 13]. The molecular model exploits the highly localized
nature of the centreʼs defect orbitals to approximate the orbitals as linear combinations of the
dangling sp3 atomic orbitals (n, c1, c2, c3) of the vacancyʼs nearest neighbour nitrogen and carbon
atoms (refer to figure B1 (a)) [12].

λ

≈ − −
≈ −

≈ + + +

( )

( )

e N c c c

e N c c

a N c c c n

2

( )

, (B.1)

x x

y y

a

1 2 3

2 3

1 1 2 31
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where λ is a real linear coefficient and

λ λ

= − − − −

= − −

= + + + + + +

−

−

−

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( ) ( )
( ) ( )
( ) ( )

N c c c c c c

N c c c c

N c c c n c c c n

2 2

, (B.2)

x

y

a

1 2 3 1 2 3

1 2

2 3 2 3

1 2

1 2 3 1 2 3

1 2

1

are normalization constants.
Expanding the electric dipole integrals (A.5) and spin–spin integral (A.6) using the above

defect orbital definitions, applying symmetry operations and ignoring orbital overlaps, the
integrals become

λ
λ

μ μ
π

≈ ⃗ ⃗

≈
+

⃗ ⃗ − ⃗ ⃗

≈ ⃗ ⃗
−

⃗ ⃗

− ⃗ ⃗
−

⃗ ⃗

⊥

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d
e

c r x c r

d
e

c r z c r n r z n r

D
g

h
c r c r

x y

r
c r c r

c r c r
x y

r
c r c r

3 2

3

3

32
16

2
3

. (B.3)

z

E
B e

1 1

2

2 1 1

0
2 2

1 1 2 2
12
2

12
2

12
5 1 1 2 2

2 1 3 2
12
2

12
2

12
5 2 1 3 2

Using knowledge of the approximately tetrahedral nuclear geometry of the NV centre, the
one-electron atomic orbital integrals within the electric dipole integrals can be evaluated. For
the purpose of determining the sign of the electric dipole integrals, we can proceed with simple
geometric arguments. For the carbon sp3 atomic orbitals, the expected position

Figure B1. (a) Schematic of the NV centre depicting the nearest neighbour carbon
atoms (gray), the substitutional nitrogen atom (brown), as well as their corresponding
(c1, c2, c3, n) sp3 atomic orbitals (red-positive orbital contour, blue-negative orbital
contour). (b) and (c) depict the geometry of the NV centre in the xz and xy coordinate
planes, respectively. Labels are as defined in the text.
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⃗ = ⃗ ⃗ ⃗( ) ( )r c r r c r
i i i ( =i 1, 2, 3) of an electron occupying one of those orbitals occurs at a

distance ∼ Ål 0.31C towards the vacancy away from the carbon [13]. Likewise, the expected

position ⃗ = ⃗ ⃗ ⃗( ) ( )r n r r n r
n

of an electron occupying the nitrogen orbital occurs at a

distance ∼ Ål 0.27N towards the vacancy away from the nitrogen. The distances between the

vacancy and the carbon and nitrogen atoms are ∼ ÅL 1.65C and ∼ ÅL 1.68N , respectively
[32]. Consequently, through inspection of the geometry (refer to figure B1(b)), it is clear that
both electric dipole integrals are positive.

Unlike the electric dipole integrals, the spin–spin integral contains two-electron direct
integrals between densities of two carbon sp3 orbitals. For the purpose of determining the sign
of the spin–spin integral, the difficulty of evaluating these direct integrals can be avoided and a
semi-classical approximation can be performed instead, where the direct integrals between
atomic orbitals are replaced by expressions containing the expected positions of the electrons
occupying the orbitals [13]

⃗ ⃗
−

⃗ ⃗

≈
⃗ − ⃗

− − −

⃗ ⃗
−

⃗ ⃗

≈
⃗ − ⃗

− − −

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

c r c r
x y

r
c r c r

r r
x x y y

c r c r
x y

r
c r c r

r r
x x y y

1

1
. (B.4)

1 1 2 2
12
2

12
2

12
5 1 1 2 2

2 1

5 2 1

2

2 1

2

2 1 3 2
12
2

12
2

12
5 2 1 3 2

3 2

5 3 2

2

3 2

2

Using these semi-classical expressions and the geometry of the centre (refer to
figure B1(c)), the spin–spin integral becomes

μ μ
π

≈ ⃗ ⃗ −( ) ( )D
g

h
c r x c r

4
2
3

, (B.5)E
B e0
2 2

1 1
3

which is clearly positive. Given that each of the electric dipole and spin–spin integrals are
positive, it follows from (A.4) that the electric susceptibility parameters are also positive for the
adopted coordinate system.
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