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We discuss the efficient computation of the auxiliary integrals that arise when resolutions of two-
electron operators (specifically, the Coulomb operator [T. Limpanuparb, A. T. B. Gilbert, and
P. M. W. Gill, J. Chem. Theory Comput. 7, 830 (2011)] and the long-range Ewald operator
[T. Limpanuparb and P. M. W. Gill, J. Chem. Theory Comput. 7, 2353 (2011)]) are employed in quan-
tum chemical calculations. We derive a recurrence relation that facilitates the generation of auxiliary
integrals for Gaussian basis functions of arbitrary angular momentum and propose a near-optimal
algorithm for its use. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691829]

I. INTRODUCTION

The Coulomb operator 1/r12 in electronic Hamiltonians
is the ultimate source of all technical and computational dif-
ficulties in quantum chemistry. If it were absent, the many-
electron Schrödinger equation would immediately separate
into one-electron equations and its solution would be straight-
forward, even for large systems. Recognition of this has led to
much research on the construction and investigation of meth-
ods that replace the Coulomb operator by approximations in
which the two-electron interaction is, in one sense or another,
“factorized”.

One of the oldest approaches is to recognize that, when
the two particles are far apart, their interaction can be modeled
accurately by a multipole expansion. Although this expansion
originated in classical mechanics,1–5 it can also be exploited
in quantum mechanical calculations and this led to the contin-
uous fast multipole methods.6–8

In an alternative strategy, the electron density can be
modeled in a relatively small auxiliary basis, leading to
the so-called density-fitting techniques.9–12 It turns out that
it is generally preferable to model the electric field13–18

or potential19 of the density, rather than the density itself.
Cholesky factorization20–24 is another member of the density-
fitting family and, by decomposing the two-electron inte-
gral matrix, achieves a fit of the electric field of the electron
density.

In a series of papers,25–30 Hackbusch and co-workers
have designed schemes for constructing tensor factorizations
of many-electron objects (including the Coulomb operator)
and such techniques have recently yielded impressive results
in Hartree-Fock31 and correlated30 calculations on a variety
of small molecules.

Pursuing a different tack, other researchers have sought
to explore the benefits of partitioning the Coulomb opera-
tor into a short-range-but-singular part and a long-range-but-
smooth part. This idea was introduced to theoretical chemistry
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by Ewald32 in 1921 but has enjoyed a renaissance during the
past 17 years.33–42 The Ewald partition,

1

r12
= erfc(ωr12)

r12
+ erf(ωr12)

r12
, (1)

has become especially popular within density functional the-
ory (DFT) and a host of functionals have been devised43–61 to
treat the short-range (i.e., the complementary error function)
part of the operator.

In work related to that of the Hackbusch group, we have
published a series of papers on resolutions of two-electron
operators into sums of products of one-electron functions.
The first four papers62–65 focus on the Coulomb operator and
the fourth65 uses a Bessel identity66 to show that, if r1 + r2

< 2π ,98 then

1

r12
=

∞∑
nlm

φ∗
nlm(r1)φnlm(r2), (2a)

φnlm(r) = 2
√

2 − δn,0 jl(nr)Ylm(r), (2b)

where δij is the Kronecker delta function, jl is a spherical
Bessel function, and Ylm is a complex spherical harmonic.67

The fifth paper in the series68 focuses on the long-range
part of the Ewald partition (1) and shows that

erf(ωr12)

r12
=

∞∑
nlm

φ∗
nlm(r1)φnlm(r2), (3a)

φnlm(r) = 4
√

hnω jl(2ηnωr) Ylm(r), (3b)

where the hn and ηn are the weights and (positive) roots of
standard Gauss-Hermite quadrature.67 We have found that this
resolution converges well, and is particularly effective for the
calculation of long-range exchange energies. When used in
conjunction with a DFT functional for the short-range part of
the Ewald partition it offers a potent computational tool.

