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Abstract

In this paper we review the theory of the Yang–Baxter equation related to the 6-vertex model and its
higher spin generalizations. We employ a 3D approach to the problem. Starting with the 3D R-matrix,
we consider a two-layer projection of the corresponding 3D lattice model. As a result, we obtain a new
expression for the higher spin R-matrix associated with the affine quantum algebra Uq(ŝl(2)). In the sim-
plest case of the spin s = 1/2 this R-matrix naturally reduces to the R-matrix of the 6-vertex model. Taking
a special limit in our construction we also obtain new formulas for the Q-operators acting in the repre-
sentation space of arbitrary (half-)integer spin. Remarkably, this construction can be naturally extended to
any complex values of spin s. We also give all functional equations satisfied by the transfer-matrices and
Q-operators.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In this paper we analyze the properties of the six-vertex model in an external field and its
higher spin generalizations based on a new 3D approach developed in [1–3]. This approach
allows us to reveal new algebraic and analytic properties of the six-vertex model with arbitrary
spin.

The theory of the six-vertex model goes back to the works of Lieb [4,5] who solved the
famous two-dimensional ice model. These results were further extended by Sutherland [6] to
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the zero field six-vertex model and then generalized to the case of an arbitrary electric field
by Yang, Sutherland et al. [7,8]. The main technique used was the Bethe ansatz [9]. However,
in [10–13] Baxter introduced new analytic and algebraic methods which allowed him to solve
the eight-vertex model in a zero field. The main ingredient of Baxter’s approach is the theory
of functional equations based on the concept of the Q-operator. This Q-operator satisfies the
so-called T Q-relation which allows in principle to calculate eigenvalues of the transfer-matrix
of the model. Starting with the work [14], the analytic Bethe ansatz [15] was developed where
the T Q-relation (or an analogous equation) is used as a formal substitution to solve the transfer
matrix functional equations.

The theory of functional relations allows us to determine eigenvalues of the higher transfer
matrices associated with the so-called fusion procedure. This algebraic procedure provides a
derivation of the functional relations for the higher transfer matrices based on decomposition
properties of products of representations of the affine quantum groups. The notion of “higher”
spin (or “fused”) R-matrices was developed in [16] from the point of view of representation
theory. These R-matrices for the six-vertex model acting in the tensor product of two highest
weight modules were calculated in [17]. However, the formulas derived in [17] involve special
projection operators and are not very convenient for practical calculations.

An alternative method for calculating the higher spin R-matrices was developed by Jimbo [18]
(see also [19] for all simple Lie algebras). It is based on the spectral decomposition of the
R-matrix and allows one to calculate the R-matrix in terms of spectral functions and quan-
tum Clebsch–Gordan coefficients. For example, in the Uq(sl(2)) case, it results in a triple sum
formula for the matrix elements of the “fused” R-matrices.

The main result of this paper is a new representation of the Uq(sl(2)) R-matrix RI,J (λ) in the
tensor product of two highest weight representations with arbitrary weights I and J . It contains
only one single summation and is expressed in terms of the basic hypergeometric series. The
explicit formula reads[

RI,J (λ;φ)
]i′,j ′
i,j

= δi+j,i′+j ′ρI,J (λ)φ2ia
i′j ′
ij (λ)4φ3

(
q−2i;q−2i′ , λ−2qJ−I , λ2q2+J−I

q−2I , q2(1+j−i′), q2(1+J−i−j)

∣∣∣∣q2, q2
)

(1.1)

with

a
i′j ′
ij (λ) = (−1)i

qi(i+j−2J−1)−jI+i′(I+j ′)

λi+i′(q2;q2)i

(q−2J ;q2)j (λ
−2qI−J ;q2)j−i′

(q−2J ;q2)j ′(λ−2q−I−J ;q2)i+j

, (1.2)

where ρI,J (λ) is the normalization factor and we defined a regularized terminating basic hyper-
geometric series r+1φr as

r+1φr

(
q−n; {a}r ; {b}r

∣∣q, z
)= n∑

k=0

zk (q−n;q)k

(q;q)k

r∏
s=1

(as;q)k
(
bsq

k;q)
n−k

. (1.3)

It is easy to see that the hypergeometric series 4φ3 entering (1.1) can be expressed in terms
of the q-Racah polynomials [20]. The fact that q-Racah polynomials satisfy the Yang–Baxter
equation with a spectral parameter is quite remarkable and should have some profound origins.

Another important property of the R-matrix (1.1) is that all its nonzero matrix elements can
be made positive under the proper choice of the spectral parameter λ and the normalization factor
ρI,J (λ). This is explained in Section 4.
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We notice that a similar formula with only one summation exists for the XXX spin chain
in a holomorphic basis (see formula (2.17) in [21]). It would be interesting to understand its
connection with (1.1).

As an application of the formula (1.1) we construct the Q-operators related to the Uq(ŝl(2))

algebra as special transfer matrices acting in the tensor product of arbitrary highest weight rep-
resentations. The idea of the construction of the Q-operator in terms of some special transfer
matrices belongs to Baxter [10]. It is a key element of his original solution of the 8-vertex model.
For the simplest case of the six-vertex model the quantum space is built from 2-dimensional
highest weight representations of the Uq(sl(2)) algebra at every site of the lattice.

The next step in a better understanding of the structure of the Q-operators related to the
six-vertex model was achieved by Bazhanov and Stroganov [22]. They considered fundamental
L-operators [23] intertwined by the R-matrix of the six-vertex model at the roots of unity qN = 1.
In this case, the highest weight representation of the Uq(sl(2)) algebra is replaced with a cyclic
representation. Then all matrix elements of the Q-operator can be explicitly calculated as simple
products involving only a two-spin interaction. Remarkably, these Q-operators coincide with the
transfer matrix of the chiral Potts model [24–26].

A seemingly different method was developed by Pasquier and Gaudin [27] where they con-
structed the Q-operator for the Toda lattice in the form of an integral operator. Their Q-operator
has a factorized kernel and its quasi-classical asymptotics gives a generating function for Back-
lund transformations in the corresponding classical system. It appears that this construction is
naturally connected to a separation of variables (SoV) in quantum and classical integrable sys-
tems [28]. Later on this approach has been successfully applied to many other quantum lattice
integrable systems and the general scheme of quantum SoV has been developed [29–32]. The
integral Q-operator for the case of the XXX chain was first calculated in [33]. It is worth not-
ing that taking the limit N → ∞ [34] in the Bazhanov and Stroganov construction [22] one can
recover the results of [27] and [33].

The main difference of the above approach from the original Baxter method is that the “quan-
tum” representation space is infinite-dimensional. It has the structure of a tensor product of
Verma modules with the basis chosen as multi-variable polynomials p(x1, . . . , xM), where M is
the size of the system. The Q-operators appear as integral operators with an explicit action on
such a polynomial basis. A detailed construction can be found in [35,36] for the XXX case
and its generalization to the XXZ case in [37,38]. The non-compact case and applications of
the Q-operators to Liouville theory are discussed in [39–41]. It is worth mentioning that the
representation of the Q-operator by an integral operator is known only for the XXX case [33].
The proper deformation of such integral operator for the case of the six-vertex model is still a
challenging problem.

Another problem arises when spins take (half-) integer values. In this case the quantum space
becomes reducible and the action of the Q-operator on the polynomial basis becomes singular.
This difficulty can be overcome by expanding near the limit 2s → Z+ as shown in [35,36].
However, a removal of such a regularization is technically challenging and it is desirable to have
an alternative approach which is free from this difficulty.

In 1997 Bazhanov, Lukyanov and Zamolodchikov (BLZ) suggested another method to derive
the Q-operators related to the affine algebra Uq(ŝl(2)) [42,43]. Based on the universal R-matrix
theory [44] they showed that the Q-operators can be constructed as special monodromy operators
with the auxiliary space being an infinite-dimensional representation of the q-oscillator algebra.
Although their original approach was developed in the context of quantum field theory, the results
of [42,43] can be easily adjusted to the spin s = 1/2 XXZ chain [45]. However, the derivation of
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the local Q-operators from the universal R-matrix [46] quickly becomes unbearable for higher
spins and has been completed only for the s = 1/2 case [45,47–49]. In principle, one can use the
fusion procedure to derive the Q-operators in any highest weight representation with 2s ∈ Z+,
but this is also technically challenging.

The original motivation of this work was to understand a connection between the integral
Q-operators with factorized kernels which appear in the case of infinite-dimensional representa-
tions (or the cyclic case qN = 1) and the BLZ construction. As the first step, we need to calculate
the local Q-operators acting in the tensor product of the q-oscillator algebra and the highest
weight representation with the arbitrary weight 2s.

