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Classical simulation of squeezed light in optical waveguide arrays
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We show that classical light diffraction in arrays of specially modulated coupled optical waveguides can
simulate the quantum process of two-mode squeezing in nonlinear media, with the waveguide mode amplitudes
corresponding the signal and idler photon numbers. The whole Fock space is mapped by a set of arrays, where each
array represents the states with a fixed difference between the signal and idler photon numbers. We demonstrate
a transition from photon number growth to Bloch oscillations with periodical revivals of an arbitrary input state,
associated with an increase of the effective phase mismatch between the pump and the squeezed photons.

DOI: 10.1103/PhysRevA.87.053823 PACS number(s): 42.82.Et, 42.65.Lm, 42.50.Dv

I. INTRODUCTION

Arrays of coupled optical waveguides enable flexible
manipulation of optical beams [1,2]. Remarkably, the beam
evolution can emulate the fundamental wave phenomena in
different physical systems [3], including the famous examples
of Bloch oscillations [4–6], Zener tunneling [7], and dynamic
localization [8–10] originally predicted for electrons in crys-
talline potentials. Recently, it was shown that classical beam
propagation in linear arrays can simulate quantum photonics
phenomena including quantum walks [11], transformation of
quantum coherent and displaced Fock states [12–15], and
generation of photon pairs through spontaneous parametric
down-conversion [16]. These analogies on the one hand enable
direct visualization of the simulated photon states, and on the
other hand suggest novel concepts for the design of waveguide
arrays offering new opportunities for the manipulation of
optical beams.

In this paper, we show how linear light propagation in
waveguide arrays can simulate the dynamics of squeezing.
Optical squeezing is a fundamentally important quantum
process, which can occur in media with quadratic nonlinearity.
Squeezed light can enable high-resolution measurements,
beating the standard quantum limit [17].

The paper is organized as follows. In Sec. II we overview
the theory of squeezing and present the solution in an operator
form. In Sec. III we formulate equations for photon numbers in
Fock representation and demonstrate their mapping to classical
light propagation in specially designed arrays of optical wave
guides. In Sec. IV we discuss the photon state dynamics and the
transition to Bloch oscillations associated with the variation
of the phase mismatch. In Sec. V we analyze the effect of
periodic reversal of the sign of nonlinear coefficient, leading
to quasi-phase-matching and quasi-Bloch oscillations. Finally,
we present conclusions and outlook in Sec. VI.

II. TWO-MODE SQUEEZING IN NONLINEAR MEDIA
WITH ARBITRARY PHASE MISMATCH

We consider two-mode squeezing in the traveling-wave
configuration. The theory of such processes is well established
[18,19]. In this section we use the established approach to
derive the photon state evolution in the general case of varying
phase mismatch between the pump and the squeezed photons.

Such analysis is essential for our study, as we later demonstrate
a transition in the nature of the light dynamics associated with
the variation of the phase mismatch. Specifically, we consider
the Hamiltonian in the undepleted pump approximation,

Ĥ = βs(z)a†
s as + βi(z)a†

i ai + γ (z)a†
s a

†
i + γ ∗(z)asai, (1)

where z is the propagation direction, a
†
s,i and as,i are the

creation and annihilation operators for the signal and idler
photons, γ is proportional to the pump amplitude and quadratic
nonlinear susceptibility, and βs,i characterize the phase mis-
match between the signal, idler, and pump. Importantly,
we take into account arbitrary dependance of the mismatch
and nonlinearity coefficients on the propagation coordinate.
Such dependence can be realized experimentally, for example
through domain reversal [20] and waveguide tapering.

A. General solution for the operator evolution

Following Refs. [18,19] we formulate Heisenberg equations
for the evolution of the operators:

i
dâs

dz
= [âs ,Ĥ ], i

dâi

dz
= [âi ,Ĥ ] . (2)

Substituting Eq. (1) into Eq. (2), we obtain

i
dâs

dz
= βs(z)âs + γ (z)â†

i ,

(3)

i
dâi

dz
= βi(z)âi + γ (z)â†

s .

