The persons whose signatures appear below have consulted this thesis by ALEKSEY YU. SADENOV and are aware that it is available for study only and that no quotations, or substantive information not otherwise available, may be published therefrom without the consent of the author and of

<table>
<thead>
<tr>
<th>Name (PRINT & Sign)</th>
<th>Date</th>
<th>Name (PRINT & Sign)</th>
<th>Date</th>
</tr>
</thead>
</table>

Permission is given to the University Librarian or his representative to allow persons other than students or members of staff of the University to consult my thesis only for the purposes of private study and research.
This thesis represents original work conducted by the author, except where specifically stated and acknowledged, during full-time PhD candidature at the Research School of Earth Sciences, The Australian National University. No part of the thesis has been submitted to another University or institution.

Aleksey Yurevich Sadekov
April 2008
I thank the following academics, technical specialists and colleagues who have extended their help and support during the course of my PhD.

My supervisor, Dr. Stephen Eggins (ANU), for his guidance and patience and also for introducing me to the world of geochemistry and in particular LA-ICPMS.

My adviser, Prof. Patrick De Deckker (ANU), for providing the opportunity for me to come to Australia in the first place and for his continuous support and insight throughout my PhD.

Other members of my advisory panel, Prof. Malcolm McCulloch (ANU), Dr. George Chaproniere (ANU) and Dr. Michael Gagan (ANU), for their advice and recommendations.

Ashley Norris (ANU) and Nick Ware (ANU) for their assistance with electron microprobe analysis and Dr. Serguei Kalachev, who prepared a program for processing the microprobe data.

Roger Heady (ANU) for his help during my SEM sessions, and Judith Shelly (ANU) for preparing samples. Bob Forrester from the Statistical Consulting Unit at the ANU for his assistance with statistical analysis.

Prof. J. Erez (The Hebrew University, Israel), Prof. H. Spero (University of California, USA), and Dr P. Martin (The University of Chicago, USA), for their constructive comments and suggestions which have helped improve the manuscripts in this thesis.

Prof. D. Kroon (University of Edinburgh, UK) for providing the samples from the Snellius II expedition, and his discussion and comments on chapter II of this
thesis. Prof. W. Kuhnt (University Kiel, Germany) for the opportunity to participate
in the RV "Sonne" cruise 185 in eastern Indian Ocean and for his great assistance
during this cruise.

Prof. G. Klinkhammer (Oregon State University, USA) for his collaboration and for
providing the Flow-through ICPMS data used in Chapter 3. Prof. U. S.
Ninnemann (University of Bergen, Norway) for the $\delta^{18}O$ analyses he performed at
the stable isotope laboratory in BCCR/Department of Earth Sciences, University of
Bergen.

I thank Rose Berdin and Sophia Sadekova for their great support and
couragement, which helped me complete this work. I also thank my friends and
colleagues at ANU and Canberra who created a fantastic scientific and living
environment during my stay in Australia.

This study was supported by provision of a PhD and research costs from the
Australian Research Council, via an ARC Discovery Grant DP0450358 to Prof. De
Deckker and Dr. Eggins, and by a tuition fee scholarship provided by The
Australian National University.
Abstract

Microanalytical techniques, specifically laser ablation - inductively coupled plasma mass spectrometry (LA-ICPMS) and electron microprobe analysis (EMPA), have been used to determine Mg/Ca compositional variation within and between tests of planktonic foraminifera. Micro-scale characterization of this increasingly widely-used seawater temperature proxy has allowed scrutiny of the factors that limit its applicability as well as the development of new microanalysis-based Mg/Ca proxy calibrations for sea surface temperature and thermocline temperatures.

The variability of Mg/Ca compositions found within and between tests of planktonic foraminiferal species greatly exceeds the possible range of test calcification temperatures using established Mg/Ca-temperature sensitivities. This indicates that factors additional to temperature influence foraminiferal Mg/Ca compositions and raise significant questions about their use as a seawater temperature proxy. The latter are assessed by calibrating the relationship between the Mg/Ca composition of *Globigerinoides ruber* determined by LA-ICPMS microanalysis in core-top and plankton pump samples spanning a range of sea surface temperatures (18.5 – 29.2 °C) from the eastern Indian Ocean. Results demonstrate that despite very large inter- and intra-test compositional variability the pooled mean Mg/Ca compositions for core-top and plankton pump samples forms a strong exponential correlation with mean annual sea-surface temperature. It is further shown that inter-test Mg/Ca variability within core-top samples is a significant source of uncertainty in Mg/Ca seawater temperature estimates and that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. Reasons for the large intra and inter-test Mg/Ca variability are attributed to seasonality ranges over centennial timescales and to a significant
'vital effect' contribution. Statistical methods to minimize effect of these uncertainties on Mg/Ca thermometry are described.