It is known [42,43,50–52] that one can construct XXZ (or XXX) Q-operators by taking the
infinite spin limit in the auxiliary space of the higher spin transfer-matrix. Our new formula (1.1)
suits this purpose perfectly. We also notice here that a 3D approach we employ in this paper is
useful for constructing universal R-matrices for higher rank algebras [53].

Taking the limit I → ∞ in (1.1) we derive a generalization of the BLZ Q-operators acting
in the tensor product of the highest weight Verma modules with the arbitrary weight J ∈ C. The
limit J → Z+ is non-singular and gives the Q-operator in any finite-dimensional representation.
The case J = 1 reduces to the previously known BLZ Q-operators.

The paper is organized as follows. In Section 2 we recall some basic facts about the Uq(sl(2))

and the q-oscillator algebras. We also give a definition of the terminating basic hypergeometric
series and their regularized version, which we use in the paper. In Section 3 we define the 3D
R-matrix and discuss its basic properties following [3]. In Section 4 we consider a two-layer pro-
jection and derive a formula for the matrix elements of the Uq(sl(2)) R-matrix RI,J (λ) acting
in the tensor product of two highest weight representations with integer weights I and J . In Sec-
tion 4 we discuss the properties of this R-matrix and show that for the case I = 1 it reduces to
the standard Uq(sl(2)) L-operator acting in the (J + 1)-dimensional representation space. Then
we transform the formula for the R-matrix from Section 2 to a remarkably simple formula (1.1)
which contains only one summation and can be rewritten as a terminating balanced 4φ3 series.
Using this representation we prove two important symmetry relations for the R-matrix RI,J (λ).
We show that this construction can be generalized to the case of infinite-dimensional highest
weight representations with I, J ∈ C. In Section 5 we introduce two Q-operators Q±(λ) acting
in the tensor product of the highest weight modules with the weight I . Based on the factorization
property for the transfer-matrix [42,43] we derive explicit expressions for the matrix elements of
the local Q-operators for any values of I (including the infinite-dimensional case I ∈ C). We also
derive the standard T Q-relation and calculate the Wronskian of its two solutions Q±(λ). In Sec-
tion 6 we list a standard set of functional relations satisfied by higher-spin transfer matrices and
Q-operators. Finally, in the Conclusion we summarize all results and outline further directions
of research.

2. Conventions

First, let us recall some simple facts about the Uq(sl(2)) algebra. It is generated by three
elements E, F and H with defining relations

qH Eq−H = q2E, qH Fq−H = q−2F, [E,F ] = [qH ]
[q] (2.1)

and the following Casimir element

C = [q]2FE + {qH+1}= [q]2EF + {qH−1}, (2.2)
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where we used the following notations

[x] = x − x−1, {x} = x + x−1. (2.3)

The Casimir element is normally parameterized by a complex number J ∈ C

C = {qJ+1}. (2.4)

For any J ∈ C one can introduce an infinite-dimensional Verma module V +
J with a basis vj ,

j ∈ Z+. We define the infinite-dimensional representation π+
J of Uq(sl(2)) by the following

action on the module V +
J

Hvj = (J − 2j)vj , Evj = [qj ]
[q] vj−1, Fvj = [qJ−j ]

[q] vj+1. (2.5)

When J ∈ Z+, the representation π+
J becomes reducible. The vectors vj , j > J span an ir-

reducible submodule of V +
J isomorphic to V +

−J−2 and one can introduce a finite-dimensional
module VJ with the basis {v0, . . . , vJ } isomorphic to the quotient module V +

J /V +
−J−2. We de-

note the corresponding finite-dimensional representation as πJ .
Now let us consider the q-oscillator algebra

Oscq : qNa± = q±1a±qN qa+a− − q−1a−a+ = q − q−1, (2.6)

generated by three elements N , a+ and a− and impose an additional relation

q2N = (1 − a+a−)≡ q−2(1 − a−a+). (2.7)

To make a link with the 3D R-matrix from the next section we shall introduce an infinite-
dimensional Fock space Fq , spanned by a set of vectors |n〉, n = 0,1,2, . . . ,∞, with the natural
scalar product

〈m|n〉 = δm,n, N |n〉 = n|n〉, 〈n|N = 〈n|n. (2.8)

The algebra (2.6) has two irreducible highest weight representations on the space Fq which we
denoted as F±

q in [3].
In this paper we shall only use one representation F+

q with a slightly modified action compar-
ing to [3]

a−|0〉 = 0, a+|n〉 = |n + 1〉, a−|n〉 = (1 − q2n
)|n − 1〉,

〈0|a+ = 0, 〈n|a+ = 〈n − 1|, 〈n|a− = 〈n + 1|(1 − q2+2n
)
, (2.9)

with n = 0,1,2 . . . .
Now we need to define the trace operation over the representations of π+

j and Fq . Consider

an operator T acting in the tensor product V +
J ⊗ W , where W is some “quantum” representation

space of the Uq(sl(2)) algebra. Then we define the trace TJ over V +
J of the operator T simply

summing over all j

TJ = Tr
V +

J

(T). (2.10)

The trace over the finite-dimensional representation πJ is defined in a similar way.
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Now let us consider an operator A(φ) acting in the tensor product Fq ⊗ W , where φ ∈ C is a
“horizontal” field. We define a normalized trace of A(φ) on the space Fq by

T̂r
Fq

(
A(φ)

)= TrFq
(A(φ))

TrFq
(φ2Nq−N⊗H )

, (2.11)

where H is the generator of the Uq(sl(2)) algebra acting in the quantum space W . We always
assume that the field variable φ is chosen in such a way that corresponding geometric series
converge and then analytically continue to any values of φ. We also notice a relation between the
field φ and the additive field h

φ = qh. (2.12)

In this paper we prefer to use the exponential field φ.
In the last part of this section we remind a definition of the basic hypergeometric series [54]

which we use in the next sections. We start with a q-Pochhammer symbol

(x;q)n =
n−1∏
k=0

(
1 − xqk

)
, n � 0 (2.13)

and

(x;q)n = 1

(xqn;q)−n

= qn(n+1)/2(−x/q)n

(q/x;q)−n

, n < 0. (2.14)

In this paper we consider only terminating basic hypergeometric series r+1φr which is defined
by

r+1φr

(
q−n, {a}r ; {b}r

∣∣q, z
)≡ r+1φr

(
q−n, a1, . . . , ar

b1, . . . , br

∣∣∣∣q, z

)
=

n∑
k=0

zk (q−n;q)k

(q;q)k

r∏
s=1

(as;q)k

(bs;q)k
. (2.15)

The formula (2.15) is well defined for all ai, bi ∈C except the case when some of the parameters
bi are equal to non-positive integer powers of q , i.e. bi = q−n, n ∈ Z+ for some i. To overcome
this restriction we shall also introduce a regularized version of terminating basic hypergeometric
series. Unlike usual hypergeometric functions r+1Fr there is no a commonly accepted definition
for regularized basic hypergeometric series. So we find it convenient to define a regularized
terminating basic hypergeometric series r+1φr as

r+1φr

(
q−n; {a}r ; {b}r

∣∣q, z
)≡ r+1φr

(
q−n;a1, . . . , ar

b1, . . . , br

∣∣∣∣q, z

)
= r+1φr

(
q−n, {a}r ; {b}r

∣∣q, z
)× r∏

s=1

(bs;q)n

=
n∑

k=0

zk (q−n;q)k

(q;q)k

r∏
s=1

(as;q)k
(
bsq

k;q)
n−k

. (2.16)

The formula (2.16) is obviously well defined for any ai, bi ∈ C.
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We also notice that the symmetry between q−n and a1, . . . , ar is broken and this is why we
used an extra semicolon after the first argument of r+1φr in (2.16).