In the present paper, we will assume that

φnlm(r) = qn Jl(λnr) Rlm(λnr), (4)

0021-9606/2012/136(10)/104102/7/$30.00 © 2012 American Institute of Physics136, 104102-1
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where Jl(t) = t−ljl(t) and Rlm(r) = rlYlm(r) is a solid
harmonic.69, 70 Equations (2b) and (3b) are special cases of
Eq. (4). For brevity, we suppress the index on λn henceforth.

Resolutions (2) and (3) convert the two-electron integral

(ab|cd) =
∫ ∫

χ∗
a (r1)χ∗

b (r1)T (r12)χc(r2)χd(r2) dr1 dr2

(5)
into the sum

(ab|cd) =
∞∑
nlm

(ab|nlm)(nlm|cd) (6)

of products of one-electron auxiliaries

(ab|nlm) =
∫

χ∗
a (r)χ∗

b (r)φnlm(r) dr. (7)

In practice, Eq. (6) is not used to calculate two-electron inte-
grals explicitly; rather, it is substituted into quantum chemical
expressions and then facilitates a variety of cost-saving fac-
torizations. For example, in three of the earlier papers62, 65, 68

in this series, we derived expressions for the Coulomb and
exchange energies in terms of the (ab|nlm) rather than the
(ab|cd). Equation (6) has the same formal structure as found
in Cholesky decomposition or density-fitting schemes, and
hence the integral factorization resulting from the resolu-
tions offers similar computational benefits. Moreover, the res-
olution approach avoids the cost of an (explicit or implicit)
Cholesky decomposition or an (explicit or implicit) density-
fitting matrix inversion.

However, the usefulness of resolutions such as
Eqs. (2) and (3) is critically dependent on the accuracy
of truncated versions of the sum (6) and the ease with which
the auxiliaries (7) can be generated. In investigating the first
of these issues, we discovered that surprisingly aggressive
truncations of resolutions provide chemically meaningful
Coulomb, exchange, second-order Møller-Plesset, full con-
figuration interaction, long-range Coulomb, and long-range
exchange energies.62–65, 68 In the fourth and fifth papers65, 68

of this series, we addressed the second issue by presenting
explicit formulae for the integrals (7) where χa and χb are s-
or p-type Gaussians. However, in order that the resolutions
be universally applicable, it is essential that an algorithm
be available for constructing integrals over Gaussians of
arbitrary angular momentum.

The explicit approach68, 71 rapidly becomes complicated
and inefficient as the angular momentum grows and it is gen-
erally agreed that the optimal schemes for forming Gaussian
integrals are recursive.72–81 Since the auxiliaries (7) consist of
a mixture of Gaussians, spherical Bessel functions and spher-
ical harmonics, the standard Gaussian recurrence relations
(RRs) are not immediately applicable. However, we have re-
cently used Ahlrichs’ method to find an 18-term RR for a gen-
eral class of Gaussian integrals in phase space82 and we were
optimistic that an analogous attack would yield an RR for the
auxiliaries.

In Sec. II of this paper, the sixth in the series, we de-
rive an RR that allows auxiliaries to be constructed recursively
from simple ingredients. In Sec. III, we discuss an algorithm
for applying the RR with near-optimal efficiency in terms of

memory accesses. The efficiency and numerical stability of
the proposed algorithm are discussed in Sec. IV.

II. RECURRENCE RELATION FOR AUXILIARIES

If the basis functions in Eq. (7) are the real Cartesian
Gaussians,

[a| = (x − Ax)ax (y − Ay)ay (z − Az)
aze−α|r−A|2 , (8)

[b| = (x − Bx)bx (y − By)by (z − Bz)
bze−β|r−B|2 , (9)

where a = (ax, ay, az) and b = (bx, by, bz) are vectors of an-
gular momentum quantum numbers,78 then an RR may be de-
rived using the approach of Ahlrichs.80

We define 1j = (δjx, δjy, δjz) and the scaled derivative

D̂j = 1

2α

∂

∂Aj

, (10)

and the Boys recurrence relation72

[a + 1j | = D̂j [a| + aj

2α
[a − 1j | (11)

shows that a higher Gaussian can be formed from two lower
ones. By induction, there exists an operator Ô(a) that gener-
ates [a| from an s-type Gaussian,80 i.e.,