LA-ICPMS to foraminifera Mg/Ca analysis is employed to assess the nature and effects of seafloor alteration on the distribution Mg/Ca within and composition of foraminiferal tests, using several different approaches including a study of core-top samples down a depth transect in the eastern Indian Ocean and, weak acid dissolution under controlled laboratory conditions. Limited evidence is found for selective dissolution of *C. sacculifer* high-Mg calcite and minimal if any discernable dissolution effects are observed on the Mg/Ca compositions of *G. sacculifer* tests above the calcite lysocline. These results are consistent with previous studies of *G. sacculifer*, indicating that the effects of seafloor dissolution on *G. sacculifer* bulk Mg/Ca compositions are small compared to the uncertainty in bulk test compositions that derives from inter-test variability.

New methods for reconstructing paleoseawater temperatures are developed based on LA-ICPMS Mg/Ca microanalysis of *G. ruber*, *G. sacculifer* and *Pulleniatina obliquiloculata*. The Mg/Ca compositions of individual chambers and of specific tests parts present within *G. ruber* and *G. sacculifer* and *P. obliquiloculata*, in core-top samples are found to correlate best with seawater temperatures at different and specific depths. This provides the basis for developing new Mg/Ca-based methods for reconstructing surface mixed layer and upper thermocline temperatures.

This study illustrates the potential for using novel microanalytical techniques to advance Mg/Ca thermometry, by both providing a framework for better understanding the nature of Mg/Ca dependence on seawater temperature and the effects of complicating factors (e.g. seafloor dissolution, seasonality), as well as providing insight into the underlying biomineralization mechanisms that control Mg incorporation into and the formation of foraminiferal calcite.
Contents

Acknowledgments ... i

Abstract .. iii

Rationale and background .. 1

Aims and outline of this study ... 9

Chapter I Characterisation of Mg/Ca distributions in planktonic foraminifera species by electron microprobe mapping. .. 13

1. Introduction ... 13

2. Construction of planktonic foraminiferal tests and terminology used in this study .. 15

3. Methods ... 16

4. Results .. 17

4.1 Globigerinoides ruber, G. sacculifer, G. conglobatus 19

4.2 Globorotalia menardii and G. truncatulinoides 20

4.3 Neogloboquadrina dutertrei and N. incompta 22

4.4 Orbulina universa .. 23

5. Discussion .. 24

5.1 pH change in the foraminiferal microenvironment 25

5.2 Seawater temperature .. 26

5.3 Erez [2003] biomineralisation model ... 27

5.4 Other possible explanations for cyclic Mg/Ca banding 28

5.5 Implications of Mg/Ca heterogeneity for paleoseawater
Chapter II Uncertainties in seawater thermometry deriving from intra- and inter-test Mg/Ca variability in *Globigerinoides ruber*

1. Introduction

2. Materials and Methods

3. Results

 3.1 Intra-test variability
 3.2 Inter-test variability
 3.3 Relationship between the sample mean Mg/Ca and annual SST
 3.4 Mg/Ca thermometer uncertainties- sample size
 3.5 Mg/Ca of G. ruber morphotypes (sub-species)

4. Discussion

 4.1 Factors contributing to the uncertainty of Mg/Ca thermometry
 4.2 Comparison of Mg/Ca - SST relationship with previous studies
 4.3 Error estimation for Mg/Ca thermometry

5. Conclusions

Chapter III Effects of seafloor and laboratory dissolution on the Mg/Ca composition of *Globigerinoides sacculifer* and *Orbulina universa* tests - a laser ablation ICPMS microanalysis perspective

1. Introduction

2. Experimental methods and results

 2.1 Seafloor dissolution of G.sacculifer, eastern Indian Ocean
 2.1.1 Method
 2.1.2 Results

2.2 Laboratory dissolution of *O. universa* and *G. sacculifer* 63

2.2.1 Method ... 63
2.2.2 Results ... 64

2.3 Flow-through ICPMS dissolution of *Orbulina universa* 67

3. Discussion .. 69

3.1 Evidence for selective dissolution of high Mg/Ca calcite 69
3.2 Laboratory dissolution ... 74

4. Summary ... 75

Chapter IV Seawater temperature reconstruction using Mg/Ca microanalysis of *Globigerinoides ruber*, *G. sacculifer* and *Pulleniatina obliquiloculata*. ... 77

