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Abstract. We consider when certain Banach sequence algebras
A on the set N are approximately amenable. Some general results
are obtained, and we resolve the special cases where A = ` p for
1 ≤ p < ∞, showing that these algebras are not approximately
amenable. The same result holds for the weighted algebras ` p(ω).

1. Introduction

The concept of amenability for a Banach algebra A, introduced by
Johnson in 1972 [7], has proved to be of enormous importance in Ba-
nach algebra theory (see [1], for example). In [3] several modifications
of this notion were introduced; in this paper we shall focus on one
of these, that of approximate amenability. We recall the definition in
Definition 1.1, below.

Let A be an algebra, and let X be an A-bimodule. A derivation is
a linear map D : A→ X such that

D(ab) = a · D(b) +D(a) · b (a, b ∈ A) .

For x ∈ X, set adx : a 7→ a · x − x · a, A → X. Then adx is a
derivation; these are the inner derivations.

Let A be a Banach algebra, and let X be a Banach A-bimodule. A
continuous derivation D : A → X is approximately inner if there is a
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net (xα) in X such that

D(a) = lim
α

(a · xα − xα · a) (a ∈ A) ,

so that D = limα adxα in the strong-operator topology of B(A).
The dual of a Banach space X is denoted by X ′; in the case where

X is a Banach A-bimodule, X ′ is also a Banach A-bimodule. For the
standard dual module definitions, see [1].

Definition 1.1. [3] Let A be a Banach algebra. Then A is approx-
imately amenable if, for each Banach A-bimodule X, every continuous
derivation D : A→ X ′ is approximately inner.

The qualifier sequential prefixed to the above definition specifies
that there is a sequence of inner derivations approximating the given
continuous derivation.

We remark that, in [3], the notion of uniform approximate amenabil-
ity was also introduced: a Banach algebra A is uniformly approximately
amenable if, for each Banach A-bimodule X, each continuous deriva-
tion D : A → X ′ is the limit of a sequence of inner derivations in
the norm topology of B(A,X ′). In fact, it has recently been shown
independently by Pirkovskii [10] and Ghahramani [4] that a uniformly
approximately amenable Banach algebra is already amenable.

Of course, each amenable Banach algebra is approximately amen-
able. Some approximately amenable Banach algebras which are not
amenable are constructed in [3]. For example, let (An) be a sequence
of unital, amenable Banach algebras. Then the sum c0(An) is always
approximately amenable, but is not necessarily amenable [3, Example
6.1]. Further, it has been shown by Ghahramani and Stokke [5] that
the Fourier algebra A(G) is approximately amenable for each amenable,
discrete group G, but it is known that A(G) is not always amenable for
an amenable group G [9]. Examples of semigroup algebras of the form
` 1(S) that are approximately amenable but not amenable are given in
[2]. Nevertheless there is something of a shortage of ‘natural’ examples
of approximately amenable Banach algebras which are not amenable.
In this paper, we shall consider when certain Banach sequence algebras
on N are approximately amenable, a question left open in [3]. In part-
icular, we shall consider the standard Banach sequence algebras `p =
`p(ω), where 1 ≤ p <∞ and ω is a weight on N.
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2. Basic constructions

When determining whether or not our Banach algebras are approx-
imately amenable, we shall work from a characterization of approx-
imately amenable Banach algebras which is a modification of that given
in [3].

Let A be Banach algebra. The projective tensor product A⊗̂A is a
Banach A-bimodule, under the operations defined by

c · a⊗ b = ca⊗ b, a⊗ b · c = a⊗ bc (a, b, c ∈ A) ,

and there is a continuous linearA-bimodule homomorphism π : A⊗̂A→
A such that π(a⊗ b) = ab (a, b ∈ A) [1].

Proposition 2.1. Let A be a Banach algebra. Then A is approx-
imately amenable if and only if, for each ε > 0 and each finite subset
S of A, there exist F ∈ A ⊗ A and u, v ∈ A such that π(F ) = u + v
and, for each a ∈ S:

(i) ‖a · F − F · a+ u⊗ a− a⊗ v‖ < ε ;

(ii) ‖a− au‖ < ε and ‖a− va‖ < ε .

Proof. Suppose that A is approximately amenable. Then by [3,
Corollary 2.2] there are nets (Mα) in (A⊗̂A)′′, and (Uα) and (Vα) in A′′

such that, for each a ∈ A:

(i) a ·Mα −Mα · a+ Uα ⊗ a− a⊗ Vα → 0 ;

(ii) a− a · Uα → 0 and a− Vα · a→ 0 ;

(iii) π′′(Mα)− Uα − Vα → 0 .