3. The 3D R-matrix

In [3] we defined the 3D R-matrix as the operator R acting in the tensor product of three Fock
spaces Fq ⊗Fq ⊗Fq . If we define states in Fq ⊗Fq ⊗Fq as |n1, n2, n3〉 = |n1〉 ⊗ |n2〉 ⊗ |n3〉,
then the operator R is completely determined by its matrix elements

R
n′

1, n′
2, n′

3
n1, n2, n3 = 〈n1, n2, n3|R

∣∣n′
1, n

′
2, n

′
3

〉
, ni, n

′
i = 0,1,2, . . . ,∞, i = 1,2,3, (3.1)

where

R
n′

1, n′
2, n′

3
n1, n2, n3 = δn1+n2,n

′
1+n′

2
δn2+n3,n

′
2+n′

3

qn2(n2+1)−(n2−n′
1)(n2−n′

3)

(q2;q2)n2

× Qn2

(
q−2n′

1 , q−2n′
2, q−2n′

3
)
, (3.2)

with ni, n
′
i = 0,1,2,3, . . . and we have introduced a set of (yet unknown) functions Qn(x, y, z)

depending on the three variables x = q−2n′
1 , y = q−2n′

2 and z = q−2n′
3 . We notice that the for-

mula (3.2) contain two conservations laws

n1 + n2 = n′
1 + n′

2, n2 + n3 = n′
2 + n′

3, (3.3)

which are similar to the conservation law of the 6-vertex model in two dimensions.
The specific q-dependent factor in (3.2) has been chosen to ensure that the functions

Qn(x, y, z) are polynomials in x, y, z with coefficients which are themselves polynomials in
the variable q . They are completely determined by initial conditions

Q0(x, y, z) ≡ 1, ∀x, y, z = 1, q−2, q−4, q−6, . . . (3.4)

and the following recurrence relation,

Qn+1(x, y, z) = (x − 1)(z − 1)Qn

(
xq2, y, zq2)+ xz(y − 1)q2nQn

(
x, yq2, z

)
. (3.5)

First two nontrivial polynomials read

Q1(x, y, z) = 1 − (x + z) + xyz,

Q2(x, y, z) = (1 − x)
(
1 − xq2)(1 − z)

(
1 − zq2)− x2z2q4(1 − y2)

− xzq2(1 + q2)(1 − y)(1 − x − z). (3.6)

One can solve (3.5) with the initial condition (3.4) and derive the explicit formula valid for all
values of n

Qn(x, y, z) = (−x)nqn(n−1)
2φ1

(
q−2n,

q2−2n

xy
; q2−2n

x
;q2, yzq2n

)
(3.7)

where 2φ1 is the regularized terminating basic hypergeometric series introduced in (2.16). This
formula works for any values x, y, z = 1, q−2, q−4, . . . .
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Using (3.7) one can rewrite (3.2) in a more transparent form convenient for further calculations

R
n′

1, n′
2, n′

3
n1, n2, n3 = δn1+n2,n

′
1+n′

2
δn2+n3,n

′
2+n′

3
qn2(n2+1)−(n2−n′

1)(n2−n′
3)

×
n2∑

r=0

(q−2n′
1;q2)n2−r

(q2;q2)n2−r

(q2+2n1;q2)r

(q2;q2)r
q−2r(n3+n′

1+1). (3.8)

As shown in [3] all nonzero matrix elements in (3.8) are positive for 0 < q < 1. The R-matrix
(3.8) possesses the following symmetries

R
n′

1, n′
2, n′

3
n1, n2, n3 = R

n′
3, n′

2, n′
1

n3, n2, n1 , R
n′

2, n′
1, n3

n2, n1, n′
3
= qn2−n1−n2

3+n′
3

2 (q2;q2)n3

(q2;q2)n′
3

R
n′

1, n′
2, n′

3
n1, n2, n3 (3.9)

and solves the tetrahedron equation [3]

R123 R145 R246 R356 = R356 R246 R145 R123. (3.10)

It involves operators acting in six Fock spaces, where Rijk acts non-trivially in the i-th, j -th and
k-th spaces, but acts as the identity in other three spaces. In matrix form Eq. (3.10) reads∑

n′
1, n′

2, n′
3

n′
4, n′

5, n′
6

R
n′

1 n′
2 n′

3
n1 n2 n3 R

n′′
1 n′

4 n′
5

n′
1 n4 n5

R
n′′

2 n′′
4 n′

6
n′

2 n′
4 n6

R
n′′

3 n′′
5 n′′

6
n′

3 n′
5 n′

6

=
∑

n′
1, n′

2, n′
3

n′
4, n′

5, n′
6

R
n′

3 n′
5 n′

6
n3 n5 n6 R

n′
2 n′

4 n′′
6

n2 n4 n′
6
R

n′
1 n′′

4 n′′
5

n1 n′
4 n′

5
R

n′′
1 n′′

2 n′′
3

n′
1 n′

2 n′
3
. (3.11)

Let λi , μi , i = 1,2, . . . ,6, be positive real numbers. Using the conservation laws it is easy to
check that if Rijk satisfies (3.10), then so does the “dressed” R-matrix

R′
ijk =

(
μk

λi

)Nj

Rijk

(
λj

λk

)N i
(

μi

μj

)Nk

, (3.12)

where the indices (i, j, k) take four sets of values appearing in (3.10). Note that the twelve
parameters λi , μi enter the four equations (3.12) only via eight independent ratios, so these
equations define a solution of (3.10) containing eight continuous parameters. These new degrees
of freedom allow to define a non-trivial family of commuting layer-to-layer transfer matrices.

In addition to (3.12) the tetrahedron equation is, obviously, invariant under diagonal similarity
transformations

R′
ijk = c

N i

i c
Nj

j c
Nk

k Rijkc
−N i

i c
−Nj

j c
−Nk

k , (3.13)

where c1, c2, . . . , c6 are arbitrary positive constants.

4. The 2-layer projection and a composite R-matrix

It is well known that any edge-spin model on the cubic lattice can be viewed as a two-
dimensional model on the square lattice with an enlarged space of states for the edge spins
(see [1] for additional explanations).
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Fig. 1. A front-to-back line of the cubic lattice.

Here we are going to exploit only the simplest 2-layer case. Consider two vertices in the
front-to-back direction as shown in Fig. 1 where we also assume the periodic boundary condition
in the front-to-back direction.

For further convenience we associate indices {j1, j2}, {j ′
1, j

′
2} with the first direction and

{i1, i2}, {i′1, i′2} with the second direction.
Let us define a composite R-matrix

S
i′j ′
ij (w) =

∑
k1,k2

R′j ′
1,i

′
1,k2

j1,i1,k1
R̃′j ′

2,i
′
2,k1

j2,i2,k2
. (4.1)

The “dressed” R-matrices R′ and R̃′ used in (4.1) are derived from R by combining both
transformations (3.12)–(3.13) with different sets of fields in the first and second directions, i.e.
{ci, λi,μi} and {̃ci, λ̃i , μ̃i}, i = 1,2, but with the same fields {c3, λ3,μ3} in the front-to-back di-
rection. In the LHS of (4.1) we also introduced a new “spectral” parameter w which is a special
combination of fields explicitly given below.

It follows from the conservation laws (3.3) that we can define two “global” conserved vari-
ables

I = i1 + i2 = i′1 + i′2, J = j1 + j2 = j ′
1 + j ′

2. (4.2)

Due to conservation laws (4.2) the R-matrix (4.1) acting in (Fq)⊗2 ⊗ (Fq)⊗2 decomposes
into an infinite direct sum

S(w) =
∞⊕

I,J=0

RI,J (w) (4.3)

of the Uq(ŝl(2)) R-matrices with weights I and J (or spins I/2 and J/2) [3]. So fixing the
values I and J in (4.2) we can derive a general formula for matrix elements of such R-matrices.

Omitting some constant factors (depending on I and J and fields) one can derive after simple
calculations[

RI,J (w)
]i′1,j ′

1
i1,j1

= δi1+j1,i
′
1+j ′

1
φ

i1
h φj1

v ψ
i′1−i1
h ψ

j ′
1−j1

v

∑
k1,k2

wk1R
j ′

1,i
′
1,k2

j1,i1,k1
R

J−j ′
1,I−i′1,k1

J−j1,I−i1,k2
, (4.4)

where

w = μ1μ̃1
, φh = λ̃1

, φv = λ2˜ , ψh = μ2c̃2
, ψv = c̃1λ2˜ . (4.5)
μ2μ̃2 λ1 λ2 μ1c2 c1λ2
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The R-matrix (4.4) satisfies the Yang–Baxter equation∑
i′1,i′2,i′3

[
RI1,I2(w)

]i′1,i′2
i1,i2

[
R′

I1,I3

(
ww′)]i′′1 ,i′3

i′1,i3
[
R′′

I2,I3

(
w′)]i′′2 ,i′′3

i′2,i′3

=
∑

i′1,i′2,i′3

[
R′′

I2,I3

(
w′)]i′2,i′3

i2,i3

[
R′

I1,I3

(
ww′)]i′1,i′′3

i1,i
′
3

[
RI1,I2(w)

]i′′1 ,i′′2
i′1,i′2

, (4.6)

where R′ and R′′ depend on different sets of fields {φ′
h,φ

′
v,ψ

′
h,ψ

′
v} and {φ′′

h,φ′′
v ,ψ ′′

h ,ψ ′′
v }. These

fields are not independent but satisfy the following constraints

φv = φ′
v, φ′

h = φ′′
h, φ′′

v = φ−1
h , ψ ′′

v = ψhψ
′
vψ

′′
h

φhψvψ
′
h

, (4.7)

which easily follow from the conservation laws for the R-matrices (4.4) entering (4.6) simi-
lar to the 6-vertex model. Eq. (4.6) acts in the tensor product of three representation spaces
with weights I1, I2, I3 and is an immediate consequence of the Yang–Baxter equation for the
q-oscillator R-matrix S(w) [3].