1. Introduction ... 77

2. Materials and Methods .. 80

3. Results and Discussion ... 82

3.1 Comparison of Mg/Ca variation within *G. ruber*, *G. sacculifer* and *P. obliquiloculata* .. 82

3.2 Low-Mg/Ca layer compositions in *Globigerinoides ruber* and *G. sacculifer* .. 84

3.3 Relationships between Mg/Ca compositions and sea surface temperature ... 87

3.4 Comparison of *G. ruber*, *G. sacculifer* and *P. obliquiloculata* Mg/Ca-temperature calibrations ... 90

3.4.1 Seasonal species preferences ... 91
3.4.2 Differences in intra-test Mg/Ca distribution 91
3.4.3 Differences in species’ habitat preference 94
3.5 Application to sea surface and upper thermocline temperature reconstruction ... 100

4. Conclusions ... 102

Outlook and prospects for future research .. 103

References .. 109

Appendixes .. 121
Figures

Figure 1. Number of the publication in scientific .. 1

Figure I-1. Schematic illustration of the test and chamber wall construction in planktonic foraminifera ... 16

Figure I-2. Maps of Mg/Ca values in chamber wall cross-sections of symbiont-bearing species ... 18

Figure I-3. Frequency histograms of individual Mg/Ca values measured in cross sections ... 20

Figure I-4. Maps of Mg/Ca values in chamber wall cross-sections of symbiont-barren species ... 21

Figure I-5. SEM images showing the characteristic surface morphology and internal structure of *Orbulina universa* ... 23

Figure I-6. Maps of Mg/Ca values measured by electron microprobe in chamber wall cross-sections of selected *Orbulina universa* 24

Figure II-1. Map showing the location of core-top samples (stars) 35

Figure II-2. Examples of laser ablation ICP-MS profiles of Mg/Ca (mmol/mol) through the final chamber walls of *G. ruber* .. 37

Figure II-3. Mg/Ca profiles through the final four chambers of a single *G. ruber* test ... 40

Figure II-4. Comparison of the mean Mg/Ca values obtained for different chambers ... 41

Figure II-5. Plots of annual SST at each core-top site versus the measured Mg/Ca composition .. 42

Figure II-6. Plot showing the relationship between the standard error (SE) of the estimated SST ... 44

Figure II-7. Comparison of the mean Mg/Ca composition of tests of the two *G. ruber* morphotypes ... 46
Figure II-8. Comparison of published Mg/Ca seawater thermometers for G. ruber with the calibration obtained in this study ... 49

Figure II-9. Calculated sample size required to achieve a target temperature uncertainty using Mg/Ca thermometry .. 52

Figure III-1. Examples of Mg/Ca compositional profiles measured by LA-ICPMS across the final chambers of Pulleniatina obliquiloculata and Globigerinoides sacculifer .. 57

Figure III-2. Core-top sample locations .. 59

Figure III-3. Mean Mg/Ca compositions of the final chambers of individual Globigerinoides sacculifer test .. 61

Figure III-4.1. Comparison of Mg/Ca chamber wall profiles measured through two Orbulina universa tests (specimens #1 and #4) 65

Figure III-4.2 Comparison of Mg/Ca chamber wall profiles through two Orbulina universa tests (specimens #2 and #3) .. 66

Figure III-4.3. Comparison of Mg/Ca chamber wall profiles measured through the final chambers of three Globigerinoides sacculifer tests (specimens #2, #3, and #4) ... 66

Figure III-4.4. Comparison of Mg/Ca chamber wall profiles through the final (F) and penultimate (F-1) chamber walls of three Globigerinoides sacculifer tests (specimens #5, #5 F-1, and #6 F-1) 67

Figure III-5. Comparison of Orbulina universa tests in Flow Through ICPMS system .. 68

Figure III-6. Globigerinoides sacculifer Mg/Ca values from published studies of seafloor dissolution ... 71

Figure IV-1. Typical Mg/Ca profiles across the final chamber walls of Globigerinoides sacculifer and G. ruber tests .. 83