(This corrects a typographical error in [3].) In each case convergence
is in the ‖ · ‖-topology.

Let Y denote the Banach space (A⊗̂A) ⊕ A ⊕ A ⊕ A. For each
a ∈ A, define a convex set in Y by setting

Ka := {(a ·m −m · a+ u⊗ a− a⊗ v,
a− au, a− va, π(m)− u− v) : m ∈ A⊗̂A, u, v ∈ A} .

For the specified finite subset S of A,

K :=
∏
{Ka : a ∈ S}

is a convex set in the Banach space Y S. The conditions above show
that the weak closure of K in Y S contains the zero element 0 of Y S. By
Mazur’s theorem, it follows that 0 belongs to the ‖ · ‖-closure of K in
Y S. Thus, with ε > 0 as specified, there exist F ∈ A⊗̂A and u, v ∈ A
such that clauses (i) and (ii) of the proposition are satisfied and, further,
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such that ‖π(F )− u− v‖ < ε. By modifying F and u slightly, we may
suppose, further, that F ∈ A⊗ A and that π(F ) = u+ v.

Conversely, suppose that the condition in the proposition is satis-
fied. Consider the set D := (0, 1)×F(A), where F(A) is the family of
finite subsets of A, and order D by setting

(ε1, S1) 4 (ε2, S2) whenever ε1 ≥ ε2 and S1 ⊆ S2 .

Then (D,4) is a directed set. The conditions show that there exist
nets (Fα) in A⊗̂A, and (uα), (vα) in A such that π(Fα) = uα + vα and
such that, for each a ∈ A, we have:

a · Fα − Fα · a+ uα⊗a− a⊗ vα → 0 ;

a− auα → 0 , a− vαa→ 0 .

Thus we have satisfied the conditions of [3, Corollary 2.2], and so A is
approximately amenable.

Corollary 2.2. Let A be a Banach algebra with identity e. Then
A is approximately amenable if and only if, for each ε > 0 and each
finite subset S of A, there exists G ∈ A ⊗ A with π(G) = e and such
that

‖a ·G−G · a‖ < ε (a ∈ S) .

Proof. Suppose that such a G exists, and set u = v = e and
F = G + e⊗ e. Then π(F ) = u + v, and F, u, v satisfy the conditions
of Proposition 2.1.

Conversely, suppose that F, u, v satisfy the above condition for a
finite subset S and with ε/3‖e‖ replacing ε, and set

G = F − u⊗ e− e⊗ v + e⊗ e .

Then π(G) = e, and

‖a ·G−G ·a‖ ≤ ‖a ·F −F ·a+u⊗a−a⊗v‖+‖a−au‖+‖a−va‖ < ε ,

and so A is approximately amenable by Proposition 2.1.

For comparison, we recall [1], [8] that a Banach algebra A is amen-
able if and only if there is a constant C > 0 such that, for each ε > 0
and each finite subset S of A, there exists F ∈ A ⊗ A with ‖F‖ ≤ C
such that, for each a ∈ S, we have:

(i) ‖a · F − F · a‖ < ε ;

(ii) ‖a− aπ(F )‖ < ε .

We remark that (ii) of Proposition 2.1 is exactly the condition that
A has both left and right approximate units [1, Definition 2.9.10]. We
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do not know whether or not an approximately amenable Banach alge-
bra necessarily has (two-sided) approximate units.

We now give a variation of Proposition 2.1 in the case where A
is commutative. For each Banach algebra A, there is an isometry ι :
A⊗̂A→ A⊗̂A such that ι(a⊗ b) = b⊗ a (a, b ∈ A).

Proposition 2.3. Let A be a commutative Banach algebra. Then
A is approximately amenable if and only if, for each ε > 0 and each
finite subset S of A, there exist F ∈ A ⊗ A with ι(F ) = F and u ∈ A
such that π(F ) = 2u, and, for each a ∈ S:

(i) ‖a · F − F · a+ u⊗ a− a⊗ u‖ < ε ;

(ii) ‖a− au‖ < ε .

Proof. Since A is commutative,

ι(a · F ) = ι(F ) · a (a ∈ A,F ∈ A⊗̂A) .