All ψ ’s fields are simple gauge transformations of the R-matrix and do not affect the spectrum
of the transfer-matrix. Due to the conservation law in (4.4) the transfer-matrix splits into a tensor
sum of blocks with equal sums of indices in the vertical direction. Similar to the 6-vertex model
the vertical field φv will contribute the same factor in each block and can be set to 1 since it
doesn’t affect the spectrum. As a result we get the following Yang–Baxter equation

RI1,I2(w;1)RI1,I3

(
ww′;φh

)
RI2,I3

(
w′;φh

)
=RI2,I3

(
w′;φh

)
RI1,I3

(
ww′;φh

)
RI1,I2(w;1) (4.8)

where we explicitly showed a dependence on the horizontal field φh. As a consequence of (4.8)
two transfer-matrices with the same φh will commute. From now on we shall assume that the
R-matrix and the corresponding transfer-matrix depend on the horizontal field.

Some extra care should be taken while calculating the sum in (4.4). The summation goes over
all non-negative k1, k2 satisfying the condition

i1 + k1 = i′1 + k2. (4.9)

For the case i1 � i′1 we can exclude the index k2 and safely sum over k1 from 0 to ∞. However,
for i1 < i′1 the lower limit for k1 should be i′1 − i1. However, in this case all contributions to the
sum in (4.4) from the values 0 � k1 � i′1 − i1 − 1 are exactly zero. This happens because the
second R-matrix in (4.4) becomes zero

R
J−j ′

1,I−i′1,k1
J−j1,I−i1,k2

= 0 (4.10)

for i1 < i′1 and −(i′1 − i1) � k2 � −1. So we can safely sum over k1 from 0 to ∞ for all cases.
The property (4.10) cannot be immediately seen from the definitions (3.2) and (3.7) and proved
in Appendix A.

Now let us apply the second transformation from (3.9) to (4.4). After simple calculations we
get the following symmetry of the matrix elements of the R-matrix[

RJ,I

(
w; {φ})]j ′,i′

j,i
= qI−J wi−i′[RI,J

(
w;{φt

})]i′,j ′
i,j

, (4.11)

where we introduced two sets of fields {φ} ≡ {φh,φv,ψh,ψv} and {φt } ≡ {φv,φh,ψv,ψh}.
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We see that the R-matrix defined by (4.4) is not completely symmetric with respect to permu-
tation of representation spaces with weights I and J . We shall repair it below by multiplying the
R-matrix with the appropriate gauge and scalar factors.

Note that when we substitute the expression (3.8) for the R-matrix into (4.4) one can see that
the sum over k1 converges provided

w < qI+J . (4.12)

However, the resulting expression will be a rational function in w which can be analytically
continued for any values of w.

Now let us remind that all nonzero elements of the 3D R-matrix (3.8) are positive for 0 <

q < 1. Then nonzero matrix elements of the composite R-matrix (4.4) are also positive provided
that the field variables φh, φv , ψh and ψv are positive and condition (4.12) is satisfied. Indeed, in
this case the LHS of (4.4) is given by a convergent series with positive terms.

For further convenience let us define new variables λ and φ and choose parameters in (4.4) as

w = λ2, φh = φ2, φv = 1, ψh = 1, ψv = λ. (4.13)

With such a choice of fields we define a properly normalized R-matrix by the following expres-
sion [

RI,J (λ)
]i′,j ′
i,j

= σI,J (λ)qI
[
RI,J (λ)

]i′,j ′
i,j

(4.14)

where σI,J (λ) is symmetric in I , J and defined by the following expression

σI,J (λ) = (−1)m(I,J )q
1
2 IJ− 1

2 m(I,J )λ−m(I,J )
(
λ2q−I−J ;q2)

m(I,J )+1, (4.15)

where m(i, j) = min(i, j).
Finally, substituting (3.8) into (4.4) we arrive at the following explicit formula[

RI,J (λ;φ)
]i′,j ′
i,j

= δi+j,i′+j ′(−1)m(I,J )φ2i−I λi−i′−m(I,J )

× qi2+(I−i)(J−j ′)−i′(i′−j)+2I+ 1
2 IJ− 1

2 m(I,J )

(q2;q2)i(q2;q2)I−i

× (λ2q−I−J ;q2)
m(I,J )+1

i∑
k=0

I−i∑
l=0

(−1)k+lq2k(i′−j)−2l(J−I−j+i)

qk(k+1)+l(l+1)(1 − λ2qI−J−2k−2l )

× (q−2i , q2+2j ;q2)k(q
−2j ′ ;q2)i−k

(q2;q2)k

× (q−2(I−i), q2(1+J−j);q2)l(q
−2(J−j ′);q2)I−i−l

(q2;q2)l
(4.16)

with

0 � i, i′ � I, 0 � j, j ′ � J. (4.17)

One can show that with such a normalization the matrix elements of the R-matrix are the polyno-
mials in λ and λ−1 of the degree � m(I,J ). We shall justify the choice of normalization (4.15)
in the next section.
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5. Properties of the higher spin R-matrix

In this section we shall analyze the formula (4.16) and derive a remarkably simple formula
for the R-matrix RI,J (λ) in the form of a single sum.

First let us notice the formula (4.16) can be naturally extended to any values J ∈C. This cor-
responds to the case when the second space becomes an infinite-dimensional Verma module V +

J

with indices j , j ′ running form 0 to ∞. In this case we will choose

m(I,J ) = I, I ∈ Z+, J ∈ C. (5.1)

As an example consider the case I = 1. The double sum in (4.16) contains only two nontrivial
terms and we obtain

[
R(1,J )(λ;φ)

]i′,j ′
i,j

=
(

δj,j ′φ−1[λq
1+J

2 −j ′ ] δj,j ′+1φ
−1[qJ−j ′ ]qj ′− J−1

2

δj+1,j ′φ[qj ′ ]q J+1
2 −j ′

δj,j ′φ[λq
1−J

2 +j ′ ]

)
i+1,i′+1

, (5.2)

where i, i′ = 0,1.
As usual we can define the L-operator acting in the tensor product C2 ⊗ V +

J as a two-by-two
matrix with matrix elements coinciding with the matrix elements of R1,J (λ). To make a con-
nection to the standard XXZ L-operator we introduce a rescaled spectral parameter μ = λq1/2,
set φ = 1 and apply a simple similarity transformation D = diag(1, λ−1) in C2. Then we ob-
tain

L(μ) =
(

μqH/2 − μ−1q−H/2 μ[q]Fq−H/2

μ−1[q]qH/2E μq−H/2 − μ−1qH/2

)
(5.3)

where E, F and H are the generators of the quantum algebra Uq(sl(2)) with the ac-
tion (2.5).

If J ∈ Z+, the module V +
J becomes reducible and first J +1 vectors {v0, . . . , vJ } form a basis

of a (J + 1)-dimensional representation space VJ .
Now let us assume that J is not a positive integer and perform a resummation in (4.16) by

introducing a new variable s = k + l. Then we can rewrite the sum in (4.16) in the form of a
pole expansion in λ2 at the points λ2 = qJ−I+2s , s = 0, . . . , I . Surprisingly the corresponding
residues can be expressed in terms of terminating balanced 4φ3 series. Applying Sears’ transfor-
mation for terminated balanced 4φ3 (B.1) from Appendix B we can rewrite (4.16) in the following
form [

RI,J (λ;φ)
]i′,j ′
i,j

= δi+j,i′+j ′(−1)i+I φ2i−I λi−i′−I qi(i+I−2J−1)+(I−i)(J−j)+i′(I+j ′)+I (3+J )/2

× (q−2J ;q2)j

(q−2J ;q2)j ′
(λ2q−I−J ;q2)I+1

(q2;q2)i

×
I∑

s=0

(−1)s

1 − λ2qI−J−2s

qs(s−1)−2is

(q2;q2)s(q2;q2)I−s

c
i′,j ′
i,j (I, J ; s) (5.4)

with coefficients c
i′,j ′

(I, J ; s) given by
i,j
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c
i′,j ′
i,j (I, J ; s) = (q2(I−J−s);q2)j ′−i (q