[a| = Ô(a)[0| (12)

and which commutes with D̂j . The operator factorizes

Ô(a) = Ô(ax)Ô(ay)Ô(az) (13)

and it can be shown that

Ô(aj )Z = ZÔ(aj ) + aj z Ô(aj − 1) (14)

for any function Z that is linear in Aj, i.e.,

D̂jZ = z and D̂j z = 0. (15)

These properties will be important later.
The φnlm do not depend on A and B, and therefore

[ab|nlm] = Ô(a)Ô(b)[00|nlm]. (16)

Combining this with Eq. (11) yields

[(a+1j )b|nlm]=Ô(a)Ô(b)D̂j [00|nlm]+ aj

2α
[(a−1j )b|nlm],

(17)
and reveals, as has been noted elsewhere,75, 82 that the recur-
sive properties of Gaussian integrals depend critically on the
first derivative of their fundamental integral.83

The fundamental integral here is given65, 68 by

[00|nlm] = GAB Jl(λP ) Rlm(λP), (18)

where

ζ = α + β, (19)

P = (αA + βB)/ζ, (20)

GAB = qn(π/ζ )3/2 exp(−λ2/4ζ − αβ|A − B|2/ζ ), (21)
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but, because of the derivative identity

D̂j [Jl(λP )] = (−λ2/2ζ )Pj Jl+1(λP ), (22)

it turns out to be convenient to generalize Eq. (18) and conse-
quently Eq. (17) to

[00|nlm](p) = (−λ2/2ζ )pGAB Jl+p(λP ) Rlm(λP), (23)

[(a + 1j )b|nlm](p) = Ô(a)Ô(b)D̂j [00|nlm](p)

+ aj

2α
[(a − 1j )b|nlm](p). (24)

Using the Gaussian derivative

D̂j [GAB] = (Pj − Aj ) GAB, (25)

the J derivative (22) and the solid harmonic derivatives

∂xRlm = c−
lm Rl−1,m+1 − c+

lm Rl−1,m−1, (26a)

∂yRlm = −i
(
c−
lm Rl−1,m+1 + c+

lm Rl−1,m−1
)
, (26b)

∂zRlm = clm Rl−1,m, (26c)

where

c±
lm =

√
(l ± m − 1)(l ± m)

4

2l + 1

2l − 1
, (27a)

clm =
√

(l2 − m2)
2l + 1

2l − 1
, (27b)

one can then show that

D̂j [00|nlm](p) = (Pj − Aj )[00|nlm](p) + Pj [00|nlm](p+1)

− δj,x

λ

{
c−
lm[00|n, l − 1,m + 1](p+1)

− c+
lm[00|n, l − 1,m − 1](p+1)

}
+ iδj,y

λ

{
c−
lm[00|n, l − 1,m + 1](p+1)

+ c+
lm[00|n, l − 1,m − 1](p+1)

}
− δj,z

λ
clm[00|n, l − 1,m](p+1), (28)

and the [00|nlm](p) are thus closed under differentiation.
Substituting Eq. (28) into Eq. (24) and applying the com-

mutation relation (14) for Ô(a) and Ô(b) produces four new
integrals of lower angular momentum because the (Pj −
Aj) and Pj prefactors are linear in Aj and Bj. The commu-
tation relation introduces no additional integrals for the re-
maining terms, as their prefactors do not depend on Aj or
Bj. This finally yields the 8-term (for j = x or y) or 7-term

(for j = z) RR

[(a + 1j )b|nlm](p)

= (Pj − Aj )[ab|nlm](p) + Pj [ab|nlm](p+1)

+ aj

2ζ

{
[(a − 1j )b|nlm](p) + [(a − 1j )b|nlm](p+1)

}
+ bj

2ζ

{
[a(b − 1j )|nlm](p) + [a(b − 1j )|nlm](p+1)

}
− δj,x

λ

{
c−
lm[ab|n, l − 1,m + 1](p+1)

− c+
lm[ab|n, l − 1,m − 1](p+1)

}
+ iδj,y

λ

{
c−
lm[ab|n, l − 1,m + 1](p+1)

+ c+
lm[ab|n, l − 1,m − 1](p+1)

}
− δj,z

λ
clm[ab|n, l − 1,m](p+1), (29)

which allows us to generate [ab|nlm] integrals from the fun-
damental integrals (23). We also note that Eq. (29) cannot be
used if λ = 0. However, in this special case, the auxiliaries are
trivial.