Figure IV-2. Relative proportion of tests with different numbers of Mg/Ca layers in core-top samples ... 83

Figure IV-3. Typical Mg/Ca profiles across the final chamber walls of Pulleniatina obliquiloculata tests .. 84

Figure IV-4. Relative proportion of Pulleniatina obliquiloculata tests with
and without a low Mg/Ca cortex layer ... 85

Figure IV-5. Relationship between the average Mg/Ca composition and low Mg/Ca-layer compositions of the final chambers of *Globigerinoides sacculifer* and *G. ruber* ... 86

Figure IV-6. Relationships between sea-surface temperature and sample mean Mg/Ca values of different of test components ... 88

Figure IV-7. The percentage of low-Mg calcite comprising final chamber compositions of *Globigerinoides sacculifer* and *G. ruber* ... 93

Figure IV-8. Reconstruction of the calcification depth of final test chambers of *Globigerinoides sacculifer*, *G. ruber* and *Pulleniatina obliquiloculata* ... 94

Figure IV-9. Reconstructed calcification depths for the final chambers of *Globigerinoides sacculifer* tests ... 96

Figure IV-10. Comparison of habitat depth-optimised Mg/Ca thermometers ... 97

Figure IV-11. Comparison of previously-published thermometers for *G. ruber* and Mg/Ca thermometer calibrations derived from the average Mg/Ca ... 98

Figure IV-12. Reconstructed surface and subsurface temperatures based on our combined Mg/Ca thermometers ... 101
Tables

Table II-1. Core-top and plankton pump sample locations 36
Table II-2. Summary of the measured Mg/Ca values of individual G. ruber tests .. 39
Table II-3. Summary of linear regression results .. 43

Table III-1. Details of the core-top and plankton pump samples 60
Table III-2. Summary of the station mean Mg/Ca compositions of Globigerinoides sacculifer 62
Table III-3. Summary of the laboratory dissolution experiment 64

Table IV-1. The locations, sea-floor depths, ^14C ages, and number of foraminiferal tests analysed ... 81
Table IV-2. Summary results for linear regressions between seawater temperatures and the natural logarithm of mean Mg/Ca values 89
Table IV-3. Summary of calcification depths (in metres ± standard error of the mean depth) ... 95
Rationale and background

Mg/Ca thermometry is one of the most rapidly-developing and now widely-used proxies for reconstructing past seawater temperatures. The number of scientific publications related to and using Mg/Ca thermometry has experienced a dramatic increase over the last decade (Fig. 1). This and the growing interest more generally in reconstructing past climate parallels the rise in public awareness of global climate change over recent decades, and the pressing need to better predict future climate change and its associated impacts on societies and environments (Fig. 1). The study of past climates and their evolution presents a powerful approach and perspective to better understand modern climate and future climate scenarios. A crucial step in our understanding of past climates lies in our ability to accurately reconstruct seawater temperatures because the oceans play a major role in driving and modulating global and regional climate change.

Figure 1.
Number of the publication in scientific journals related to climate change and paleoclimatology (blue) and foraminiferal Mg/Ca thermometry (red). Data was taken from the Web of Science database.
Mg/Ca thermometry is based on empirical observations that show the Mg/Ca composition of calcite foraminifer tests (shells) increase systematically with seawater temperature. Foraminifera are unicellular marine organisms that precipitate microscopic calcium carbonate (calcite) tests comprising multiple chambers and growth layers. Planktonic foraminifera inhabit the surface mixed layer and upper thermocline of the oceans, spanning all latitudes from the Arctic to the Southern Ocean. Fossil tests of planktonic foraminifera occur abundantly in deep-ocean sediments and their stable isotopic (δ18O, δ13C) and elemental compositions (Ba/Ca, Sr/Ca, Mg/Ca) are widely employed in paleoceanography to constrain past seawater temperature and properties including salinity and productivity.

