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3-Perfect hamiltonian decomposition
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Abstract
Let n > 5 be an odd integer and K, the complete graph on n vertices.
Let 4 be an integer with 2 < ¢ < (n—1)/2. A hamiltonian decomposition
H of K, is called i-perfect if the set of the chords at distance i of the
hamiltonian cycles in H is the edge set of K,,. We show that there exists
a 3-perfect hamiltonian decomposition of K, for all odd n > 7.

1 Introduction

Let n > 5 be an odd integer and ¢ an integer with 2 <4 < (n — 1)/2. We consider
the following problem:

“Seat m persons at a round table on (n — 1)/2 consecutive days so
that every two persons sit as neighbours exactly once and sit at distance
1 exactly once.”
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In graph terminology, the problem asks for a hamiltonian decomposition H of K,
the complete graph on n vertices, such that the set of all i-chords of the hamiltonian
cycles in H is the edge set of K,,. (A chord of a cycle C is an edge not in the edge
set of C' whose endvertices are in the vertex set of C. An i-chord of a cycle C is a
chord of C whose endvertices lie at distance 7 on C.) We call such a hamiltonian
decomposition H an i-perfect hamiltonian decomposition of K, or an i-perfect n-cycle
system of order n.

In general, an i-perfect m-cycle system of order n has been considered where n
is any integer > 1. An m-cycle system of order n is a set of m-cycles whose edges
partition the edges of K,,. An m-cycle system C of order n is called i-perfect if the set
of the i-chords of the cycles in C is the edge set of K, (2 < i < [(m—1)/2]). A lot of
work has been done on i-perfect m-cycle systems [2, 3, 9]. The most natural problem
is the spectrum problem, that is finding the set of values of n for which there exists
an i-perfect m-cycle system of order n. When m is a prime and 2m + 1 is a prime
power, the spectrum problem for 2-perfect m-cycle system of order n has been solved
with some possible exceptions ([9] p. 89). And for m < 19 and 2 <i < |(m—1)/2]
the spectrum problem has been solved with some possible exceptions [2].

In this paper, we consider the following problem.

Problem 1.1 Let i > 2 be an integer. Construct an i-perfect hamiltonian decompo-
sition of K, for all odd n withn > 2i + 1.

This problem has been considered by Buratti, Rania and Zuanni ([4], p. 43).
For composite n, they constructed 2-perfect hamiltonian decompositions of K,, when
n = 15,21,25,27,33,35,39. It is known that there are no 2-perfect hamiltonian
decompositions when n = 9 with the aid of a computer [8].

For odd m, an m-cycle system of order n is called Steiner if it is i-perfect for each
i with 2 < ¢ < (m — 1)/2. Tt is written that determining the spectrum of Steiner
m-cycle systems is a very difficult problem [2, 9]. For recent results on Steiner m-
cycle systems, see [4]. For an odd n, we call a Steiner n-cycle system of order n a
Steiner hamiltonian decomposition of K,. When n is an odd prime p, it is easy to
see that K, has a Steiner hamiltonian decomposition P = {(0,4,21,...,(p — 1)i) |
1 < i < (p—1)/2}, where the vertex set is {0,1,2,...,p — 1} and vertices are
calculated modulo p. When n is not a prime, does there exist a Steiner hamiltonian
decomposition of K,?

The following lemma, is known.

Lemma 1.2 ([6] p. 333) Let n > 5 be odd. If there are two hamiltonian cycles in
K, such that all i-chords are distinct for each i (2 < i < (n—1)/2), then we have
n # 0 (mod 3).

Proof. Let V,, = {0,1,...,n — 1} be the vertex set of K,. Let Hj, Hy be two
hamiltonian cycles such that all i-chords are distinct for every ¢ (2 < i < (n —
1)/2). We may put H; = (0,1,...,n — 1) without loss of generality. Put Hy, =
(Y0, Y1, - -, Yn—1). Then we have y; —y; # £(i — j) (mod n) (0 <4,5 <n—1,i#j).
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Therefore we have {y; —i |0<i<n—-1}={y; +i|0<i<n—1} =V, (mod n).

Put w = %7734® (mod n). Then 2w = X074 (y; —1)? + X7 (s +4)% = Sy? + T +
Yy? + %42 = 4w (mod n). Hence 2w = n(n — 1)(2n — 1)/3 = 0 (mod n), Therefore
we have n # 0 (mod 3). O

From Lemma 1.2, there exists no Steiner hamiltonian decompositions of K, when
n =0 (mod 3).

The smallest number n = 1,2 (mod 3) which is not a prime is n = 25. We found
that there are no Steiner hamiltonian decompositions when n = 25 with the aid of
a computer. And we found that for every prime 5 < n < 23, P defined above is a
unique Steiner hamiltonian decomposition of K,,. It seems that the condition having
a Steiner hamiltonian decomposition is very strict. So it seems that there are no
Steiner hamiltonian decompositions when n is not a prime. Then we propose the
following conjecture.

Conjecture 1.3 Let n > 5 be odd. If there exists a Steiner hamiltonian decomposi-
tion of K,, then n is a prime.

We note that Conjecture 1.3 is true in the cyclic case: if there exists a cyclic
Steiner hamiltonian decomposition of K, then n is an odd prime ([4], Th. 7.1).

For applications of i-perfect m-cycle systems, it is known that 2-perfect m-cycle
systems for odd m can be used to construct quasigroups ([3] p. 379). We point out
here that 2-perfect hamiltonian decomposition is applied to construct a solution of
Dudeney’s round table problem. Dudeney’s round table problem is an old famous
problem which asks for a set of hamiltonian cycles having the property that each
2-path (a path of length 2) in K, lies in exactly one of the cycles [7].