We seek solution of Eq. (3) in the form

âs(z) = [U (z)âs(0) + V (z)â†
i (0)] exp[−iδ̃(z)],

(4)
âi(z) = [U (z)âi(0) + V (z)â†

s (0)] exp[iδ̃(z)],

with the initial conditions

U (0) = 1, V (0) = 0. (5)

After substituting Eq. (4) into Eq. (3), we get

i
dU

dz
= β(z)U + γ (z)V ∗, (6)

i
dV

dz
= β(z)V + γ (z)U ∗, (7)
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and

δ̃ =
∫ z

0
δ(ξ ) dξ, (8)

where

β(z) = βs(z) + βi(z)

2
, δ(z) = βs(z) − βi(z)

2
. (9)

It can be checked that (|U |2 − |V |2) is a conserved quantity
of Eqs. (6) and (7). Then, we can use the representation

U = Uα exp(iϕ), V = Vα exp(iϕ), (10)

where

Uα = cosh(|α|), Vα = − exp[i arg(α)] sinh(|α|) (11)

and

α = tanh−1

(∣∣∣∣VU
∣∣∣∣
)

exp

[
i arg

(
−V

U

)]
,

(12)
ϕ = arg (U ) .

The operator solution can then be written as(
âs(z)

â
†
i (z)

)
=

(
eiϕ−iδ̃ 0

0 e−iϕ−iδ̃

)(
Uα Vα

U ∗
α V ∗

α

) (
âs(0)

â
†
i (0)

)
.

(13)

B. Solution in terms of standard two-mode squeezing operator

Let us for a moment consider the case of zero detuning
(βs = βi = 0) and constant nonlinearity (γ = const). Then
ϕ = δ̃ = β = 0 and the operator solution is given by Eq. (13)
with U ≡ Uα , V ≡ Vα , and α = iγ z. On the other hand, the
operator solution can be equivalently written in a general form
as [17] (

âs(z)

â
†
i (z)

)
= Ŝ†

α

(
âs(0)

â
†
i (0)

)
Ŝα, (14)

where the two-mode squeezing or two-photon displacement
operator is

Ŝα = exp(−iĤα) = exp(α∗asai − αa†
s a

†
i ). (15)

Now considering the case of arbitrary detuning and non-
linearity parameters, and taking into account the equivalent
representations discussed above, we can write the operator
solution (13) as(

âs(z)

â
†
i (z)

)
= exp(iĤ (s)) exp(iĤ (i))Ŝ†

α

(
âs(0)

â
†
i (0)

)

× Ŝα exp(−iĤ (i)) exp(−iĤ (s)), (16)

where

Ĥ (s) = (δ̃ − ϕ)a†
s as, Ĥ (i) = (−δ̃ − ϕ)a†

i ai . (17)

Accordingly, in an interaction picture solution can be repre-
sented as

|�(z)〉 = exp(−iĤ (i)) exp(−iĤ (s))Ŝα|�(0)〉. (18)

We can now calculate the average photon number evolution.
Note that the terms exp(−iĤ (i)) and exp(−iĤ (s)) can be
neglected in this calculation, since these operators preserve
the photon numbers:

〈ns(z)〉 = 〈â†
s (z)âs(z)〉 = 〈�(0)|Ŝ†

αâ†
s (0)âs(0)Ŝα|�(0)〉

= 〈ns(0)〉 + |V |2[1 + 〈ns(0)〉 + 〈ni(0)〉]
+〈�(0)|[U ∗V â†

s (0)â†
i (0) + UV ∗âs(0)âi(0)]|�(0)〉.

(19)

If the input state has a fixed photon number, i.e., |�(0)〉 =
|n(0)

s ,n
(0)
i 〉, then

〈ns(z)〉 = n(0)
s + |V |2[1 + n(0)

s + n
(0)
i

]
,

(20)
〈ni(z)〉 = n

(0)
i + |V |2[1 + n(0)

s + n
(0)
i

]
.

