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Nonlocal surface plasmon amplification by stimulated emission of radiation
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We establish the spaser generation conditions for nonlocal plasmonic lasers and nonlocal plasmonic core-shell
lasers based on the full-wave nonlocal Mie theory. Numerical results show that the required gain threshold and
the gain refractive index become large generally when the nonlocality or spatial dispersion is taken into account.
This tendency can be understood by the analysis with the proposed equivalent permittivity for nonlocal metallic
nanoparticles. Since the nonlocality for the compact nanoparticles is quite significant, our study will be of great
importance in the design of ultrasmall nanoparticle lasers.
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I. INTRODUCTION

Nanoparticle lasers (NPLs) attract more and more atten-
tion due to their potential applications in biosensing, data
storage, optical communications, medical applications, and so
on [1–4]. Based on the strong interactions between nanosized
emitters and localized surface plasmons (SPs), this kind of
lasers is also called “spaser” (short for surface plasmon
amplification by stimulated emission of radiation), which can
generate the coherent plasmonic fields in the subwavelength
regions [5]. In comparison with the conventional lasers built
on the dielectric cavities, the spaser can beat the diffraction
limit and focus electromagnetic waves to spots much smaller
than the wavelength. For spasers, the SP modes can provide
feedback on the nanometer scale and can be amplified as long
as the dissipative losses are compensated by the gain medium
around metal nanostructures. Recently, the original theoretical
proposal of the spaser was demonstrated experimentally [6]
with nanoparticles containing a gold core and dye-doped silica
shell, from which it can be understood that the core-shell
nanoparticle itself serves as a resonator (or a resonant cavity)
and the adjacent gain medium delivers energy to the SP mode.

However, due to strong metallic losses particularly at optical
frequencies, the required gain threshold to achieve lasing
from such a nanosize cavity is extremely high. Actually,
a spaser with a large and/or unattainable lasing threshold
due to high dissipative loss is undesirable for practical
applications. In this connection, a lot of research efforts
were made to decrease the lasing threshold. For instance, Li
and Yu [7] achieved low-threshold gain by embedding the
Au-nanoparticle lasers into the medium with high refractive
index. Pan et al. [8] introduced low-threshold plasmonic lasing
based on the high-Q dipole void mode in a metallic nanoshell.
Calander et al. [9] studied the characteristics of the plasmonic
core-shell nanoparticle lasers and found that the laser made
of Ag material possesses lower gain threshold than that of
Au. Moreover, the nanorod spaser [10,11], symmetry-broken
plasmonic core-shell spaser [12], magneto-optical spaser [13],
and electric spaser [14] were also studied.

On the other hand, SP modes on metal nanostructures can
confine the electromagnetic energy to very small volume,
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and the dimension of NPLs can be at the tens-of-nanometers
level [5–7]. In this regard, nonlocal theory should be adopted
because of its very accurate description of electromagnetic
(EM) properties in comparison with local theory [15,16].
The nonlocality arises from the electron-electron interactions
in the dielectric response of metals [17] and leads to the
spatial dispersion of metals. As a consequence, it shall play
a further role in the metal’s SPs. Actually, the nonlocality
(or spatial dispersion) was found to diminish the impact
caused by geometric imperfections [18], reduce the field
enhancement of the nanostructures, and make the plasmon
resonant frequency blueshift [19–26]. For NPLs composed of
metal with very small sizes, their lasing properties should be
affected by the nonlocality. To the best of our knowledge,
these nonlocal effects on the NPLs have not been theoretically
explored so far. In this paper, we shall employ full-wave
nonlocal Mie scattering theory to obtain the spaser generation
conditions for a nonlocal gain-assistant nanosphere and core-
shell nanosphere lasers. Moreover, we pay much attention to
the choices of physical parameters in the design of spasers with
plasmonic nanostructures adjacent to the gain medium when
we take into account the spatial dispersion. It is demonstrated
that light scattering provides a simple diagnostics method
to assess how far a specific nanoparticle is from reaching
the lasing threshold [9], and the singularities in scattering
parameters can be used to derive the lasing threshold for the
spaser [4,7,13]. This problem is similar to the external wave
driven laser generation too [27].