Theorem A ([8]) Letn > 5 be an odd integer. A 2-perfect hamiltonian decomposition
of K, induces a solution of Dudeney’s round table problem for n+ 1 people.

Thus the problem of constructing a 2-perfect hamiltonian decomposition of K,
is an interesting problem; however it is not settled.

In this paper, we will prove the following theorem which is the case i = 3 of
Problem 1.1.

Theorem 1.4! For any oddn > 7 there exists a 3-perfect hamiltonian decomposition
of Kp.

2 A proof of the theorem

Let n > 7 be an odd integer. Put m =n —1,r =m/2, and s = r/2 (if n =1 (mod
4)), 8 = (r —1)/2 (if n = 3 (mod 4)). Let K, = (Vx, E,) be the complete graph on
n vertices. Put V,, = {o0}U{0,1,2,...,m — 1} and let o be the vertex permutation
(00)(0123 -+ m—1).

1 After acceptance of this paper, we have learned that the same result has been independently
given also by Buratti, Rinaldi and Traetta ([5], Th. 2.2). Their solution is the same as that in this

paper.
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For any edge {a,b} € E,, define the length d(a, b):

{min{m— b—al,lb—al}  (if a,b# o0)

i, ] = (otherwise),

where additions of vertices (# co) are calculated modulo m.

Let i be an integer with 2 < i < (n — 1)/2. For a hamiltonian cycle H in Kp,
define E;(H) to be the set of all i-chords of H, and for a hamiltonian decomposition
H={H,|1<t<r}of Ky, put E;(H) = Ui, Ei(Hy).

Define a hamiltonian cycle H as follows (see Figures 2.1 and 2.2). When n =1
(mod 4), put

H=(0,1,-1,2,-2,---,s—1,—(s — 1), 5,00, —s,
s+1,—(s+1),---,r=1,—(r—1),7).

When n = 3 (mod 4), put

H=(0,-1,1,-2,2,---,—(¢' = 1),8' = 1,5, 5, 00,
—(s'+1),8 +1,—(s+2),8 +2,--+,—(r—1),r = 1,7).

Lemma 2.1 The hamiltonian cycle H has a rotational symmetry of order 2, namely
o"H=H.

Lemma 2.2 The lengths of the edges of H are 0c0,00,1,1,2,2,-+-,7 = 1,r — 1,7

Put H = {0/H | 0 < j < r —1}. Then we have the following lemma from
Lemmas 2.1 and 2.2.

Lemma 2.3 H is a hamiltonian decomposition of Kp.

Next we consider E3(H). When n =1 (mod 4), we have

E3(H) = {{012}7{1’_2}7{—173}7{27_3}7{_274}v {3a _4}’{_3>5}7 Tty
{5 - 27 _(5 - 1)}7 {——(3 - 2))5}’ {5 - ].,OO},
{~(s—1),—s},{s,s+1},{co,—(s + 1)},
{-s,s+2},{s+1,—(s+2)},{—(s+1),s+3},---,

{’f’ - 27 _(T - 1)}7 {_(T - 2),7"},{7’ - 170}7
{—(7“— 1),1},{7’,—1}}.

When n = 3 (mod 4), we have

E3(H) = {{0’_2}’{-172}’{17'—3}7{_273}){27_4}’{—‘374},{37_5}a )
{8’ - 2’ _5,}’ {_(SI - 1)73/},{5l - 1,00},
{—¢,—(s + 1)}, {s,s' + 1}, {00, = (s' + 2)},
{—(S/ + 1)"8/ + 2}) {Sl -+ 17 _(S/ & 3)}7 {—‘(‘Sl + 2)75’ + 3}7 Tt
{r-3,-(-0D}L{-(r—2),r—1},{r—2,7},
{~(r—1),0},{r —1,-1},{r, 1} }.
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Lemma 2.4 The set of edges Es(H) has rotational symmetry of order 2, namely
o"E3(H) = E3(H).
Lemma 2.5 The lengths of the edges in E3(H) are 00,00,1,1,2,2,--- 7 —1,7r—1,7.
We have the following lemma from Lemmas 2.4 and 2.5.

Lemma 2.6 Rotating E3(H) by o, we have all edges of K, i.e.,
r—1
U o/ Bs(H) = E,.
=0

Proposition 2.7 H is an 3-perfect hamiltonian decomposition of K,,.

Proof. To prove the proposition, we need only to show that Es(H) = E,. By Lemma
2.6 we have

By(H) = L_] By(o? H) = L:J o9 Ey(H) = Ey.

This completes the proof of the proposition. Note that H is a modified Walecki
decomposion [1]. O
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Figure 2.1 n =33 Figure 2.2 n =31
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Abstract

We consider the Functional Orientation 2-Color problem, which was in-
troduced by Valiant in his seminal paper on holographic algorithms [STAM
J. Comput. 37(5) (2008), 1565-1594]. For this decision problem, Valiant
gave a polynomial time holographic algorithm for planar graphs of max-
imum degree 3, and showed that the problem is NP-complete for planar
graphs of maximum degree 10. A recent result on defective graph color-
ing by Corréa et al. [Australas. J. Combin. 43 (2009), 219-230] implies
that the problem is already hard for planar graphs of maximum degree
8. Together, these results leave open the hardness question for graphs of
maximum degree between 4 and 7.

We close this gap by showing that the answer is always yes for arbi-
trary graphs of maximum degree 5, and that the problem is NP-complete
for planar graphs of maximum degree 6. Moreover, for graphs of maxi-
mum degree 5, we note that a linear time algorithm for finding a solution
exists.