For clarity, we have derived the RR (29) in terms of
complex solid harmonics Rlm. However, it is straightforward
to construct the equivalent RR for real solid harmonics and,
for optimal computational efficiency, this is preferable to the
complex form. Because the structures of the real and complex
RRs are identical, the discussion in Secs. III and IV is appli-
cable to both cases.

III. ALGORITHM FOR AUXILIARY EVALUATION

Possessing an RR that relates complicated [ab|nlm] inte-
grals to simpler ones is a good start, but it does not constitute
a computational pathway until one specifies precisely how it
is to be used. We now discuss a simple algorithm whose effi-
ciency is close to optimal.

We define an [ab](p) class as the set of all integrals that
arise when two Cartesian Gaussian shells, with angular mo-
menta a and b, are combined with all the φnlm with 0 ≤ n ≤ N,
0 ≤ l ≤ L, and −l ≤ m ≤ +l. If the superscript p is missing, it
implies p = 0.

The φnlm do not appear explicitly in our class notation
and this reflects the fact that all steps in the algorithm must
be performed for every φnlm. From this point, therefore, we
will refer only to the bras of the integrals and the reader must
remember that our statements refer implicitly to the full set of
(N + 1)(L + 1)2 kets.

Suppose that we wish to compute an (ab) class, where
the round brackets indicate a contracted class. If we think
retrosynthetically84 and recall that the Head-Gordon and
Pople (HGP) “horizontal RR” (HRR),

(a(b + 1j )| = ((a + 1j )b| + (Aj − Bj )(ab| (30)

can be applied to contracted integrals,76 it becomes clear that
it is best to form the (ab) class from (e0) classes, where
e = a, a + 1, . . . , a + b. This tactic is beneficial because,
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TABLE I. Intermediate classes needed to form a (dd) class.

Generation
V0 V1 V2 V3 V4 C H1 H2

[00](4) [00](3) [00](2) [00](1) [00] . . . . . .
. . . [10](3) [10](2) [10](1) [10] . . . . . . . . .
. . . . . . [20](2) [20](1) [20] (20) . . . . . .
. . . . . . . . . [30](1) [30] (30) (21) . . .
. . . . . . . . . . . . [40] (40) (31) (22)

when constructing classes with b = 0, the fifth and sixth terms
in the RR (29) vanish.

Next, we note that the RR forms the [(e + 1)0](p) class
from the [e0](p) and [(e − 1)0](p) classes (where p is un-
changed) along with the [e0](p + 1) and [(e − 1)0](p + 1) classes
(where p is incremented). This suggests an algorithm in which
the [e0](p) are formed in an outer loop over p = a + b, . . . , 0
and an inner loop over e = 0, . . . , a + b − p. The [00](p)

classes are constructed using Eq. (23).
Table I shows how the algorithm constructs a (dd) class.

The [00](p) class in each V generation is found via Eq. (23).
Each of the other V classes is formed, using Eq. (29), from
classes above it in its own generation and the preceding one.
The C classes are formed by contracting those in the final
V generation and, finally, the H classes are formed using
Eq. (30).

Having determined the gross structure of the algorithm,
i.e., which intermediate classes are needed, we next ask how
each of these classes can be efficiently constructed. Because
modern computer architectures are limited primarily by data
access, rather than floating-point operations (FLOPs),85 we
measure the cost of our algorithm in terms of fetch count.

A. Construction of [00](p) classes

The [00](p) classes are defined by Eq. (23), but it is im-
portant to note that the (−λ2/2ζ ) and GAB do not depend on
l or m, the Jl(λP ) do not depend on m, and the Rlm(λP) de-
pend only trivially on n. It is therefore best to pre-compute
these quantities and (if N and L are moderately large) this pre-
computation will represent a negligible fraction of the total
cost of forming an (ab) class.