III. WAVEGUIDE ARRAY DESIGN FOR SIMULATING
FOCK STATE EVOLUTION

A. Coupled-mode equations for the photon numbers

A two-mode squeezed state in the number (Fock) basis can
be written as [17]

|�(z)〉 =
+∞∑
ns=0

+∞∑
ni=0

ψns,ni
(z)|ns,ni〉. (21)

The equation for the evolution of the state vector is

i
d|�(z)〉

dz
= Ĥ |�(z)〉. (22)

Since the photons are generated in pairs, only the states
with

ni − ns = N = const (23)

will be coupled. Since the signal and idler equations are
symmetric, with no loss of generality we consider N � 0, and
obtain the coupled-mode equations with modulated coupling
for ψn ≡ ψn,n+N ,

i
dψ0

dz
= c∗

1ψ1 + Nβiψ0, (24)

i
dψn

dz
= cnψn−1 + c∗

n+1ψn+1 + [nβs + (n + N )βi]ψn, (25)

where n � 1 and cn are the modulated coupling coefficients:

cn(z) =
√

n(n + N )γ (z) . (26)

We now simplify the coupled equations. First, we make a
transformation of the propagation coordinate,

Z(z) = γ −1
0

∫ z

0
|γ (ξ )| dξ, (27)

where γ0 is a positive scaling coefficient, and obtain

i
dψ0

dZ
= C̃∗

1ψ1 + Nβi[γ0/|γ (Z)|]ψ0, (28)

i
dψn

dZ
= C̃nψn−1 + C∗

n+1ψn+1

+ [nβs + (n + N )βi][γ0/|γ̃ (Z)|]ψn, (29)
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FIG. 1. (Color online) Schematics of waveguide arrays with
varying waveguide separation to achieve the coupling |Cn| according
to Eq. (30). The coupling and array design depends on the difference
between the signal and idler photon numbers: (a) N = 0, (b) N = 1,
(c) N = 2.

where

Cn(z) =
√

n(n + N )γ0 exp [i q(Z)] , γ̃ (Z) = γ (z), (30)

and

q(Z) = arg [γ̃ (Z)] . (31)

Next, we make a substitution

ψn(Z) = En(Z) exp

[
iqn − iN

∫ Z

0
βi(ξ )

γ0

|γ̃ (ξ )|dξ

]
(32)

and obtain equations with positive Z-independent coupling
coefficients:

i
dE0

dZ
= |C1|E1, (33)

i
dEn

dZ
= |Cn|En−1 + |Cn+1|En+1 + ρ(Z)nEn, (34)

where

ρ(Z) =
[

2β(Z) − dq

dZ

]
γ0

|γ̃ (Z)| . (35)

To perform an optical simulation of Fock-space dynamics,
one could use straight arrays of coupled waveguides, with
parameters designed to match Eqs. (33) and (34), see examples
in Fig. 1. This would be similar to the coupled waveguide
structures studied by Keil et al. [15], but with different coupling
constants.

In the following sections we illustrate features of the
generation and evolution of signal and idler photons, as
described by Eq. (1), and illustrate those results with plots
of how that generation and evolution would be simulated by
the propagation of linear, classical light in waveguide arrays.

IV. BLOCH OSCILLATIONS OF SQUEEZED LIGHT

A. Transition from nonoscillatory regime to Bloch oscillations

We now consider the special case of constant
(z-independent) coefficients βs,i and γ . Then the solution of

Eqs. (6) and (7) for the operator amplitudes can be written
explicitly as

U = cosh(bz) − iβ

b
sinh(bz), V = −i

γ

b
sinh(bz), (36)

where

b =
√

β2
cr − β2, βcr = |γ |. (37)

We then use Eq. (20) to find the average photon number
evolution for an input state with a fixed photon number,
|�(0)〉 = |n(0)

s ,n
(0)
i 〉, as

〈ns(z)〉 = 〈ni(z)〉 − N

= n(0)
s + |γ |2

|b|2 | sinh(bz)|2[1 + N + 2n(0)
s

]
, (38)

where according to Eq. (23), N = n
(0)
i − n(0)

s .
We see that the type of evolution fundamentally changes

when the detuning crosses the critical value βcr.
For detunings smaller than the critical value, |β| < βcr, b

is real, and at large z the values of U and V will rapidly
grow corresponding to quickly increasing photon numbers
according to Eq. (19).

For detunings larger than the critical value, |β| > βcr, b

is imaginary, and the solution becomes oscillating with the
period

�z = π

|b| = π√
β2 − β2

cr

. (39)

At distances z = m�z, where m = 1,2,3,4, . . . , the solution
returns to the input state. Note that such dynamics will
occur for any input, in lattices corresponding to any value
of N . By analogy with the simulation of this dynamics
in coupled waveguides, we refer to this regime as that of
squeezed light Bloch oscillations, as a generalization of spatial
Bloch oscillations in waveguide arrays [4–6] or squeezed light
quantum bouncing ball, as a generalization of the “quantum
bouncing ball” in photonic lattices [21,22].