−2(s+J );q2)I

(q−2(s+J );q2)i+j

× 4φ3

(
q−2i;q−2i′, q−2s , q2(1+J−I+s)

q−2I , q2(1+j ′−i), q2(1+J−i−j)

∣∣∣∣q2, q2
)

, (5.5)

where we used our definition of regularized terminating hypergeometric series (2.16).
We note that the only problem for integer J comes from possible poles in (5.5) for 0 � s <

i + j − J . However, one can show that for all such values of s there is exactly a matching zero

coming from 4φ3. So if we define coefficients c
i′,j ′
i,j (I, J ; s) for integer J as a limiting value

from complex J , then the representation (5.4) for matrix elements works for any integer I and J

provided that I � J .
Now let us notice the sum in (5.4) can be represented as a ratio

RI (λ
2)

(λ2q−I−J ;q2)I+1
(5.6)

where RI (λ
2) is a polynomial of the degree I in λ2. Such a polynomial can be reconstructed

using a Lagrange interpolation formula. Applying this formula for any polynomial Pn(x) of the
degree n one can easily show that

xn+1(x−1;q)
n+1

n∑
i=0

(−1)i
1

x − qi

qi(i+1)/2−ni

(q;q)i(q;q)n−i

Pn

(
qi
)= Pn(x). (5.7)

This allows us to perform a summation over s in (5.4) and obtain the main result of this paper[
RI,J (λ;φ)

]i′,j ′
i,j

= δi+j,i′+j ′φ2i−I a
i′j ′
ij (λ)

× 4φ3

(
q−2i;q−2i′, λ−2qJ−I , λ2q2+J−I

q−2I , q2(1+j−i′), q2(1+J−i−j)

∣∣∣∣q2, q2
)

(5.8)

where

a
i′j ′
ij (λ) = (−1)i

qi(i−J−1)+(I−i)(J−j)+i′(I+j ′)

λi+i′−m(I,J )q
1
2 IJ− 1

2 m(I,J )

(q−2J ;q2)j

(q−2J ;q2)j ′

× (λ−2qI−J ;q2)j−i′(λ−2q−I−J ;q2)m(I,J )

(q2;q2)i(λ−2q−I−J ;q2)i+j

. (5.9)

Let us make a few important remarks regarding (5.8). First, it is easy to see that the main

ingredient of (5.8) comes from the coefficients c
i′,j ′
i,j (I, J ; s) with q2s replaced by λ2qI−J . As-

suming that λ is generic we no longer have poles coming from the pre-factor in (5.5). So (5.8) is
well defined for integer values of J as well.

Second, we derived the formula (5.8) assuming that m(I,J ) = I , i.e. I � J for I, J ∈ Z+.
However, as we already know from (4.11), the formula for the matrix elements should have a
certain symmetry with respect to interchanging I and J . Namely, we should have

P12RI,J (λ;1)P12 = RJ,I (λ;1), (5.10)

where P12 is the permutation operator. This symmetry of the R-matrix immediately follows from
the symmetry transformation (B.3) for 4φ3 basic hypergeometric series derived in Appendix B.
It also allows us to restore all factors m(I,J ) correctly which were originally set to I .
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The next comment concerns the normalization of the R-matrix RI,J (λ;φ). One can easily
derive from (5.8) that[

RI,J (λ;φ)
]0,0

0,0 = φ−I q
1
2 IJ+ 1

2 m(I,J )λm(I,J )
(
λ−2q−I−J ;q2)

m(I,J )
. (5.11)

We see that up to an overall normalization factor matrix elements of the R-matrix are rational
functions in qI and qJ and polynomials in λ and λ−1 of the degree determined by indices i, j ,
i′, j ′.

Now we can consider three different cases. If both I, J ∈ Z+, all matrix elements are polyno-
mials in λ and λ−1 of the degree d � m(I,J ). This is also true in the case when only I (or J ) is
a positive integer and we set m(I,J ) = I (or m(I,J ) = J ).

However, the formula (5.8) works even in the case when the R-matrix acts in the tensor
product of two infinite-dimensional Verma modules V +

I ⊗ V +
J , I, J ∈ C. In this case we can

choose a different normalization of the R-matrix, say,[
RI,J (λ;1)

]0,0
0,0 = 1. (5.12)

To confirm the last statement we could define the R-matrix RI,J (λ;1) in a zero field as a
solution of the Yang–Baxter equation acting in C2 ⊗ V +

I ⊗ V +
J , I, J ∈ C

L1,I (μ)L1,J (λμ)RI,J (λ;1) = RI,J (λ;1)L1,J (λμ)L1,I (μ), (5.13)

where the L-operators L1,I (λ) and L1,J (μ) are defined as in (5.3). Substituting[
RI,J (λ;1)

]i′,j ′
i,j

= δi+j,i′+j ′Si′,j ′
i,j (5.14)

into (5.13) we obtain the system of three linearly independent recursions. These recurrence
relations are given in Appendix C, (C.1)–(C.3). Up to a normalization S

0,0
0,0 they have a unique so-

lution which coincides with (5.8). However, it is highly nontrivial to find a solution of (C.1)–(C.3)
in terms of basic hypergeometric series. Our derivation of (5.8) is based on the 3D approach
where it appears very naturally.

Now let us return to the case when I, J ∈ Z+. Then the R-matrix RI,J (λ;φ) has another
symmetry[

RI,J (λ;φ)
]i′,j ′
i,j

= [RI,J

(
λ;φ−1)]I−i′,J−j ′

I−i,J−j
(5.15)

which will be used to define the second Q-operator in the next section.
Note that in the case I = J = 1 (5.15) is equivalent to the invariance of the R-matrix under

the conjugation by the operator R = σx ⊗ σx and the transformation φ → φ−1. The proof of the
relation (5.15) is reduced to applying the Sears’ transformation (B.2) to (5.8).

Additionally the R-matrix possesses the following symmetry under a simultaneous transfor-
mation λ → λ−1 and q → q−1:

RI,J

(
λ−1;φ)∣∣

q→q−1 = (−1)m(I,J )D1 ⊗ D2RI,J (λ;φ)D−1
1 ⊗ D−1

2 , (5.16)

where diagonal matrices D1 and D2 acting in VI and VJ are

[D1]i,i′ = δi,i′q
−i(i−1), i = 0, . . . , I,

[D2]j,j ′ = δj,j ′q−j (j−1)+j (J−I ), j = 0, . . . , J. (5.17)

This symmetry can be proved by observing that the defining relations for the R-matrix (C.1)–(C.3)
are invariant under combined transformations from (5.16).
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In the case I = J and λ = φ = 1 the R-matrix reduces to the permutation operator

RI,I (1;1) = q− 1
2 I (I+1)

(
q2;q2)

I
P12 (5.18)

which can be proved directly from the formula (5.8).
Finally, one can calculate the expansions of (5.8) near the points λ = 0 and λ = ∞. In the

leading order we get[
RI,J (λ;φ)

]i′,j ′
i,j

= δi,i′δj,j ′
(−λq1/2)−m(I,J )

φ2i−I q− 1
2 (I−2i)(J−2j)

(
1 + O(λ)

)
at λ → 0

(5.19)

and [
RI,J (λ;φ)

]i′,j ′
i,j

= δi,i′δj,j ′
(
λq1/2)m(I,J )

φ2i−I q
1
2 (I−2i)(J−2j)

(
1 + O

(
λ−1)) at λ → ∞.

(5.20)

We could calculate next order corrections in (5.20) and compare it with Kirillov and
Reshetikhin expansion at λ → ∞ in [17]. We leave this exercise to the reader.

6. Q-operators

The theory of the Q-operators related to the affine algebra Uq(ŝl(2)) has been developed
in [42,43]. Two Q-operators Q±(λ) appear as traces of special monodromy matrices over
infinite-dimensional representations of the q-oscillator algebra introduced in Section 2. Similar
to the usual transfer-matrices these monodromy matrices are derived from the tensor prod-
uct of the local L-operators. In this section we construct these local L-operators acting in the
(I + 1)-dimensional highest weight module VI . We also show that this construction can be nat-
urally generalized to the case of infinite-dimensional Verma module V +

I with I ∈C.
Lets us first assume that I ∈ Z+. Then we can introduce the transfer matrix T̂J,I (λ;φ) as-

sociated with the infinite-dimensional Verma module, V +
J , J ∈ C acting in the quantum space

W =⊗M
i=1 VI as

T̂J,I (λ;φ) = Tr
V +

J

[
RJ,I (λ;φ) ⊗ · · · ⊗ RJ,I (λ;φ)︸ ︷︷ ︸

M times

]
, (6.1)

where the trace is defined as in (2.10).
We notice that usually the horizontal field is introduced via a global twist in the auxiliary

space [42,43]. However, we prefer to use a local field and include it into the definition of the
R-matrix. With such a definition the transfer-matrix still commutes with the shift operator along
the periodic chain. We are going to exploit this fact in our construction of factorized Q-operators
in the next publication.