The Jl satisfy the backward recurrence relation67, 86

Jl(t) = (2l + 3)Jl+1(t) − t2Jl+2(t), (31)

and the two initial values JL+a+b(t) and JL+a+b−1(t) can be
obtained by calling a standard Bessel function routine.87

The solid harmonics satisfy the forward recurrence
relation67, 88

Rlm =
√

4l2 − 1

l2 − m2
z Rl−1,m −

√
2l+1

2l−3

(l − 1)2 − m2

l2 − m2
r2Rl−2,m

(32)
and the reflection formula

Rl,−m = (−1)mR∗
lm, (33)

and take the boundary values

Rll = (−1)l
√

(2l + 1)!!

4π (2l)!!
(x + iy)l . (34)

Thus, it is efficient to construct the Rll (0 ≤ l ≤ L) using
Eq. (34), form the Rlm (0 ≤ m < l) via Eq. (32) and the Rl, −m

by Eq. (33).
If the factors in Eq. (23) have been thus pre-computed,

the assembly of all the necessary [00](p) classes requires only

F1 = 3(a + b + 1) (35)

memory fetches per ket.

B. Construction of [e0](p) classes

A quick examination reveals that the RR (29) is not
equally costly for all integrals. Specifically, it is cheapest
when aj = 0 (for then the third and fourth terms vanish) and
when j = z (for then the solid harmonic derivative involves
only a single term). Since it is desirable to minimize the num-
ber of integrals on the right-hand side of Eq. (29) that must be
fetched, we propose the following Boolean for choosing the
increment direction j when using Eq. (29) to form a member
of the [e0](p) class,

If ez = 1, choose j = z (3 fetches)

else if ey = 1, choose j = y (4 fetches)

else if ex = 1, choose j = x (4 fetches)

else if ez ≥ 2, choose j = z (5 fetches)

else if ey ≥ 2, choose j = y (6 fetches)

else, choose j = x (6 fetches).

Table II lists the best j and associated fetch cost for all Carte-
sian Gaussians [e| with e ≤ 6.

Because there are
(
e+2

2

)
bras in an [e0](p) class, the total

fetch cost of forming all of these classes is

F2 = μ

a+b∑
p=0

a+b−p∑
e=0

(
e + 2

2

)
= μ

(
a + b + 4

4

)
, (36)

where μ, the average fetch cost of Eq. (29), is roughly 4.

C. Construction of (e0) classes

The reduction of primitive [e0] classes into contracted
(e0) classes is achieved by the contraction step

(e0) =
Ka∑

ka=1

Kb∑
kb=1

Da,ka
Db,kb

[e0], (37)

where Ka and Kb are the degrees of contraction of (a| and (b|,
respectively, and Da,ka

and Db,kb
are the associated contrac-

tion coefficients.
The total fetch cost of forming all of the (e0) classes from

the [e0] classes is

F3 =
a+b∑
e=a

(
e + 2

2

)
=

(
a + b + 3

3

)
−

(
a + 2

3

)
. (38)
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TABLE II. Increment direction (j) and number of fetches (f) for each
integral when forming an [e0](p) class by Eq. (29).

e = 1 or 3 or 4 e = 2 or 5 e = 6

e j f e j f e j f

(1, 0, 0) x 4 (2, 0, 0) x 6 (6, 0, 0) x 6
(0, 1, 0) y 4 (1, 1, 0) y 4 (5, 1, 0) y 4
(0, 0, 1) z 3 (1, 0, 1) z 3 (5, 0, 1) z 3