The paper is organized as follows. In Sec. II, we employ
full-wave nonlocal Mie scattering theory to obtain the spaser
generation conditions for nonlocal gain-assistant nanosphere
and metal core-gain shell nanosphere lasers, respectively.
In Sec. III, numerical results about nonlocal effects on the
threshold gain are shown. Our conclusions and discussions are
presented in Sec. IV.

II. MODEL AND THEORY

First, let us consider the spaser consisting of a nonlocal
metallic Au sphere with the radius rc embedded in a semi-
infinite host gain medium with permittivity εG. Without loss
of generality, we assume that the metal is described with the
Drude permittivity εT for the transverse electric fields and a
spatially dispersive permittivity εL for the longitudinal electric
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fields, which are written as [28,29]

εT(ω) = εg + εh(ω,0), εL(ω) = εg + εh(ω,k), (1)

where εg is the background permittivity of the metal related to
the interband transitions, and the hydrodynamic part εh(ω,k)
is given by

εh(ω,k) = −ω2
p

ω(ω + iγ ) − β2k2
, (2)

where ωp and γ are the plasma frequency and the damping
constant. By taking into account the size-dependent electron
scattering, one yields γ = γ∞ + AυF/rc (υF is the Fermi
velocity and A is the fitting constant factor determined by the
geometry and theory) [30]. In addition, β measures the degree
of nonlocality, which is proportional to the Fermi velocity
υF. The wave vector of the longitudinal plasmon wave is
determined by the equation εL(ω,kL) = 0, while the transverse
electromagnetic mode satisfies the conventional dispersion law
k2

T = (ω/c)2εT(ω).
The incident electric field can be expanded as

EI = E0e
−iωt

∞∑
n=1

in
2n + 1

n(n + 1)

×
{
∇ × [�r · jn(kGr)P (1)

n (cos θ ) sin φ
]

− i
1

kG
∇ × ∇ × [�r · jn(kGr)P (1)

n (cos θ ) cos φ
]}

, (3)

and the scattering wave is written as

ER = E0e
−iωt

∞∑
n=1

in
2n + 1

n(n + 1)

×
{
∇ × [�r · bnhn(kGr)P (1)

n (cos θ ) sin φ
]

− i
1

kG
∇ × ∇ × [�r · anhn(kGr)P (1)

n (cos θ ) cos φ
]}

, (4)

where jn(x) [or hn(x)] is the spherical Bessel (or Hankel)
function of the first kind, P (1)

n (cos θ ) is the associated Legendre
polynomial, and kG = (ω/c)(εG)1/2 is the wave number of
transverse waves in the gain medium.

The electric fields associated with the transverse and
longitudinal waves excited in the nonlocal Au nanoparticle
are written as

ET = E0e
−iωt

∞∑
n=1

il
2n + 1

n(n + 1)

×
{
∇ × [�r · cnjn(kTr)P (1)

n (cos θ ) sin φ
]

− i
1

kT
∇ × ∇ × [�r · dnjn(kTr)P (1)

n (cos θ ) cos φ
]}

, (5)

EL = E0e
−iωt

∞∑
n=1

in
2n + 1

n(n + 1)

·∇[
gnjn(kLr)P (1)

n (cos θ ) cos φ
]
. (6)

We remind the reader that there is no magnetic field for the
longitudinal mode.