Suppose that A is approximately amenable, and take ε > 0 and
a finite subset S of A. By Proposition 2.1, there exist F , u, and v
satisfying conditions (i) and (ii) of that result. For each a ∈ S, we
have

‖ι(F ) · a− a · ι(F ) + a⊗ u− v ⊗ a‖ < ε .

Set G = (F + ι(F ))/2 and w = (u + v)/2. Then ι(G) = G and
π(G) = 2w. Further,

‖a ·G−G · a+ w ⊗ a− a⊗ w‖ < ε and ‖a− aw‖ < ε .

Thus the specified conditions are satisfied (with w for u).
The converse is immediate.

3. Banach sequence algebras

We now introduce the specific algebras that will be considered in this
paper. As usual c00 will be the subalgebra of CN consisting of sequences
having finite support.

Definition 3.1. A Banach sequence algebra on N is a Banach
algebra A which is a subalgebra of CN such that c00 ⊂ A.

For example, c0 = c0(N) and ` p = ` p(N) for 1 ≤ p ≤ ∞ are Banach
sequence algebras on N.

Let (A, ‖ · ‖) be a Banach sequence algebra on N. Then

‖a‖ ≥ |a|N (a ∈ A) ,

where | · |N denotes the uniform norm on N. In the case where c00 is
dense in A, the algebra A is natural on N [1, Proposition 4.1.35].
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Throughout we write δi for the characteristic function of {i} for
i ∈ N, and set

en =
n∑
i=1

δi (n ∈ N) ,

so that (en) ⊂ c00 ⊂ A. When convenient we identify a ∈ A both as
the sequence (ai) and as the formal sum

∑
i aiδi. We shall also identify

A⊗ A with a space of functions on N× N by setting

(a⊗ b)(i, j) = aibj (a, b ∈ A, i, j ∈ N);

in particular, δi ⊗ δj = δ(i,j), the characteristic function of {(i, j)},
for i, j ∈ N. We shall also sometimes write F =

∑
i,j F (i, j)δ(i,j) for

F ∈ c00 ⊗ c00. Note that

(a · F )(i, j) = aiF (i, j) , (F · a)(i, j) = ajF (i, j) (i, j ∈ N) ,

and that π(F ) =
∑

i F (i, i)δi.

Definition 3.2. Let A be a Banach sequence algebra on N, and let
a ∈ A. For F ∈ c00 ⊗ c00, set

∆a(F ) = a · F − F · a+ π(F )⊗ a− a⊗ π(F ) .

Clearly ∆a(F ) ∈ c00 ⊗ c00 whenever a ∈ c00.

Proposition 3.3. Let A be a Banach sequence algebra with c00
dense in A. Then A is approximately amenable if and only if, for each
ε > 0 and each finite subset S of A, there exists F ∈ c00 ⊗ c00 with
ι(F ) = F such that, for each a ∈ S:

(i) ‖∆a(F )‖ < ε ;

(ii) ‖a− aπ(F )‖ < ε .

Proof. Suppose that A is approximately amenable, and take ε > 0
and a finite subset S of A. Let F and u be given by Proposition 2.3.
Since c00 is dense in A, the space c00⊗ c00 is dense in A⊗A, and so we
can replace F by an element G ∈ c00⊗ c00 such that (i) and (ii) of that
proposition remain true, with v = π(G)/2 replacing u. Now replace G
by

H = G+
∑

i(vi − π(G)i)δi ⊗ δi ,
noting that the number of non-zero summands in the above sum is
finite. This does not affect clauses (i) or (ii) of Proposition 2.3, and
now π(H) = v. Thus conditions (i) and (ii) of the current proposition
are satisfied.

The converse is similar.
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We shall later consider only Banach sequence algebras A which are
self-adjoint. In such a situation the map a 7→ a is necessarily continuous
on A. It follows that we may replace F by F +F , and so take F to be
real-valued. Similarly, we may also suppose that the elements of the
‘test sets’ S are real-valued.

Proposition 3.4. Let A be a Banach sequence algebra. Suppose
that there is η > 0 such that, for each ε > 0 and each finite subset S
of A, there exists u ∈ c00 with

‖u‖ ≥ η and ‖a− au‖ · ‖u‖ < ε . (3.1)

Then A is approximately amenable.

Proof. Take u as given by (3.1), with ε replaced by εη/2. Set

F = u⊗ u+
∑

i(ui − u2i )δi ⊗ δi .