(0, 2, 0) y 6 (4, 2, 0) y 6
(3, 0, 0) x 6 (0, 1, 1) z 3 (4, 1, 1) z 3
(2, 1, 0) y 4 (0, 0, 2) z 5 (4, 0, 2) z 5
(2, 0, 1) z 3 (3, 3, 0) y 6
(1, 2, 0) x 4 (5, 0, 0) x 6 (3, 2, 1) z 3
(1, 1, 1) z 3 (4, 1, 0) y 4 (3, 1, 2) y 4
(1, 0, 2) x 4 (4, 0, 1) z 3 (3, 0, 3) z 5
(0, 3, 0) y 6 (3, 2, 0) y 6 (2, 4, 0) y 6
(0, 2, 1) z 3 (3, 1, 1) z 3 (2, 3, 1) z 3
(0, 1, 2) y 4 (3, 0, 2) z 5 (2, 2, 2) z 5
(0, 0, 3) z 5 (2, 3, 0) y 6 (2, 1, 3) y 4

(2, 2, 1) z 3 (2, 0, 4) z 5
(4, 0, 0) x 6 (2, 1, 2) y 4 (1, 5, 0) x 4
(3, 1, 0) y 4 (2, 0, 3) z 5 (1, 4, 1) z 3
(3, 0, 1) z 3 (1, 4, 0) x 4 (1, 3, 2) x 4
(2, 2, 0) y 6 (1, 3, 1) z 3 (1, 2, 3) x 4
(2, 1, 1) z 3 (1, 2, 2) x 4 (1, 1, 4) y 4
(2, 0, 2) z 5 (1, 1, 3) y 4 (1, 0, 5) x 4
(1, 3, 0) x 4 (1, 0, 4) x 4 (0, 6, 0) y 6
(1, 2, 1) z 3 (0, 5, 0) y 6 (0, 5, 1) z 3
(1, 1, 2) y 4 (0, 4, 1) z 3 (0, 4, 2) z 5
(1, 0, 3) x 4 (0, 3, 2) z 5 (0, 3, 3) z 5
(0, 4, 0) y 6 (0, 2, 3) z 5 (0, 2, 4) z 5
(0, 3, 1) z 3 (0, 1, 4) y 4 (0, 1, 5) y 4
(0, 2, 2) z 5 (0, 0, 5) z 5 (0, 0, 6) z 5
(0, 1, 3) y 4
(0, 0, 4) z 5

Note: Totals for e = 1, . . . , 6 are 11, 27, 42, 65, 92, 124, respectively.

D. Construction of the (ab) class

The target (ab) class can be formed from the (e0) classes
using either Eq. (30) or the more general TRn relations89 but,
for simplicity, we will consider only the former here.

Assuming that the internuclear distance Aj − Bj (which is
constant for all the kets) is pre-loaded, the horizontal RR re-
quires that two integrals be fetched. Using the fact that there
are

(
e+2

2

)(
f +2

2

)
bras in an (ef) class, the total fetch cost of form-

ing (ab) from the (e0) classes is

F4 = 2
b∑

f =1

a+b−f∑
e=a

(
e + 2

2

)(
f + 2

2

)
. (39)

This can be written as an untidy polynomial which is 2nd
degree in a and 6th degree in b.

IV. COMPUTATIONAL COST AND NUMERICAL
STABILITY

A. Computational cost

The fetch cost for forming an (ab) class is

Cost = (F1 + F2 + F3)KaKb + F4. (40)

TABLE III. Fetch costs to form a (dd) class.

Primitive Contracted

V0 V1 V2 V3 V4 C H1 H2

3 3 3 3 3 . . . . . . . . .
. . . 11 11 11 11 . . . . . . . . .
. . . . . . 27 27 27 6 . . . . . .
. . . . . . . . . 42 42 10 36 . . .
. . . . . . . . . . . . 65 15 60 72

The first three cost parameters are multiplied by KaKb because
they apply to each of the primitive bras.

The results in Table II, and Eqs. (35), (38), and (39) can
be used to find the cost of constructing any (ab) class of in-
terest. To illustrate this, the costs of each of the intermediate
classes in Table I are shown in Table III, and it follows from
these that the cost parameters for a (dd) class are F1 = 15, F2

= 274, F3 = 31, and F4 = 168.
The cost parameters for any class up to (ff) can be found

in the same way, and these are given in Table IV. A cursory
glance at this table reveals that the construction of the funda-
mental integrals (F1) and the contraction step (F3) are much
cheaper than the construction of the [e0](p) classes (F2), ex-
cept when the angular momentum of the bra is low. The cost
of the (e0) → (ab) transformation (F4) is significant for bras
of high angular momentum but the fact that this work is per-
formed on contracted, not primitive, bras means that the con-
struction of the [e0](p) via Eq. (29) will be the computational
bottleneck for most classes arising in typical quantum chem-
istry calculations.