Five unknown coefficients (an, bn, cn, dn, and gn) could
be determined by imposing the boundary conditions on the
interface at r = rc. In general, the continuity conditions of
the tangential components of the electric and magnetic fields
would be matched on the interface. Besides that, because
of the excitation of the additional longitudinal mode inside
the metallic nanoparticle, an additional boundary condition is
required. Here, we choose the vanishing normal component of
the exciton polarization vector at the surface as the additional
boundary condition [31]. Based on full-wave nonlocal Mie
theory [15,31], we can derive the scattering coefficients an

and bn, which are related to electric and magnetic scattering
channels. For the nonmagnetic system, an dominates the
polarizability of the nanoparticle. In this case, we have

an = Nn

Dn

, (7)

where

Dn =

∣∣∣∣∣∣∣∣
− [kGrchn(kGrc)]

′

kGrc

[kTrcjn(kTrc)]
′

kTrc
− jn(kLrc)

kLrc

−√
εGhn(kGrc)

√
εTjn(kTrc) 0

0 Vn −εgj
′
n(kLrc)

∣∣∣∣∣∣∣∣
, (8)

and Nn differs from that of Dn only by the first row in which
the symbols hn are replaced by jn, while the minus sign is
removed. j ′

n(x) [or h′
n(x)] denotes ∂jn(x)/∂x [or ∂hn(x)/∂x]

and Vn = n(n + 1)(εg − εT)jn(kTrc)/(kTrc).
For the dipole nanoparticle, the total scattering property

is dominated by the n = 1 term. Thus, the condition for the
spaser generation condition is expressed as

D1 = [kGrch1(kGrc)]
′

kGrc

√
εTj1(kTrc)εgj

′
1(kLrc)

+ j1(kLrc)

kLrc

√
εGh1(kGrc)V1

− [kTrcj1(kTrc)]
′

kTrc

√
εGh1(kGrc)εgj

′
1(kLrc) = 0. (9)

Equation (9) is nothing but the singularity condition for the
nonlocal sphere [32]. In the following section, this transcen-
dental equation would be numerically solved in order to get
the required refractive index of the gain medium nG = √

εG

to achieve singularity of the field intensity, and the threshold
gain Gth = −4π Im(nG)/λ can be obtained as well. Within the
electrostatic approximation, we have x = kGrc (or kTrc) � 1.
Expanding j1(x) [or j

′
1(x)], h1(x) [or h

′
1(x)] into a Taylor series

yields

3[εT + 2εG − 2εGQ] − i2k3
Grc

3[εT − εG + εGQ] = 0. (10)

By neglecting the high-order term of kGrc, the spaser genera-
tion condition in the electrostatic approximation is

εT + 2εG − 2εGQ = 0, (11)

with Q = (εg − εT)j1(kLrc)/[εgkLrcj
′
1(kLrc)]. Note that

Eq. (11) is just the surface-plasmon resonant condition for
the nonlocal sphere in the electrostatic approximation. If the
spatial dispersion of the metal is not taken into account, the
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longitudinal mode cannot be supported in the nanoparticle
any more, and the imaginary part of kL will become infinitely
large [15]. Substituting Im(kL) → ∞ into Eq. (11) results in
the resonant condition within local descriptions εT + 2εG =
0 [33,34]. Therefore, the required refractive index of the gain
medium to achieve the singularity condition has the form

nG =
√

− εT

2(1 − Q)
. (12)

In reality, the gain medium cannot be infinitely extended
to the whole space, and we would like to study the Au
core-gain shell nanoparticle laser [6,7,9]. In this situation,
the scattering coefficient an for a nonlocal core-dielectric

shell nanoparticle can be similarly derived by imposing two
conventional EM boundary conditions in the two interfaces
(r = rs and r = rc) and an additional one in the inner interface
(r = rc) [26]. After some tedious derivations, we obtain the
scattering coefficient

an = Nn

Dn

, (13)

with

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− [kArshn(kArs)]
′

kArs

[kGrsjn(kGrs)]
′

kGrs

[kGrsyn(kGrs)]
′

kGrs
0 0

−√
εAhn(kArs)

√
εGjn(kGrs)

√
εGyn(kGrs) 0 0

0 [kGrcjn(kGrc)]
′

kGrc

[kGrcyn(kGrc)]
′

kGrc
− [kTrcjn(kTrc)]