Then π(F ) = u and, for each a ∈ S, we have

‖a ·F −F · a− a⊗ u+ u⊗ a‖ = ‖au⊗ u− a⊗ u+ u⊗ a− u⊗ au‖ < ε

and ‖a− au‖ < ε. By Proposition 3.3, A is approximately amenable.
The converse is immediate.

More general forms of this result for Banach function algebras on
discrete spaces can be shown by the same sort of argument; see, for
example, [5, Proposition 3.16].

We make the conjecture that the sufficient condition in Propos-
ition 3.4 is in fact also necessary for A to be approximately amenable.
Indeed, we do not know an example of a Banach sequence algebra
which is approximately amenable, but which does not have a bounded
approximate identity. It is also conceivable that each Banach sequence
algebra A such that c00 is dense in A and A = A2 is approximately
amenable.

Corollary 3.5. Let A be a Banach sequence algebra such that
A has a bounded approximate identity contained in c00. Then A is
sequentially approximately amenable.

Proof. It is standard that A has a sequential bounded approx-
imate identity, say (un), in c00 [1, Corollary 2.9.18], and satisfying
infn ‖un‖ ≥ 1. Let {xn : n ∈ N} be a countable dense subset of A.
Then, for each n ∈ N, there exists i = i(n) such that ‖xj − xjui(n)‖ <
1/n for 1 ≤ j ≤ n. Following Proposition 3.4, we set

Fn = ui(n) ⊗ ui(n) +
∑

j∈N(ui(n),j − u2i(n),j)δj ⊗ δj .
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Then, for each a ∈ A and ε > 0, we have

‖a · Fn − Fn · a− a⊗ ui(n) + ui(n) ⊗ a‖ = 2‖aui(n) − a‖ · ‖ui(n)‖ < ε

for n sufficiently large. Thus (Fn, ui(n)) gives a sequence with the re-
quired properties of [3, Corollary 2.2]. The sequential variant of [3,
Theorem 2.1] holds (with the same argument), and so A is sequentially
approximately amenable.

Special cases of the above corollary have been shown in [4], where
it is also shown that the converse holds for certain Banach sequence
algebras.

We wish to stress that the function F specified in Proposition 3.3
must satisfy conditions (i) and (ii) for each finite collection S of ele-
ments. The following shows that, for many Banach sequence algebras
A, we can find F to satisfy these conditions for each single element
a ∈ A. Indeed the Banach sequence algebra ` 1 satisfies the conditions
of Proposition 3.6 below, but we shall see that it is not approximately
amenable. To determine whether or not such an algebra A is approx-
imately amenable, we must look at sets S with at least 2 elements.

We introduce the following notation. Let A be a Banach sequence
algebra on N. For each a ∈ A and each finite or cofinite subset T of N,
set

PT : a 7→
∑

i{aiδi : i ∈ T} , A→ A .

We also write Pn = P{1,...,n} and Qn = I − Pn for n ∈ N. The family C
of cofinite subsets of N will be directed by reverse set inclusion.

Proposition 3.6. Let A be a Banach sequence algebra, and let
a ∈ A. Suppose that

lim{‖PCa‖ : C ∈ C} = 0 . (3.2)

Then, for each ε > 0, there exists F ∈ c00 ⊗ c00 such that

‖∆a(F )‖ < ε and ‖a− aπ(F )‖ < ε . (3.3)

Proof. Let {Bi : i ∈ Z+} be the partition of N such that a takes
the constant value ai on Bi for i ∈ N, such that a takes the value 0 on
B0, and such that ai 6= aj whenever i, j ∈ Z+ and i 6= j. Note that, by
(3.2), each Bi for i ∈ N is finite. For n ∈ N, set

Dn =
n⋃
i=1

Bi and En =
∞⋃

i=n+1

Bi ,

and set µ(n) = minEn, so that µ(n)→∞ as n→∞.
Fix ε > 0, and take n0 ∈ N such that ‖PCa‖ < ε for each cofinite

subset C of N with minC > n0. Next choose n1 ∈ N such that n1 > n0
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and µ(n1) > n0. Set C = En1 ∪ (B0∩ [n1,∞)), so that Dn1 is finite and
C is cofinite with minC > n0. Take u to be the characteristic function
of Dn1 , so that

a− au = aχN\Dn1 = PCa ,

and hence
‖a− au‖ = ‖PCa‖ < ε .

By (3.2), we may choose m0 ∈ N with m0 > n1 and such that

|Dn1| · ‖Qm0a‖ < ε/2 . (3.4)

Now define F as follows.