In his pioneering work on the magnesium content of foraminifera tests, Chave [1954] showed a positive correlation between magnesium concentration and water temperature. This relationship was confirmed by subsequent studies [Blackmon and Todd, 1959; Duckworth, 1977; Savin and Douglas, 1973], but the first calibration and application of foraminiferal Mg/Ca as a proxy for seawater temperature was not published until 1995 by Nürnberg [1995]. Since that study the dependence of foraminiferal test Mg/Ca compositions on temperature has been confirmed from core top samples [Dekens, et al., 2002; Elderfield and Ganssen, 2000; Hastings, et al., 1998; Lea, et al., 2000; Rosenthal, et al., 1997; Rosenthal and Lohmann, 2002; Rosenthal, et al., 2000]. plankton net and sediments trap samples [Anand, et al., 2003; McConnell and Thunell, 2005; McKenna and Prell, 2004], and in laboratory cultures [Lea, et al., 1999; Mashiotta, et al., 1999; Nürnberg, et al., 1996]. An advantage of Mg/Ca thermometry over other paleoseawater palaeothermometers is that Mg/Ca ratio of seawater is nearly constant throughout the ocean and, Mg and Ca have long residence times (~1 Ma for Ca and 10 Ma for Mg) [Broecker and Peng, 1982; [Rosenthal, et al., 2000]. Moreover, the Mg/Ca composition of planktonic foraminifer tests is extraordinarily and consistently sensitive to seawater
temperature, increasing by 9±1% per °C.

Calibration of test Mg/Ca composition changes with seawater temperature are based on empirical relationships observed between Mg/Ca and seasurface temperatures above core-top sediment sample sites, between Mg/Ca and calculated δ¹⁸O calcification temperatures [Anand, et al., 2003; McKenna and Prell, 2004], or in laboratory culture experiments [Lea, et al., 1999; Nürnberg, et al., 1996]. The best fit relationship typically has the exponential form

$$\frac{\text{Mg/Ca}}{\text{A exp (B*T)}}$$

where A is pre-exponential constant, B the exponential temperature sensitivity constant, and T is seawater temperature. The exponential increase is consistent with thermodynamic control of Mg incorporation into calcite [Nürnberg, et al., 1996]. Experiments on inorganic calcite precipitation from seawater also indicate that the distribution coefficient for Mg/Ca (K in equation 3) correlates positively with temperature. [Mucci and Morse, 1983; Mucci, 1987; Oomori et al, 1987; Nürnberg, et al., 1996]

$$\text{CaCO}_3 + \text{Mg}^{2+} \leftrightarrow \text{MgCO}_3 + \text{Ca}^{2+}$$

$$K = \frac{\chi(\text{MgCO}_3)/\chi(\text{CaCO}_3)}{\chi(\text{Mg}^{2+})/\chi(\text{Ca}^{2+})}$$

where χ is the activity of the component phase in calcite solid solution or ion in seawater.

Despite the growing evidence in support of the exponential temperature dependence of the Mg/Ca composition of foraminiferal calcite, the accuracy and reliability of Mg/Ca thermometry in reconstructing past ocean temperatures remains debated [Barker, et al., 2005; Barker, et al., 2003; Bentov and Erez, 2006; Eggins, et al., 2004; Rosenthal, et al., 2004]. Questions surrounding the accuracy and reliability of Mg/Ca thermometry can be grouped into three observation-based...
themes:

Theme I: What is the “true” nature Mg/Ca-temperature relationship?

a) The Mg/Ca composition of planktonic foraminifer tests is almost two orders of magnitude lower than in inorganic calcite precipitation from seawater [Katz, 1973]. Furthermore, foraminiferal calcite and inorganic calcite have significantly different absolute distribution coefficient (K) values (see equation 3) [Mucci, 1987; Mucci and Morse, 1983; Nürnberg, et al., 1996]. These differences indicate that Mg incorporation into foraminifer test calcite is subject to additional biological controlling factors (so called “vital effects”), which bias foraminiferal calcite compositions away from inorganic compositions. **The cause of this bias remain unknown.**

b) “Vital effects” have been shown to be species-specific. For example, Dekens et al [2002] showed that for the same temperature range in the tropics, *Globigerinoides ruber* Mg/Ca values are on average 5-15% higher than the Mg/Ca values of *G. sacculifer*, and 49-55% higher than *Neogloboquadrina dutertrei*. Similarly, Anand et al [2003] have determined different Mg/Ca-thermometer calibration fits for a wide variety of individual species of planktonic foraminifera. The origin of these different species-specific calibrations has been attributed to differences in intra-test Mg/Ca distribution but is highly speculative given the limited knowledge of the Mg/Ca distribution within tests of different species.

c) Different studies have reported Mg/Ca-seawater temperature calibrations that vary greatly for the same species. For example, calibrations for *Globigerinoides ruber* yielded pre-exponential factors between 0.3 and 0.48, and exponential factors between 0.058 and 0.102
Rationale and background

(see Anand et al., 2003) producing temperature estimates that differ by up to 4-5 °C. The reasons for these calibration discrepancies remain unresolved.