′

kTrc

jn(kLrc)
kLrc

0
√

εGjn(kGrc)
√

εGyn(kGrc) −√
εTjn(kTrc) 0

0 0 0 Vn −εg[jn(kLrc)]
′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (14)

Again, Nn has a similar form with Dn except that the symbols
hn in the first row are replaced by jn and the minus sign is
removed. Then, we establish the spaser generation condition
for nonlocal Au core-gain shell nanospheres under which the
singularity occurs, i.e.,

D1 = 0. (15)

Within the electrostatic approximation, Eq. (15) is
simplified as(

rs

rc

)3

= 2[(1 − Q)εG − εT](εG − εA)

[εT + 2(1 − Q)εG](εG + 2εA)
, (16)

where εA is the permittivity of the surrounding medium.
Incidentally, if we neglect the nonlocality, i.e., Q = 0, Eq. (16)
is reduced to the local one as expected.

III. NUMERICAL RESULTS

We are now in a position to give some numerical results
about the nonlocal effects on the nanolasers. For numerical
calculations, we choose εg = ε∞ + εx1 + εx2 as adopted in
Ref. [7], and ωp = 1.32 × 1016s−1, γ∞ = 3.3095 × 1013s−1,
β = √

3/5υF, A = 1. It was reported that the electrostatic
approximation could be misleading even in nanoscale op-
tics [29]. Here, we define the relative error of the electrostatic
approximation as

ERe =
∣∣∣∣Re(nG) − Re(ñG)

Re(nG)

∣∣∣∣ × 100%,

(17)

EIm =
∣∣∣∣ Im(nG) − Im(ñG)

Im(nG)

∣∣∣∣ × 100%,

where nG in Eq. (17) is obtained by solving Eq. (9) numerically
and ñG is determined by Eq. (12). The results for the relative
error are shown in Fig. 1 for both nonlocal and local cases. For
the Au sphere embedded in the gain medium with radius rc =

10 nm, the difference for the relative error between nonlocal
and local cases is quite small and may become large in the
long-wavelength region. Interestingly, the relative errors of the
electrostatic approximation are within 10% in the whole wave-
length range. In what follows, nG is obtained based on Eq. (9)
or (15), which is beyond the electrostatic approximation.

To illustrate the nonlocal effects on the gain threshold and
the real part of nG, it is helpful to define the parameters δ =
(Gth-non − Gth)/Gth and ξ = [Re(nth-non) − Re(nG)]/ Re(nG)
to make comparisons between the local case Gth [Re(nG)] and
the nonlocal case Gth-non [Re(nG-non)] for the gain-assistant
single nanoparticle laser.

δ and ξ are plotted as functions of rc and the incident
wavelength λ in Figs. 2(a) and 2(b). Generally, both Gth-non

and Re(nG-non) for the nonlocal case are larger than Gth

and Re(nG) for the local case, and δ and ξ can be larger
than 5% especially for small rc and long wavelength. For
rc > 3 nm, with the decrease of rc, the nonlocality plays

FIG. 1. (Color online) Relative error of the electrostatic approx-
imation found within nonlocal theory (the red solid line) and the
local one (the black dashed line). The radius of the nonlocal sphere
is 10 nm.
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FIG. 2. (Color online) Images of (a) δ and (b) ξ in the plane of rc

and λ. (c) and (d) Part-amplified versions of (a) and (b) with different
colorbar values, respectively. Green lines (light gray) in (a) and (b)
represent the value 5% and the black line in (d) is the 0% line.