(a) For j, k ≤ n1, set

F = 1 on Bj ×Bk ;

(b) for j ≤ n1 and n1 < k ≤ m0, set

F =
−ak

aj − ak
on Bj ×Bk ;

(c) by symmetry for k ≤ n1 and n1 < j ≤ m0 ; and
(d) at remaining points, F = 0.

Note that u ∈ c00, F ∈ c00 ⊗ c00, and π(F ) = u. Set ∆a = ∆a(F ).
Clearly ∆a is zero except on the sets (Bj ×Bk) ∪ (Bk ×Bj) where

j ≤ n1 and k > m0. On the set(⋃
j≤n0

Bj

)
×

( ⋃
k>m0

Bk

)
,

we see that a ·F −F ·a and a⊗u are zero, and that u⊗a = u⊗Qm0a.
A similar formula holds when j and k are interchanged. Note that
Qm0a⊗ u and u⊗Qm0a have disjoint supports in N× N. Thus

‖∆a‖ = 2‖Qm0a⊗ u‖ = 2
∥∥∥∑{Qm0a⊗ δr : r ∈ Dn1}

∥∥∥
≤ 2|Dn1| · ‖Qm0a‖ < ε

by (3.4). This establishes (3.3).

Note the explicit dependence of F on the element a in clause (b),
above. One is tempted to try the ‘more obvious’ definition

Fi,j =

{
1 (i, j ≤ n) ,

0 (otherwise) ,

for suitably large n ∈ N, so that π(F ) = en. In this case, F is indepen-
dent of a. Suppose that S is a finite subset of c00 (rather than A). Then
our function F satisfies (i) and (ii) of Proposition 3.3 for each a ∈ S
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(for sufficiently large n ∈ N). However this choice of F does not work
for all a ∈ A. For example, take A = ` 1, and set a =

∑
j j
−3/2δj ∈ A.

Then

‖∆a‖ =
∞∑

j=n+1

j−3/2‖δj ⊗ en − en ⊗ δj‖ = 2n
∞∑

j=n+1

j−3/2 ≥ 4

for each n ∈ N.
In fact, let A = ` 1, and let S be a finite subset of A2. Then we

claim that for each ε > 0, there exists F ∈ A⊗A such that (3.3) holds
for each a ∈ S. This may add some credence to our conjecture that
A2 = A for an approximately amenable Banach sequence algebra.

To prove this claim, we first recall Pringsheim’s theorem: for a
monotonic decreasing sequence (ai) ∈ A, one has limi iai = 0.

Now take a = (ai) ∈ A with 0 ≤ ai ≤ 1 (i ∈ N). Certainly ai → 0,
and so there is a permutation σ of N such that aσ(j) ≤ aσ(i) for j ≥ i
in N. Thus iaσ(i) → 0. Fix ε ∈ (0, 1), and take n ∈ N such that
jaσ(j) < ε/2 for j ≥ n and also

∑∞
j=n+1 aj < ε. Set B = σ−1(Nn)∪Nn,

where Nn = {1, . . . , n}. Then set u = χB, the characteristic function
of B, and

Fi,j =

{
1 (i, j ∈ B) ,

0 (otherwise) .

We see that

s := |B|
∑
{a2i : i ∈ N \B} ≤ 2n

∞∑
j=n+1

a2σ(j) ≤
nε2

2

∞∑
j=n+1

j−2 < ε .

Thus

‖a2 · F − F · a2 + u⊗ a2 − a2 ⊗ u‖ = 2‖QBa
2‖ ‖u‖ = s < ε ,

and we have built in the fact that ‖a2 − ua2‖ < ε. It follows that the
conditions of (3.3) are satisfied for a2.

For finitely many elements in A2, it suffices to consider the case
where each of them is real-valued, and hence we need only consider dif-
ferences of finitely many squares of non-negative elements of A, say the
elements are a(1), . . . , a(k). We then have finitely many permutations
σ1, . . . , σk of N that respectively render each of these latter sequences
decreasing. We argue as above, with n ∈ N chosen so that, for each

1 ≤ i ≤ k, we have ja
(i)
σi(j)

< ε/2k for j ≥ n and also
∑∞

j=n+1 a
(i)
j < ε.

Finally, we set

B = Nn ∪
k⋃
i=1

σ−1i (Nn) .
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The above claim now follows.