Theme II: What is the nature and origin of intra and inter-test variability in Mg/Ca composition within planktonic foraminifer species? And more specifically, how does this variability affect the reconstruction of seawater temperatures?

a) Planktonic foraminifera from core-top sediment samples show increasing Mg/Ca compositions with increasing test size for many species [Elderfield, et al., 2002]. This size effect corresponds to between a 12-36% increase in Mg/Ca values or 1.5-4.5°C over the full range of test sizes. It has been suggested that this size-dependence may reflect an increase in calcification rate [Elderfield, et al., 2002] or symbiont activity with increasing test size [Hönisch and Hemming, 2004]. The origin of the size effect remains unknown.

b) The occurrence of Mg/Ca compositional variation within and between individual foraminiferal tests has been documented since the earliest studies of foraminifer test chemistry [Emiliani, 1955; Krinsley, 1960]. Studies of the planktonic species *Globoquadrina truncatulinoides* by Lipps and Ribbe [1967] and Bender et al. [1975] documented variations in bulk test Mg contents up to 40% and 120%, respectively. In a detailed investigation of individual *G. truncatulinoides* tests using the electron-microprobe, Duckworth [1977] showed that different calcite layers contained Mg/Ca values between 5 and 8 mmol/mol. More recently, direct evidence of Mg/Ca variation within individual foraminifera tests came from studies using electron microprobe and laser ablation ICPMS, which document Mg/Ca variation within and between tests of
up to 120%, which corresponds to an apparent change in calcification temperature of \(-15^\circ C\) [Brown and Elderfield, 1996; Eggins, et al., 2003; Eggins, et al., 2004; Elderfield and Ganssen, 2000; Hathorne, et al., 2003; Jha and Elderfield, 2000; Lohmann and Rosenthal, 1993; McKenna and Prell, 2004; Nünnberg, et al., 1996; Puechmaille, 1994]. The cause of this intra- and inter-test variability in Mg/Ca composition, and in particular the role of temperature in its origin, presents a major uncertainty for the application of Mg/Ca thermometry to seawater temperature reconstructions.

Theme III: How do postdepositional processes, specifically seafloor dissolution, affect test Mg/Ca compositions and, consequently, the accuracy of Mg/Ca thermometry?

a) Numerous studies have documented the presence of detrital minerals, organic matter, and diagenetic-mineral overgrowths on fossil tests. A variety of cleaning methods have been proposed to remove these contaminants from foraminiferal calcite in efforts to analyse the composition of the original foraminiferal calcite. However, these cleaning methods involve the use of chemical reagents that can also dissolve test calcite and modify its Mg/Ca composition. For example, a number of studies have documented a significant and systematic decrease (15 % or \(-1.5^\circ C\)) in bulk test Mg/Ca compositions after applying a reductive cleaning process [Barker, et al., 2003; Rosenthal, et al., 2004]. Currently, there is no agreement on what cleaning methods should be used for test cleaning prior to Mg/Ca analysis.

b) A decrease in bulk test Mg/Ca composition with progressive test dissolution has been shown to occur in studies of fossil foraminifer tests from deep-sea sediment samples [Brown and Elderfield, 1996;
Partial dissolution of tests can occur in seafloor sediments well above the calcite lysocline and has been shown to produce an approximately 12% decrease in test Mg/Ca composition per kilometre of water depth. This translates into a temperature bias of about -1.3°C per kilometre depth [Benway, et al., 2003; de Villiers, 2003; Dekens, et al., 2002; Rosenthal and Lohmann, 2002]. Despite evidence for the effect of seafloor dissolution on foraminiferal test Mg/Ca values, its nature and extent remain controversial.
Aims and outline of this study

The aims of this study are to exploit recent advances in microanalysis techniques, in particular laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS), aided by electron microprobe analysis (EPMA), to:

- improve the understanding of the nature and cause of Mg/Ca variation within and between individual tests of key species of planktonic foraminifera used in palaeoceanography.
- assess the effects of postdepositional dissolution on the distribution of Mg/Ca within foraminiferal test and specific test parts.
- evaluate the effect of intra and inter-test Mg/Ca variability on the accuracy and precision of Mg/Ca thermometry.
- develop new microanalysis-based approaches to reconstructing calcification temperatures of planktonic foraminifera.