The structure of our RR (29) is similar to that of the
vertical RR (VRR) of Head-Gordon and Pople76 and, as a
result, their fetch and FLOP costs are comparable. Examina-
tion of Table IV reveals that the formation of a single, uncon-
tracted auxiliary integral requires approximately 10 fetches,
irrespective of its angular momentum. This is comparable to
the cost of forming a single, uncontracted conventional two-
electron integral by the HGP algorithm76 and implies that the
use of truncated versions of Eq. (6) will be competitive with
traditional approaches provided that the number of resolution

TABLE IV. Cost parameters for forming various (ab) classes.

Fetch cost parameters

Class Size F1 F2 F3 F4

(ss) 1 3 0 1 0
(ps) 3 6 11 3 0
(ds) 6 9 49 6 0
(fs) 10 12 129 10 0
(pp) 9 9 49 9 18
(dp) 18 12 129 16 36
(fp) 30 15 274 25 60
(dd) 36 15 274 31 168
(fd) 60 18 511 46 270
(ff) 100 21 872 74 776
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functions φnlm is less than the number of basis function pairs
χaχb in the system.

For calculations with heavily contracted basis sets, there
exist algorithms78, 90 that introduce contraction early and these
offer significantly enhanced efficiency. Although we will
not explore this extension here, it is straightforward to use
the PRISM approach78 to construct a contracted version of
Eq. (29) and this offers a cheaper pathway to (ab) classes
where KaKb � 1.

B. Numerical stability

In Sec. II we have derived an 8-term RR (29) to con-
struct auxiliary integrals of high angular momentum. We have
advocated that it be used in conjunction with the HRR in
Sec. III, and we have carefully considered the computational
cost of the resulting algorithm in Sec. IV A. However, we
have not addressed the important practical question of numer-
ical stability. After all, if our new RR is unstable, the fact
that it is cheap will be of little real interest. Unfortunately,
although the stability characteristics of two-term recurrence
relations91–95—including the HRR (Refs. 96 and 97)—have
been studied extensively, the theoretical numerical stabilities
of many-term recurrence relations, such as the VRR and our
RR (29), are less well understood. Therefore, having little op-
tion, we have resorted to extensive numerical experiments.

We decided to focus on the construction of a [gg] class,
using the HRR to transfer angular momentum from A to B.
We performed a high-dimensional scan, varying the Gaussian
exponents (α, β = 10−2, 10−1, . . . , 105), the intercenter dis-
tance (R = |A − B| = 0, 1, 10, 100), and the resolution pa-
rameters (n = 0, 1, 10, 100, l = 0, 5, 15, 25, m = 0, qn

= 1), and using Eq. (29) to generate the 45 [ks|nlm] nor-
malized integrals, in both double and extended precision. Re-
markably, the largest absolute error in the double precision
estimates of the integrals was 1.84 × 10−16, indicating that
the RR (29) was completely stable for all of the 184 320 in-
tegrals investigated. We conclude that the numerical stability
of the new RR probably exceeds that of the widely used HRR
(Refs. 96 and 97) and is, in any event, no cause for concern.

V. CONCLUDING REMARKS

In the present article, we have presented a detailed al-
gorithm for the computational construction of the auxiliary
integrals (ab|nlm) and we have shown that, although such
integrals involve Gaussians, Bessel functions, and spheri-
cal harmonics, they can be generated recursively at approx-
imately the same cost per integral as traditional two-electron
Gaussian repulsion integrals.

This work opens the door to the routine and widespread
application of two-electron resolutions within Gaussian-based
quantum chemistry. We are currently developing a high-
performance implementation of our algorithm and we will re-
port applications to problems of chemical interest in the near
future.
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