4. Approximate amenability for ` p

Take 1 ≤ p < ∞. Then ` p is a Banach sequence algebra, and c00 is
dense in ` p. These algebras are discussed in [1, Example 4.1.42].

It is well known that ` p is weakly amenable, but not amenable.
Clearly the sequence (en) is an approximate identity for ` p such that
‖en‖p = n1/p (n ∈ N). Certainly each a ∈ ` p satisfies equation (3.2)
above.

It is shown in [3, Example 6.3] that ` p is not sequentially approx-
imately amenable. In this section we show that ` p is not approximately
amenable.

To this end, some preliminaries and further notations are needed.
First, note that the map

T : ` p × ` p → ` p(N× N) : T (x, y)(i, j) = xiyj ,

is bilinear with ‖T‖ = 1, and so there is a map

T̃ : ` p ⊗̂ ` p → ` p(N× N)

with T̃ (x ⊗ y) = T (x, y) (x, y ∈ ` p) and ‖ T̃‖ = 1. Let H ∈ c00 ⊗ c00.
Then ∑

i,j

|H(i, j)|p ≤ ‖H‖p , (4.1)

where ‖H‖ denotes the norm of H in ` p ⊗̂ ` p. (Of course, equality
holds in the case where p = 1.)

Fix throughout γj =
1

j(j + 1)
and set γ = (γj). Note that γ is

positive, decreasing, and satisfies

kγk ≤
∞∑

j=k+1

γj . (4.2)

Now let η = (ηj) ∈ `1 be positive and decreasing, and define ele-
ments a, b in ` p by

a =
∞∑
j=1

η
1/p
j δ2j−1 , b =

∞∑
j=1

η
1/p
j δ2j .

We show that, for a suitable choice of η and for a certain ε > 0, there
is no element F ∈ c00 ⊗ c00 such that both the following inequalities
are true:

‖∆a(F )‖+ ‖∆b(F )‖ < ε ; (4.3)

‖a− π(F )a‖+ ‖b− π(F )b‖ < ε . (4.4)
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It would then follow from Proposition 3.3 that ` p is not approximately
amenable.

Throughout, we set u = π(F ). As we remarked earlier, we may
suppose that F (and u) are real-valued.

We first make a small reduction. We may suppose that ε < η
1/p
1 .

Now assume that F satisfies (4.4), with ε replaced by ε/2. Then

η
1/p
1 (1 − u1) < η

1/p
1 /2, and so u1 > 1/2. By replacing u and F by

u/u1 and F/u1, respectively, we find new elements F ∈ c00 ⊗ c00 and
u ∈ c00 such that π(F ) = u and

u1 = 1 and ‖∆a(F )‖+ ‖∆b(F )‖ < ε .

Thus we may always suppose that u1 = 1.
We shall need to estimate ‖∆x‖ = ‖∆x(F )‖ for x = a, b, and for

this we shall use (4.1). Thus we require lower bounds for |∆x(m,n)|
for m,n ∈ N.

First consider the points (2i − 1, 2j), where i, j ∈ N. For con-
venience, define s = F2i−1,2j. We calculate the values

∆a(2i− 1, 2j) = η
1/p
i (s− u2j) ,

∆b(2i− 1, 2j) = η
1/p
j (u2i−1 − s) .

In the case where i ≤ j, so that ηi ≥ ηj, geometrical considerations
show that

|s− u2j|pηi + |u2i−1 − s|pηj ≥ ηj (|u2i−1 − u2j|/2) p .

In a similar manner, the points (2i, 2j − 1) taken with i ≤ j − 1 and
j ≥ 2, so that ηi ≥ ηj, lead to the estimate

|t− u2j−1|pηi + |u2i − t|pηj ≥ ηj (|u2i − u2j−1|/2) p ,

where t = F2i,2j−1.
[At the points (2i− 1, 2j − 1) and (2i, 2j), where i, j ∈ N, we have

∆a(2i− 1, 2j − 1) = (η
1/p
i − η

1/p
j )F2i−1,2j−1 − η1/pi u2j−1 + η

1/p
j u2i−1 ,

∆b(2i, 2j) = (η
1/p
i − η

1/p
j )F2i,2j − η1/pi u2j + η

1/p
j u2i ,

∆a(2i, 2j) = ∆b(2i− 1, 2j − 1) = 0 .

Since ηi 6= ηj for i 6= j, there are choices of the values of F at the points
(2i− 1, 2j− 1) and (2i, 2j) giving zero values to both ∆a and ∆b at all
these points. We shall not use this fact.]