Due to the conservation law in (5.8) the transfer matrix (6.1) has a block-diagonal form

T̂J,I (λ;φ) =
IM⊕
l=0

T̂(l)
J,I (λ;φ), (6.2)

where for each block T̂(l)
J,I (λ;φ) the sum of in- and out-indices in the quantum space W is fixed

to l, i.e.
M∑

ik =
M∑

i′k = l. (6.3)

k=1 k=1
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Let us call the subspace in the quantum space W with a fixed l as the l-th sector.
The direct sum expansion (6.2) is also true for I ∈ C, when the quantum space becomes

infinite-dimensional, W =⊗M
i=1 V +

I . In this case the sum in (6.2) runs from zero to infinity, but
all blocks with a fixed l are still finite-dimensional.

Using asymptotics (5.19)–(5.20) one can easily calculate asymptotics of the T̂(I )
J (λ;φ) in each

block with a fixed l

T̂(l)
J,I (λ;φ)

∣∣
λ→0 = (−λq1/2)−IM

φ−JM q− 1
2 IJM+J l

1 − φ2MqIM−2l

(
I l + O(λ)

)
, (6.4)

T̂(l)
J,I (λ;φ)

∣∣
λ→∞ = (λq1/2)IM

φ−JM q
1
2 IJM−J l

1 − φ2Mq2l−IM

(
I l + O

(
λ−1)), (6.5)

where I l is the unit matrix of the dimension of the block.
When J ∈ Z+, the module V +

J becomes reducible as discussed in Section 2. The formula for
the R-matrix (5.8) is analytic in qJ except the normalization factor which contain the function
m(I,J ). The transfer matrix T̂J,I (λ;φ) splits into two terms

T̂J,I (λ;φ) = TJ,I (λ;φ) + T̂−J−2,I (λ;φ), (6.6)

where TJ,I (λ;φ) is the transfer matrix defined similar to (6.1) with the trace taken over the
finite-dimensional representation πJ .

However, there is one subtlety related to our choice of normalization (5.11). When J is not
integer, we assumed that m(I,J ) = I for I ∈ Z+ in our definition of the transfer-matrix (6.1).
However, when J becomes a positive integer, we can expect in (6.6) some extra factor in front of
TJ,I (λ;φ) for the case I > J , since m(I,J ) = J in this case. Indeed, a detailed analysis shows
that we need to slightly modify (6.6) as follows

hI−J (λ)MTJ,I (λ;φ) = T̂J,I (λ;φ) − T̂−J−2,I (λ;φ), (6.7)

where

hI (λ) =
I−1∏
k=0

[
λq

I
2 −k
]= {1, for I � 0,

(λq1/2)I (λ−2q−I ;q2)I , for I > 0.
(6.8)

Let us illustrate Eq. (6.7) with the case I = M = 1. Using formula (5.8) we obtain after simple
calculations

T̂J,1(λ;φ) =
⎛⎝ λφ−J q

1+J
2

1−φ2/q
− λ−1φ−J q

− 1+J
2

1−φ2q
0

0 λφ−J q
1−J

2

1−φ2q
− λ−1φ−J q

J−1
2

1−φ2/q

⎞⎠ (6.9)

Then for any integer J � 1 we get from (6.7)

TJ,1(λ;φ) =
(

φ−J
∑J

k=0 φ2k[λq
1+J

2 −k] 0

0 φ−J
∑J

k=0 φ2k[λq
1−J

2 +k]
)

(6.10)

which can be verified by direct calculations using the explicit formula (5.8) for the R-matrix
RJ,I (λ;φ).
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We also notice the following normalization of the transfer-matrix for J = 0 and I ∈ Z+

T0,I (λ;φ) = I , (6.11)

which is an immediate consequence of (5.8).
Now we turn to the construction of the Q-operators for any highest weight representation

in the quantum space. The main algebraic properties of the Q-operators are encoded into the
fundamental fusion relation discovered in [42,43]

Wr(φ)T̂J,I (λ;φ) = Q(I )
+
(
λq− J+1

2
)
Q(I )

−
(
λq

J+1
2
)
, (6.12)

where the Wronskian Wr(φ) does not depend on the spectral parameter λ. The Wronskian is
the diagonal operator and its eigenvalues are the same in every l-th sector. We notice that our
factorization relation (6.12) is slightly different from the one used in [42,43] due to the fact that
their λ is, in fact, our λ−1.

The relation (6.12) has been derived in [42,43] irrespective of the choice of the quantum
space using the universal R-matrix approach [44]. In principle, using the explicit expression of
the Uq(ŝl(2)) universal R-matrix [46] one can construct the Q-operators for any highest weight
representation. However, calculations for higher spins quickly become unbearable. In our ap-
proach we derive the Q-operators for an arbitrary weight I based on the explicit construction of
the R-matrix (5.8).

Although the eigenvalues of the transfer-matrix are polynomials in λ and λ−1, the eigenvalues
of the Q-operators are not. In the twisted case φ �= 1 they are polynomials multiplied by simple
exponential factors depending on the horizontal field. Namely, set

λ = eiu, φ = qh (6.13)

and define two operators A(I )
± (λ) as

Q(I )
± (λ) = e±iuhMA(I )

± (λ) = λ±hMA(I )
± (λ), (6.14)

where M is the size of the system. Then the eigenvalues of the operators A(I )
± (λ) will be polyno-

mials in λ and λ−1 (see, for example, [55] for detailed explanations).
Then we can rewrite the relation (6.12) as

φ(J+1)MWr(φ)T̂J,I (λ;φ) = A(I )
+
(
λq− J+1

2
)
A(I )

−
(
λq

J+1
2
)
. (6.15)

Let us now make the following substitution into (6.15)

λ = μq− J+1
2 (6.16)

and consider the limit J → ∞ with μ being fixed. In the RHS of (6.15) we shall get the operator
A(I )

− (μ) pre-multiplied by a constant matrix A(I )
+ (∞). We can always absorb this matrix into

A(I )
− (μ) by redefining it, so we assume that

A(I )
+ (∞) ∼ I (6.17)

and check a consistency of (6.17) later. Now taking the limit J → ∞ and substituting (6.16)
in (5.8) we define the local L-operator A

(I)
− (μ)[

A
(I)
− (μ)

]n′,i′
n,i

= lim
{[

RJ,I

(
μq− J+1

2 ;φ)]n′,i′
n,i

Un
i,i′(I, J )

}
(6.18)
J→∞
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where

Un
i,i′(I, J ) = φJ (−1)II−iλ−i′q(i−i′)(j+j ′)+J (3i′−i)/2+(i′−i)/2. (6.19)

Let us notice that we introduced some additional factor (6.19) into (6.18). It is needed to
compensate divergent contributions in J and simplify the formula for the L-operator. It is easy
to prove the following identity

M∑
k=1

(
ik − i′k

)(
nk + n′

k

)= [ M∑
k=1

(
ik − i′k

)]2

(6.20)

provided that ik + nk = i′k + n′
k , k = 1, . . . ,M . Therefore, the factor Un

i,i′(I, J ) can only con-
tribute a constant to each block with a fixed l (see (6.3)).

After simple calculations we obtain the following result[
A

(I)
− (λ)

]n′,i′
n,i

= δi+n,i′+n′φ2nλi−I qiI+ii′+n(I−i−i′)

× (λ2q1−I+2(i′−n);q2)I−i−i′

(q2;q2)i
3φ2

(
q−2i;q−2i′, λ2q1−I

q−2I , q2(1+n−i′)

∣∣∣∣q2, q2
)

. (6.21)

The formula (6.21) defines a local L-operator A
(I)
− (λ) acting in the tensor product Fq ⊗ VI .