These four aims are addressed in each of the four chapters of this thesis, brief descriptions of which are outlined below.

Chapter 1

Characterization of Mg/Ca distributions in planktonic foraminiferal species by electron microprobe mapping

This chapter reports the distribution of Mg/Ca ratio values within the tests of a range of planktonic foraminifer species, including symbiotic and asymbiotic species. A Cameca SX100 electron microprobe has been employed to map the
distribution of Mg and Ca within the test cross sections. Each of the investigated species is found to display large variations in Mg/Ca composition within individual tests. Symbiotic species display cyclic Mg/Ca compositional banding that is characterized by narrow (<1–3 μm), high-Mg/Ca (typically 8–11 mmol/mol) bands, intercalated between broader low Mg/Ca (typically 1–5 mmol/mol) bands. Symbiont-free species tend to have fewer and broader compositional bands. These may more closely reflect changes in calcification temperature and develop as these species have migrated within the water column.

Chapter 2

Uncertainties in seawater thermometry deriving from intra- and inter-test Mg/Ca variability in *Globigerinoides ruber*

Laser ablation ICPMS microanalysis is used to characterise variations of Mg/Ca composition both within and between individual tests from fossil and live-collected *Globigerinoides ruber* from the eastern Indian Ocean. The extent of inter-test and intra-test compositional variability is shown to exceed that attributable to seasonal and interannual calcification temperature, at any particular sample site. The pooled mean Mg/Ca composition obtained for core top samples between the equator and ~30°S correlate exponentially with mean annual sea surface temperature (Mg/Ca mmol/mol = 0.52 exp(0.076*SST°C), $r^2 = 0.99$). The inter-test Mg/Ca variability within individual core-top samples is shown to be a source of significant uncertainty in derived Mg/Ca seawater temperature estimates and is notably site specific. It is demonstrated that widely-assumed uncertainties in Mg/Ca thermometry are likely underestimated, and that statistical power analysis in combination with individual test analyses can be used to evaluate the number of tests needed to achieve a target uncertainty for any sample.
Chapter 3
Effects of seafloor and laboratory dissolution on the Mg/Ca composition of *Globigerinoides sacculifer* and *Orbulina universa* tests - a laser ablation ICPMS microanalysis perspective

Laser Ablation ICPMS has been used to investigate the effect of seafloor and artificial test dissolution on test Mg/Ca compositions. Three different approaches are used: 1) the analysis of core-top samples collected at different water depths along a depth transect in the NE Indian Ocean; 2) the analysis of test subjected to laboratory dissolution experiments using weak acid; and 3) the analysis of tests prior to their dissolution and subsequent analysis using a “Flow-through” ICPMS (see more for method in Haley and Klinkhammer [2002]). No evidence is found for significant selective dissolution of tests parts that have different Mg/Ca compositions (specifically higher Mg/Ca values) in either *G. sacculifer* and *O. universa* during natural seafloor dissolution above the lysocline or during laboratory dissolution or Flow-Through ICPMS analysis. The integration of these with previously published results for *G. sacculifer*, reveal little if any significant seafloor dissolution affect on the Mg/Ca composition of this species above the calcite lysocline.

Chapter 4
Seawater temperature reconstruction using Mg/Ca microanalysis of *Globigerinoides ruber*, *G. sacculifer* and *Pulleniatina obliquiloculata*.

This study is aimed at understanding the extent and possible nature of differences in Mg/Ca composition between three foraminifer species (*G. ruber G. sacculifer* and *P. obliquiloculata*), and to assess Mg/Ca-temperature calibrations based on LA-ICPMS microanalysis. It is found that differences in intra-test Mg/Ca distributions between species cannot account for the observed differences in species Mg/Ca composition in subtropical to tropical regions. Based on best regression model fits
to depth-temperature profiles at each site, and also the calculated δ^{18}O calcification temperature of *G. sacculifer* tests, differences in Mg/Ca thermometer calibrations for the different species are attributed to their different preferred habitat depths. A comparison of Mg/Ca calibrations based on preferred depth habitat temperatures indicate that all three species may share a similar or common temperature sensitivity and pre-exponential constant that determines their test Mg/Ca compositions. The potential for reconstructing upper water column temperature profiles using these species and for using the Mg/Ca content of specific internal calcite layers as proxies for seawater temperature is discussed.