For u = (ui) ∈ c00, set

Φp(η, u) =
∞∑
j=1

ηj

j∑
i=1

|u2i−1 − u2j|p +
∞∑
j=2

ηj

j−1∑
i=1

|u2i − u2j−1|p . (4.5)
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It follows from (4.1), the above estimates, and the simple inequality

(‖α‖+ ‖β‖)p ≥ ‖α‖p + ‖β‖p (α, β ∈ C) ,

that
2p(‖∆a(F )‖+ ‖∆b(F )‖)p ≥ Φp(η, u) .

Set
θp(η) = inf{Φp(η, u) : u ∈ c00, u1 = 1} .

We seek to show that, for suitable choice of η, we have θp(η) > 0, for

then (4.3) fails for any ε with 0 < ε < min{θp(η)1/p, η
1/p
1 }/2, and so ` p

is not approximately amenable.
We note that Φp(η, u) is reduced if every value of ui outside [0, 1]

is replaced by its nearest neighbour in [0, 1]. Thus we may suppose
throughout that

0 ≤ ui ≤ 1 (i ∈ N) .

For d ≥ 2, consider the set

Sd = {u ∈ c00 : u1 = 1, ui ∈ [0, 1] (i = 1, . . . , d), ui = 0 (i > d)} .
Certainly

αd = min{Φp(η, u) : u ∈ Sd} > 0 ,

and this minimum is attained. The question is whether or not

lim
d→∞

αd > 0 .

Suppose for the moment that p = 1, and take η = γ. Thus, in this
case, Φ1(η, u) from (4.5) becomes

Φ1(γ, u) =
∞∑
j=1

γj

j∑
i=1

|u2i−1 − u2j|+
∞∑
j=2

γj

j−1∑
i=1

|u2i − u2j−1| .

Consider the values of Φ1(γ, u) for sequences u ∈ Sd, where d ≥ 2.
Indeed, take such a point u with ud > 0. We claim that, by setting
ud = 0, the value of Φ1(γ, u) is reduced.

To establish this claim, first suppose that d = 2k+1 for some k ∈ N.
By the change specified, we first increase each term in the summand

γk+1

k∑
i=1

|u2i − u2k+1|

by at most u2k+1γk+1, and so the sum itself increases by at most
ku2k+1γk+1. On the other hand, we decrease the term

∞∑
j=k+1

γj|u2k+1 − u2j| =

(
∞∑

j=k+1

γj

)
u2k+1
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by u2k+1 times the sum
∑∞

j=k+1 γj of the tail. Other terms are not
affected. However, for each k ∈ N, we have

kγk+1 ≤ kγk ≤
∞∑

j=k+1

γj

by (4.2), and so, in total, the value of Φ1(γ, u) has been decreased.
Now suppose that d = 2k for some k ∈ N. By the change specified,

we firstly increase each term in the summand

γk

k∑
i=1

|u2i−1 − u2k|

by at most u2kγk, and so the sum itself increases by at most ku2kγk.
On the other hand, we decrease the term

∞∑
j=k+1

γj|u2k − u2j−1|

by u2k times the sum
∑∞

j=k+1 γj of the tail. Other terms are not af-

fected. Once again, (4.2) ensures that the value of Φ1(γ, u) has been
decreased.

By continuing, we see that, subject to the constraints we have im-
posed, and in particular that u ∈ c00 and u1 = 1, the minimum value
of Φ1(γ, u) is attained at the point v = (1, 0, 0, . . .), and so

θ1 = Φ1(γ, v) =
∞∑
j=1

γj = 1 .

Hence we obtain the required contradiction, at least in the case where
p = 1.

Now consider the case where p > 1. Again we should like to show
that θp(η) > 0 for suitable η. The above method for the case that p = 1
does not now work; indeed the minimum value min{Φp(η, u) : u ∈ Sd}
need not occur at the point u = (1, 0, 0, . . .), and in fact, perhaps
surprisingly, it does not necessarily occur at a decreasing sequence u of
Sd. In fact we cannot explicitly calculate θp(η), but we obtain a lower
bound by the use of Hölder’s inequality.