To define the corresponding global Q-operator we take a tensor product of M copies of (6.19),
take a normalized trace (2.11) over the Fock space Fq and multiply by the exponential factor
from (6.14)

Q(I )
− (λ) = λ−hM T̂r

Fq

{
A

(I)
− (λ) ⊗ · · · ⊗ A

(I)
− (λ)︸ ︷︷ ︸

M times

}
. (6.22)

We could use the same strategy and define the second Q-operator Q(I )
+ (λ) by taking a different

limit in (6.15). However, we prefer to use a different approach. Let us remind that the operators
Q(I )

± (λ) are two linearly independent solutions of the T Q-relation (which we prove later) with
the transfer matrix

T1,I (λ;φ) = Tr
V1

[
R1,I (λ;φ) ⊗ · · · ⊗ R1,I (λ;φ)︸ ︷︷ ︸

M times

]
. (6.23)

This transfer matrix has the following symmetry

T1,I (λ;φ)
i′1,...,i′M
i1,...,iM

= T1,I

(
λ;φ−1)I−i′1,...,I−i′M

I−i1,...,I−iM
, (6.24)

which is a consequence of the symmetry (5.15) of the R-matrix.
It follows that we can define the second L-operator[

A
(I)
+ (λ)

]n′,i′
n,i

= [A(I)
− (λ)

]n′,I−i′
n,I−i

∣∣
φ→φ−1 (6.25)

and the second Q-operator Q(I )
+ (λ) by

Q(I )
+ (λ) = λhM T̂r

Fq

{
A

(I)
+ (λ) ⊗ · · · ⊗ A

(I)
+ (λ)︸ ︷︷ ︸}. (6.26)
M times
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Due to the symmetry (6.24) Q(I )
+ (λ) will satisfy the same T Q-relation. Since T Q-relation has

only two linear independent solutions and Q(I )
± (λ) cannot mix,1 we have constructed the second

Q-operator.
In principle, (6.25) completely determines matrix elements of the L-operator A

(I)
+ (λ). How-

ever, it has a big disadvantage, since it can be applied only for integer values of I . In fact, using
the transformation (B.4) for hypergeometric series 3φ2 one can transform (6.25) to the following
neat form[

A
(I)
+ (λ)

]n′,i′
n,i

= δi+n′,i′+nφ
−2n(−1)i+i′λ−iqi(i+1)−i′(i′+1)+i′(I+i)+n(I−i−i′)

× (q2;q2)n′

(q2;q2)n(q2;q2)i
3φ2

(
q−2i;q−2i′, λ2q1−I

q−2I , q2(1+n−i)

∣∣∣∣q2, q2
)

. (6.27)

Comparing (6.21) and (6.27) we observe that the L-operator A
(I)
+ (λ) coincides with A

(I)
− (λ)t2 up

to a simple diagonal transformation, transformation φ → φ−1 and equivalence transformations
in both auxiliary and quantum space.

Let us comment on the obtained results. First, it is clear that both Q-operators Q(I )
± (λ) have

the same block-diagonal form as the transfer-matrix (6.23) due to the presence of the delta-
functions in (6.21) and (6.27). Second, Q(I )

± (λ) commute with the transfer-matrix and this is the
consequence of the Yang–Baxter equation for the R-matrix (5.8).

Finally, it is clear that the operator A(I )
+ (λ) is well defined even for I ∈ C, since the depen-

dence on I is analytic in (6.27). The matrix elements of this operator are always polynomials
in λ, λ−1 as well as its eigenvalues in any finite-dimensional block with fixed l.

It is well known that for non-integer I the eigenvalues of the second Q-operator A(I )
− (λ)

are not polynomials. Having the explicit form (6.21) we can clarify this in details. The only
non-analytic term in I in (6.21) is the Pochhammer symbol in the numerator which can be trans-
formed as follows(

λ2q1−I+2(i′−n);q2)
I−i−i′

= (−λ2qi′−i−2n
)I−i−i′(

λ−2q1−I ;q2)
I

(λ−2q1+I ;q2)n−i′

(λ−2q1−I ;q2)n+i

. (6.28)

So we see that for I ∈ C matrix elements of the operator A(I )
− (λ) contain a meromorphic function(

λ−2q1−I ;q2)
I
= (λ−2q1−I ;q2)∞

(λ−2q1+I ;q2)∞
(6.29)

which doesn’t depend on matrix indices. The rest of the formula (6.21) is the rational function
of qI and can be analytically continued to complex values of I ∈ C. As we have seen before in
the case of the transfer-matrix, both Q-operators for I ∈ C can be decomposed into an infinite
direct sum of finite-dimensional matrices with a fixed number of in- and out-spins. Therefore,
formulas (6.21), (6.27) allow to construct the Q-operators even in the case when the quantum
space is the tensor product of Verma modules V +

I with I ∈ C.
Now let us consider some simple examples. First, take I = 1. Then we can write the operators

A(I )
± (λ) as 2-by-2 matrix operators acting in the auxiliary space of the q-oscillator algebra (2.6).

In the representation of the q-oscillator algebra defined by (2.9) we obtain

1 The operators Q(I )
± (λ) satisfy different quasi-periodicity conditions under the shift u → u + π due to (6.14).
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A
(1)
+ (λ) = φ−2N

(
qN −q−1a−

λ−1a+ [λ−1qN ]
)

, (6.30)

A
(1)
− (λ) = φ2N

( [λ−1qN ] λ−1a+
−q−1a− qN

)
, (6.31)

where [x] is defined in (2.3).
Similarly, one can calculate from (6.27) the matrix elements of A

(I)
+ (λ) at I = 2 and obtain

A
(2)
+ (λ) = φ−2N

⎛⎜⎝ q2N −a−qN−1 q−2(a−)
2

λ−1{q}a+qN λ−1({q}q2N − q−1) − λ q− 5
2 {q}a−[λq−N+ 1

2 ]
λ−2(a+)2 −q

1
2 λ−1a+[λq−N− 1

2 ] [λq−N− 1
2 ][λq−N+ 1

2 ]

⎞⎟⎠ .

(6.32)

The second L-operator A
(2)
− (λ) is simply obtained from (6.32) by reflection along rows and

columns and changing φ → φ−1.
Now let us calculate the Wronskian Wr(φ) in (6.15). We do it by considering the limit λ → ∞

and restricting (6.15) to the l-th sector where the Wronskian is proportional to the identity matrix.
We start with calculating the limit of A(I )

+ (λ) at λ → ∞. It is easy to see from (6.27) that

matrix elements of A
(I)
+ (λ) at λ → ∞ behave like

[
A

(I)
+ (λ)

]n′,i′
n,i

∼
{

λ2i′−i (1 + O(λ−2)), for i > i′
λi(1 + O(λ−2)), for i � i′.

(6.33)

Therefore, only the matrix elements with the indices ik � i′k , k = 1, . . . ,M will contribute to the
leading order in λ. It follows from (6.3) that we need to consider only diagonal matrix elements
of A(I )

+ (λ). Evaluating (6.27) at i′ = i and taking the normalized trace (2.11) over the auxiliary
space Fq in the l-th sector we get

A(I )
+ (λ)

∣∣
λ→∞ = −(−λ)lφ2Mq2l−IM

(
I + O

(
λ−2)), (6.34)

where I is the identity matrix and the trace in the denominator of the RHS of (2.11) is equal to

Tr
Fq

(
φ2Nq−N⊗H

)= 1

1 − φ2Mq2l−IM
. (6.35)

The asymptotics (6.34) justifies our assumption (6.17) made to calculate the operator A(I )
− (λ).

Taking the limit λ → ∞ in (6.21) we obtain by the similar arguments the asymptotics of the
second Q-operator A(I )

− (λ)

A(I )
− (λ)

∣∣
λ→∞ = (−λ)IM−l

(
I + O

(
λ−2)). (6.36)

Substituting (6.5), (6.34), (6.36) into (6.15) we obtain the expression for the Wronskian in the
l-th sector

Wr(l)(φ) = −(−1)IMφMql−IM
(
1 − φ2Mq2l−IM

)
I . (6.37)

As expected the Wronskian does not depend on the spin J in the auxiliary space V +
J . We also

notice that a normalization factor in (6.37) depends on the particular choice of a λ-dependent
normalization of the L-operators A

(I)
± (λ).
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7. Functional relations

In the previous section we used two fundamental functional relations (6.7) and (6.12) which
relate transfer matrices T̂(l)

J,I (λ;φ), T(l)
J,I (λ;φ) and Q-operators Q(I )

± (λ). Once they derived, no
further algebraic work is required. All other functional relations are a consequence of these two.
In this section we shall assume that I ∈ Z+ and use operators A(I )

± (λ) instead of Q(I )
± (λ) since

they are related by a simple transformation (6.14).
Since all the above operators commute, functional equations can be rewritten in terms of

its eigenvalues. Let T̂ (l)
J,I (λ;φ), T (l)

J,I (λ;φ) and A(I )
± (λ) be the eigenvalues of the corresponding

operators.
In the l-th sector of the quantum space we have

A(I )
+ (λ) = ρ+

l∏
k=1

[
λ/λ+

k

]
, A(I )

− (λ) = ρ−
IM−l∏
k=1

[
λ/λ−

k

]
. (7.1)