a more and more important role in the gain threshold and
the gain refractive index. The large discrepancy between the
nonlocal and local cases for Au nanoparticles with smaller
size results mainly from the intrinsic quantum properties of the
metal’s conduction electrons [17]. These screening electrons
are distributed in a layer on the particle’s surface and have
much effect on the interaction between metal and incident
light if this layer thickness is comparable to the size of
nanoparticles. Actually, the Au nanoparticle acts as a laser
cavity [1], and the introduction of the spatial dispersion (or
nonlocality) diminishes the strength of the excited local fields
by the SPs. As a consequence, in order to give the same
radiation, we need a very large threshold of the surrounding
gain when the nonlocality is taken into account. In addition,
the longer the incident wavelength, the larger δ and ξ are.
This is due to the fact that the denominator of εh(ω,k) is
dominated by the β2k2 term for large λ (or small ω). However,
situations are dramatically different for rc < 3 nm as shown
in Figs. 2(c) and 2 (d). Here ξ is found to be lower than
zero (indicated by the black line) in an ultrasmall region
[see Fig. 2(d)]. This indicates that one may need a smaller
gain refractive index under the nonlocal descriptions than in
the local case to realize the lasing state. In addition, δ may
achieve much magnitude and the required gain threshold is
extremely large for both rc < 3 nm and λ > 800 nm, which
should be avoided. Therefore, it is very important to consider
these deviations, especially the dramatic change in threshold
gain Gth and required Re(nG), if one promises the candidates
toward ultrasmall nanoparticle lasers.

The above phenomena could also be further understood
by our recently proposed equivalent permittivity (EP) for a
nonlocal metallic nanoparticle [26], which is written as

εeq = j1(kTrc)

kTrcj
′
1(kTrc) − Qj1(kTrc)

εT. (18)

In Fig. 3 we show the imaginary and real parts of EP for both
nonlocal and local metallic spheres, respectively, as a function
of λ. It is evident that the equivalent damping for the nonlocal
nanoparticle is higher than the local one for a definite λ, and

FIG. 3. (Color online) Imaginary and real parts of the nonlocal
equivalent permittivity εeq and the local permittivity εT for Au
nanoparticles as functions of λ with various radii r = 10, 3, and
2 nm.

hence the gain required is higher as expected. On the other
hand, the real part of EP is more negative than the local one,
which leads to a larger required refractive index to achieve the
resonant state.

Next, we perform the numerical calculations on the core-
shell nanoparticle lasers for the outer radius rs = 20 nm. In
Figs. 4(a) and 4(b), the dependence of Gth-non and Re(nG-non)
for the nonlocal metal core-gain shell nanosphere on λ and
the inner radius rc are shown. It is found that for a given
wavelength (λ > 600 nm) there is an optimal rc for one to
achieve the minimal gain threshold [see Fig. 4(a)]. In detail,
the gain threshold shows a rapid decrease as the inner radius rc

is increased from 3 nm, reaches a minimum, and then increases
rapidly with further increasing rc for r > 16 nm [see Fig. 4(c)].
This nonmonotonic dependence can be well understood: for a
small nonlocal metallic core, the damping is quite high due to
the finite-size effect, and hence more gain threshold is required
to compensate the metallic losses; on the other hand, since
the shell radius is finite, the large size of the metallic core
leads to the small volume fraction of the gain shell, and an
increased gain threshold value is expected again. Note that
we also find a broad region of low gain threshold where rc is

FIG. 4. (Color online) Images of (a) Gth-non and (b) Re(nG-non) in
the plane of rc and λ with εA = 1. Plots of (c) Gth-non and (d) Re(nG-non)
vs rc for various λ, i.e., 600 nm (the dotted black line), 700 nm
(the dashed red line), 800 nm (the solid gray line), and 900 nm (the
dash-dotted blue line). The approximate range for a realistic Re(nG)
(1.5–4) is marked as red dots in (b). Inset: Schematic model of the
nonlocal core-shell particle laser.
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FIG. 5. (Color online) Images of (a) δ and (b) ξ in the plane of rc

and λ. Green (light gray) lines in (a) and (b) represent the value 5%.

in the range between 4 and 16 nm [see Fig. 4(c)]. That is to
say, the required threshold is almost unchanged although the
volume fraction of the gain shell is decreased. As to Re(nG-non),
similar conclusions are made [see Figs. 4(b) and 4(d)]. In
reality, the quantum dots and active molecules (fluorescence
or dye molecules) may be the typical gain medium materials.
However, typical sizes of quantum dots are in the region of
several nanometers. As a consequence, active molecules will
be a better choice when the gain shell in need is small and
the density of optical gain is the same magnitude as in our
case [4,6,11,35,36].