With 1/p + 1/q = 1, choose α > 0 so small that 1 − pα/q > 1/2.
Then we have

δ =
∞∑
j=1

jγ1+αj <∞ and
∞∑
j=1

γ
1−pα/q
j <∞ ,
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and so, in particular, the formula ηj = γ
1−pα/q
j (j ∈ N) defines a se-

quence η ∈ ` 1 which is positive and decreasing.
Note that

1 + α

q
+

(
1− p

q
α

)
1

p
=
p+ q

pq
= 1

and that γj = η
1/p
j · γ(1+α)/qj . For each u ∈ c00 with u1 = 1 we apply

Hölder’s inequality to the sequence (xryr), where (xr) has generic term

η
1/p
j |u2i−1 − u2j| or η

1/p
j |u2i − u2j−1|, and (yr) has the corresponding

generic term γ
(1+α)/q
j . Thus we obtain

1 ≤ Φ1(γ, u) =
∞∑
j=1

γj

j∑
i=1

|u2i−1 − u2j|+
∞∑
j=2

γj

j−1∑
i=1

|u2i − u2j−1|

≤

(
∞∑
j=1

j∑
i=1

γ1+αj +
∞∑
j=2

j−1∑
i=1

γ1+αj

)1/q

Φp(η, u)1/p

≤ (2δ)1/qΦp(η, u)1/p .

It follows that θp(η) ≥ (2δ)−p/q > 0, as required.
Thus we have the following result.

Theorem 4.1. The Banach sequence algebras ` p(N), 1 ≤ p < ∞,
are not approximately amenable.

It is immediate that ` p(S) is not approximately amenable for any
infinite set S, since there is a continuous epimorphism ` p(S)→ ` p(N).

Take 1 ≤ p <∞. In [3, Corollary 7.1] it was shown that the Banach
algebras ` p are essentially amenable, that is, any derivation into the
dual of a neo-unital bimodule is inner. From Theorem 4.1 we conclude
that essential amenability does not imply approximate amenability. It
also follows by the Plancherel theorem that L2(T) fails to be approx-
imately amenable, though by [6, Theorem 4.5] it is pseudo-contractible,
that is, it admits a central (unbounded) approximate diagonal.

We finally consider a weighted variant of the ` p algebras.
Let ω ∈ [1,∞)N. For p ≥ 1, we consider

` p(ω) = {f ∈ CN : f · ω ∈ `p},

where f · ω denotes the sequence with the ith coordinate (f · ω)(i) =
fi ωi (i ∈ N). With the norm

‖f‖p,ω = ‖f · ω‖p (f ∈ `p(ω)) ,
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` p(ω) is a Banach algebra under pointwise operations. As previously,
the map T : ` p(ω)× ` p(ω)→ ` p(ω ⊗ ω) = ` p(ω ⊗ ω,N× N) given by

T (x, y)(i, j) = xiyj (x, y ∈ ` p(ω), i, j ∈ N)

defines a contractive operator T̃ : ` p(ω)⊗̂` p(ω) → ` p(ω ⊗ ω), where
ω ⊗ ω denotes the weight on N × N such that ω ⊗ ω(i, j) = ωiωj
(i, j ∈ N). As for the case of ` p, we aim to show that for some ε > 0
and elements a, b ∈ ` p(ω), there is no F ∈ c00 ⊗ c00 such that both the
following inequalities are true:

‖∆a(F )‖p,ω⊗ω + ‖∆b(F )‖p,ω⊗ω < ε ;
‖a− π(F )a‖p,ω + ‖b− π(F )b‖p,ω < ε .

We take γ = (γi) and η = (ηi) the same as in the proof of Theo-
rem 4.1. Set

η′j =
ηj

ωp2j−1
, η′′j =

ηj
ωp2j

(j ∈ N) ,

and define

a =
∞∑
j=1

(η′j)
1/pδ2j−1 , b =

∞∑
j=1

(η′′j )1/pδ2j ,

so that a, b ∈ ` p(ω). Now for F ∈ c00⊗c00 and u = π(F ), then following
the same argument as in the proof of Theorem 4.1, we find that

2p(‖∆a(F )‖p,ω⊗ω + ‖∆b(F )‖p,ω⊗ω)p ≥ Φp(η, u) ,

where Φp(η, u) is given by Equation (4.5). This finally shows that the
value of ‖∆a‖p,ω⊗ω + ‖∆b‖p,ω⊗ω is bounded away from 0 as a function
of F ∈ c00 ⊗ c00. We therefore conclude with the following theorem.

Theorem 4.2. The Banach sequence algebras ` p(ω), 1 ≤ p < ∞,
are not approximately amenable for any weight ω.
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