In the special case of equal signal and idler photon
numbers, when N = 0, the coupling and detuning coefficients
in Eqs. (33) and (34) directly correspond to the previously
studied lattice with linearly increasing hopping rate and on-site
potential [23]. Longhi [23] first identified a transition between
Bloch oscillations and nonperiodic dynamics, which agrees
with our findings for a more general coupling dependence
corresponding to arbitrary N . Actually, we find that the
lattice modulation parameters in Eqs. (33) and (34) belong
to a previously identified class of lattices with commensurate
energy levels [24], where Bloch oscillations were predicted.
Specifically, our model corresponds, up to a gauge trans-
formation, to Eqs. (1) and (2) in Longhi [24] with F1(n) =
γ

1/2
0 q(n + N + 1) and F2(n) = γ

1/2
0 q−1n, where q is defined

to satisfy the relation (q + q−1) = −ργ
−1/2
0 .

There have also been recent studies of Bloch-like oscilla-
tions in Jaynes-Cummings [25] and Glauber-Fock photonic
lattices [14,15], where the oscillation period was found to
be inversely proportional to the linear detuning between
the waveguides (β in our notations). These results can be
obtained as a limiting case of our study by taking N → ∞
and γ = γ0 → γ∞/

√
N . In this case, Cn → γ∞

√
n and
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�z = 2π/|ρ|, as for the Glauber-Fock lattice considered
previously [14,15].

B. Evolution of the input vacuum state

We first illustrate the general results for the squeezed
vacuum state. The vacuum state at the input corresponds to
the initial conditions

N = 0, ψ1(z = 0) = 1, ψn>1(z = 0) = 0. (40)

Combining the expression for the squeezed vacuum state [17]
with Eq. (18), we obtain

ψn(z) = e2iϕn 1

cosh(|α|) (−1)neinθ [tanh(|α|)]n . (41)

For convenience, we can choose the scaling coefficient γ0 =
|γ |, such that Z ≡ z, and then the normalized mode amplitudes
are found as

En(Z) = [cosh2(bZ) + β2|b−1 sinh(bZ)|2]−1/2

×
[ −i|γ |b−1 sinh(bZ)

cosh(bZ) + iβb−1 sinh(bZ)

]n

. (42)

We plot the characteristic dependencies of the mode
intensities in Figs. 2(a)–2(d) for different values of the phase
mismatch. In the phase-matched regime, the photon number
increases rapidly, as marked with the dashed line in Fig. 2(a).
For phase mismatch chosen at the threshold, β − βcr , the
photon number also grows continuously, but at a slower rate;
see Fig. 2(b). However, as the mismatch is increased above the
threshold value, the photon number growth becomes bounded,
and the photon distribution periodically returns to the input
state; see Figs. 2(c) and 2(d). In particular, the oscillation
period is �z = 2 for the mismatch parameter in Fig. 2(d).

C. Synchronous squeezed light Bloch oscillations

We now illustrate that for an arbitrary input, the Bloch
oscillations occur synchronously, with the same oscillation
period according to Eq. (39). We fix the values of the nonlinear

FIG. 2. (Color online) Evolution of light intensity in waveguide
arrays simulating the photon number distribution in squeezed vacuum
states, for different values of the phase mismatch β: (a) 0, (b) 1, (c) 1.3,
and (d) 1.86. Dashed lines show the average signal photon number.
For all the plots, γ = 1 and N = 0.

FIG. 3. (Color online) Synchronous Bloch oscillations in waveg-
uide arrays corresponding to various input conditions: (a, c, e) input at
the waveguide n = 0 corresponding to n(0)

s = 0 and (b, d, f) input at the
waveguide corresponding to n(0)

s = 1. Dashed lines show the average
signal photon number. The photon population differences between
the signal and idler photons are (a, b) N = 0, (c, d) N = 1, (c, d)
N = 2, and these are simulated using arrays with different couplings
as illustrated in Fig. 1. For all the plots, γ = 1 and β = 1.86.

and phase mismatch coefficients and perform numerical
simulations corresponding to different initial conditions. The
three rows in Fig. 3 show the evolution for the photon number
differences between the signal and idler modes N = 0, 1, 2,
and these correspond to accordingly different configurations
of waveguide arrays as illustrated in Fig. 1. The left and right
columns in Fig. 3 correspond to different excitation condition
of each array, where the light is coupled to the first or second
waveguide at the input, respectively. Such coupling represents
the input states with zero (n(0)

s = 0) or one (n(0)
s = 1) photon

in the signal mode at the input. We observe that the photon
number distributions are strongly dependent on the input
number of photons in the signal and idler modes. Nevertheless,
in agreement with the analytical predictions, the full revival of
an input state is observed after one Bloch oscillation period.