In the end, we illustrate the difference between local and
nonlocal cases for metal core-gain shell nanoparticles, as
shown in Fig. 5. In this situation, the discrepancies are more
than 5% in over 50% of the studied region, which indicates the
importance of considering the nonlocality. In addition, we find
a region in which the gain threshold for the nonlocal case is
slightly lower than the local one [see the yellow circle region
in Fig. 5(a)]. This unconventional phenomenon might result
from the strong influence from the gold’s interband transitions
and the weak coupling between the optical modes and the thin
gain medium.

For the refractive index of the background medium, we
choose nA = 1 only. It was reported that by increasing the
refractive index of the background medium to an appropriate
value lower gain fraction threshold as well as lower Re(nG)
can be achieved in core-shell NPLs [7]. In this paper, our main
aim is not to find a novel way to design a lower threshold
NPLs but to pay attention to the nonlocal effects on the choice
of physical parameters for designing these NPLs. For the
compact Au core-gain shell nanoparticle lasers, the nonlocality
(or spatial dispersion) must be taken into account to give the
exact descriptions of the relevant parameters to realize the
spaser. For instance, the prosed NPLs, which are composed
of a gold core with rc = 7 nm and a dye-doped SiO2 active
shell with rs = 10 nm and nG = 1.52 embedded in the AlAs
background dielectric with εA = 3.252, should have a modified
λ ∼ 550 nm and a modified Gth-non ∼ 8.5 × 104cm−1, instead
of λ ∼ 570 nm and Gth ∼ 6.4 × 104cm−1 for the local case.
We should remark that, for an ultrasmall size (2 nm) as we
adopt in our model, the quantum effects should be included,
which needs a full quantum treatment. However, the semi-

classical hydrodynamic model can capture the fundamental
quantum-mechanical nature of the electrons [37] and give the
qualitative agreement even when rc = 2 nm [38]. In addition,
the nonlocality will, in general, result in the excitation of
longitudinal modes, and these modes will become important
above the plasma frequency [15], especially in the weak
dissipative [26] or nondissipative [39] limit. However, due
to the interband transition, the damping in high frequencies is
extremely large, and hence these longitudinal peaks disappear
in the extinction spectrum. As a result, the gain threshold is
quite high in the high-frequency region.

IV. CONCLUSION

In summary, we have suggested a nonlocal spaser contain-
ing a nonlocal nanosphere or nonlocal core-shell nanosphere
and derived the spaser generation conditions for them. In
general, the gain threshold and required refractive index for
the nonlocal spaser are found to be larger than those for the
local one. For an Au core-gain shell nanoparticle in the vacuum
with a fixed outer radius, we obtain a broad region for rc, in
which Gth and Re(nG) keep almost unchanged. We expect that
these results can be very important for prospective applications
in the design of the ultrasmall nanoparticle spaser.

Here some comments are in order. First, for simplicity,
we adopt a linearized version of the hydrodynamic Drude
model and neglect the bound electron part of the permittivity,
which may contribute to second-harmonic and third-harmonic
generations [40,41]. Actually, if the gain medium is pumped
strongly, the nonlinear effects may occur [40–42]. For further
study on the spaser threshold gain with high- and short-time
pump, the nonlinear version of the hydrodynamic Drude
model with bound charge contribution should be adopted.
In addition, a fully quantum-mechanical investigation using
time-dependent density-functional theory is even better [43].
Moreover, many works on the calculation of spontaneous
emission near spherical structures were proposed [44–46],
and the change of spontaneous emission of radiation near a
dielectric sphere could result in metal enhanced fluorescence
or surface enhanced fluorescence. It is of interest to take into
account the spontaneous emission within our model. Work
along this line is in progress, and we shall report it elsewhere.
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