Such features of Bloch oscillations with the periodic
revivals indicate that the spectrum of eigenmodes in the lattices
is equidistant, forming a semi-infinite Wannier-Stark ladder
with the spacing between the levels of 2π/�z. Moreover, this
spectrum is the same for different arrays corresponding to
various values of N .

V. PERIODIC RECONSTRUCTION AND SQUEEZING
IN QUASI-PHASE-MATCHED SCENARIOS

In media with quadratic nonlinearity, the efficiency of
interactions can be increased under the presence of phase
mismatch through the quasi-phase-matching (QPM) technique
[20]. With this approach, the sign of the quadratic nonlinear
coefficient is reversed along the propagation direction. We
analyze the effect of such modulation on the simulation
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FIG. 4. (Color online) Effect of periodic sign reversal of the
nonlinear coefficient with the period L = 2 for different values of
the phase mismatch β: (a) 0, (b) 1, (c) 1.86, and (d) 2.5. Dashed lines
show the average signal photon number. For all the plots, |γ (x)| = 1
and N = 0.

of squeezing dynamics in waveguide arrays, considering a
periodic modulation of the sign of the nonlinear coefficient.
Specifically, we take γ (x) = γ0 > 0 for 0 � x < L/2 and
γ (x) = −γ (x − L/2) for x � L/2, where L is the modulation
period. In terms of the coupled-mode Eqs. (33) and (34),
each of the sign reversals correspond to ρ(Z) = π

∑
m δ(Z −

mL/2), where δ(Z) is the Dirac delta function. Accordingly,
at these positions the phase of the wave function is abruptly
changed as En(mL/2 + ξ ) = (−1)nEn(mL/2 − ξ ) for ξ →
+0. Such phase modulation was suggested previously for the
realization of image reconstruction [26,27]; however, we find
that in our system the possibility of input state reconstruction
strongly depends on the phase mismatch.

We present the simulation results in Fig. 4 for the evolution
of an input vacuum state with different values of the phase
mismatch. In the case of exact phase matching (β = 0), the
reversal of the sign of nonlinear coefficient effectively reverses
the propagation dynamics, such that after each modulation
period the input state is restored, similar to the results of Longhi

et al. [26,27]. As a phase mismatch is introduced, the reversals
are suppressed; see Figs. 4(b) and 4(c). This agrees with the
general feature of QPM that the effective phase mismatch
is modified by the reciprocal wave vector 2π/L. The fastest
increase of the photon number is visible in Fig. 4(c), when the
mismatch (β = 1.86) is chosen such that the Bloch oscillation
period in the absence of QPM [Fig. 2(d)] exactly matches the
QPM period. For particular values of mismatches, the revival
of the input state can occur as shown in Fig. 4(d). The latter case
resembles the regime of quasi-Bloch oscillations and dynamic
localization [28].

VI. CONCLUSIONS

In conclusion, we have demonstrated that arrays of optical
waveguides with specially modulated coupling can directly
model the photon number evolution in the process of quantum
two-mode squeezing, in the general case of coordinate-
dependent phase mismatch and nonlinearity coefficients. We
identified a phase-mismatch dependent transition between a
gradual beam diffraction corresponding to an increase of the
squeezed photon numbers, and Bloch oscillations with the
periodic revival of an arbitrary input state. Additionally, we
have illustrated a different regime of revivals associated with
the periodic reversal of the effective nonlinear coefficient,
resembling the regimes of input reconstruction and quasi-
Bloch oscillations.

We anticipate that our results on the families of waveguide
arrays with modulated parameters may stimulate further stud-
ies towards novel opportunities of employing such lattices for
manipulation of optical beams including all-optical switching
of intense beams [2,3] and control of spatial entanglement
through quantum walks with correlated photons [29].
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