Let us start with the Wronskian relation between the eigenvalues of the two Q-operators.
Setting J = 0 in (6.7) we obtain

φ−MA(I )
−
(
λq1/2)A(I )

+
(
λq−1/2)− φMA(I )

+
(
λq1/2)A(I )

−
(
λq−1/2)=Wr(φ)hI (λ)M, (7.2)

where Wr(φ) denotes the eigenvalues of the Wronskian Wr(φ) and hI (λ) is defined in (6.8).
The functional equation (7.2) completely determines both polynomials A(I )

± up to normaliza-
tion factors ρ±. Indeed, substituting into (7.2) λ = λ+

k q±1/2 and λ = λ−
k q±1/2 we obtain

−φMA(I )
+
(
qλ+

k

)
A(I )

−
(
λ+

k

)=Wr(φ)hI

(
λ+

k q1/2)M,

φ−MA(I )
+
(
λ+

k /q
)
A(I )

−
(
λ+

k

)=Wr(φ)hI

(
λ+

k q−1/2)M (7.3)

and

−φMA(I )
−
(
λ−

k /q
)
A(I )

+
(
λ−

k

)=Wr(φ)hI

(
λ−

k q−1/2)M,

φ−MA(I )
−
(
qλ+

k

)
A(I )

+
(
λ−

k

)=Wr(φ)hI

(
λ−

k q+1/2)M. (7.4)

From (7.3), (7.4) we get two sets of Bethe ansatz equations

φ±2M A(I )
± (qλ±

k )

A(I )
± (q−1λ±

k )
= −

(
hI (λ

±
k q1/2)

hI (λ
±
k q−1/2)

)M

. (7.5)

Of course, our derivation of the Bethe ansatz equations assumes that φ is not equal to a special
value when Wr(φ) = 0. We will not discuss here this and further subtleties like the root of unity
case qN = 1 (see [55] for further discussions and [49] for the case q = 1).

Combining (6.7) and (6.12) for an arbitrary J we obtain

hI−J (λ)MWr(φ)TJ,I (λ;φ)

= φ−(J+1)MA(I )
+
(
λq− J+1

2
)
A(I )

−
(
λq

J+1
2
)− φ(J+1)MA(I )

+
(
λq

J+1
2
)
A(I )

−
(
λq− J+1

2
)

(7.6)

In particular, for J = 1 we have

T1,I (λ;φ) = φ−2MA(I )
+ (λq−1)A(I )

− (λq) − φ2MA(I )
+ (λq)A(I )

− (λq−1)

M
(7.7)
hI−1(λ) Wr(φ)
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Multiplying (7.7) by A(I )
± (λ) and using (7.2) we immediately arrive at the following equation

T1,I (λ;φ)A(I )
± (λ) = φ±M

[
λq

1−I
2
]MA(I )

± (qλ) + φ∓M
[
λq

1+I
2
]MA(I )

±
(
q−1λ

)
. (7.8)

We can rewrite (7.8) back in matrix form in terms of the original operators Q(I )
± (λ). Using (6.14)

we obtain the famous Baxter’s T Q-relation

T1,I (λ;φ)Q(I )
± (λ) = [λq

1−I
2
]MQ(I )

± (qλ) + [λq
1+I

2
]MQ(I )

±
(
q−1λ

)
. (7.9)

We just proved that the operators Q(I )
± (λ) are two solutions of (7.9). Their linear independence

has been proved earlier.
The T Q-relation (7.8) has a natural extension for any positive J > 1. Combining (7.6) with

the Wronskian relation (7.2) one can show that

TJ,I (λ;φ) = A(I )
± (λq− J+1

2 )A(I )
± (λq

J+1
2 )

hI−J (λ)M

J∑
k=0

φ±M(J−2k)hI (λqk− J
2 )M

A(I )
± (λqk− J+1

2 )A(I )
± (λqk− J−1

2 )
. (7.10)

Note that the formula (7.10) allows to express TJ,I (λ) in terms of the eigenvalues of only one
Q-operator. So it can be more convenient in cases when there is a problem to find the second
linearly independent Q-operator. In particular, (7.9) is useful in the limit φ → 1 when two op-
erators A(I )

± (λ) can become linearly dependent and we can’t apply (7.6) due to the Wronskian
being zero.

To conclude this section we shall give standard fusion relations satisfied by the eigenvalues
of the higher-spin transfer-matrices. For higher spin representations of the XXZ spin chain they
first appeared in [17]. Since our normalization of the R-matrix is different, the scalar functions
in our formulas are modified comparing to [17]. We have

T1,I (λ;φ)TJ,I

(
λq

J+1
2
)= f −

IJ

(
λq

1−I
2
)MTJ−1,I

(
λq

J
2 +1)

+ f +
IJ

(
λq

1+I
2
)MTJ+1,I

(
λq

J
2
)
, (7.11)

where

f +
IJ (λ) =

{
1, for I > J,

[λ], for I � J ; f −
IJ (λ) =

{ [λ][λqI+1], for I � J,

[λ], for I < J
(7.12)

and

T1,I (λ)TJ,I

(
λq− J+1

2
)= g−

IJ

(
λq

I−1
2
)MTJ−1,I

(
λq− J

2 −1)
+ g+

IJ

(
λq− 1+I

2
)MTJ+1,I

(
λq− J

2
)
, (7.13)

g+
IJ (λ) =

{
1, for I > J,

[qλ], for I � J ; g−
IJ (λ) =

{ [qλ][λq−I ], for I � J,

[qλ], for I < J.
(7.14)

We dropped a dependence on φ in the functional relations (7.12), (7.14) for brevity. The proof
of these relations is similar. We substitute the explicit expressions for the eigenvalues of the
transfer-matrices (7.6) and (7.7) into (7.12), (7.14) and using the Wronskian relation (7.2) reduce
them to identity. All calculations are slightly tedious but straightforward.

We also notice that all functional relations considered above can be generalized to the case of
complex I ∈C. The quantum space will be infinite-dimensional W =⊗M

i=1 V +
I and decompose

into the direct sum of finite-dimensional blocks. All functional relations will still be satisfied in
any such block with properly modified scalar functions. We will leave this as the exercise for the
reader.
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8. Conclusion

In this paper we derived a new formula for the Uq(sl(2)) R-matrix acting in the tensor prod-
uct of two highest weight modules with arbitrary weights I and J . When I = 1, this R-matrix
reduces to the standard XXZ L-operator. The formula for the matrix elements contains only
one summation and is expressed in terms of the basic hypergeometric series 4φ3. Taking the
limit I → ∞ we generalized the Bazhanov, Lukyanov and Zamolodchikov construction of
Q-operators to the XXZ spin chain with arbitrary spin. This includes the infinite-dimensional
case, when each L-operator acts in the infinite-dimensional Verma module with a complex
weight J ∈ C. These Q-operators are represented as special transfer-matrices with an auxiliary
space being the infinite-dimensional representation of the q-oscillator algebra. What is remark-
able is that this construction is non-singular in the limit J → Z+.

However, as explained in the Introduction there is an alternative construction of “factorized”
Q-operators [37,38] based on the factorization property of the Uq(sl(2)) L-operator. This ap-
proach works well for the infinite-dimensional representations (or cyclic case qN = 1), but its
restriction to a finite-dimensional case requires a regularization.

The natural question now is how these two constructions of the Q-operators are related to each
other. Since both Q-operators commute with the transfer-matrix, there should be a transformation
between them which becomes singular in the limit of integer weights.

Another interesting challenge is to construct the XXZ Q-operator as the integral operator
with a factorized kernel for the case of infinite-dimensional representations. This would allow to
calculate the action of the Q-operator on the proper (polynomial) basis directly and compare it
with the results of [38]. We are going to address these problems in our next publication.

Let us remind that a 3D approach of [1–3] works for the Uq(ŝl(n)) case with n � 2. So it
would be interesting to obtain a generalization of the result (1.1) for higher ranks.

Finally, we notice that the formula for the R-matrix looks similar to the expression of quantum
Uq(sl(2)) 6j -symbols [56] in terms of the q-Racah polynomials [20] (see also [57]). A better
understanding of this connection and its possible generalization to the elliptic case deserves a
separate study.
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Appendix A

We start with the property (4.10) which we reformulate as

R
n′

1,n
′
2,n

′
3

n1,n2,n3 = 0, when n2 > n′
2, −(n2 − n′

2

)
� n3 � −1. (A.1)

Using (3.2) and (3.7) we find that the matrix element in (A.1) is proportional to

2φ1
(
q−2n2 , x;xq−2n′

2;q2, z
)
, (A.2)
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where x = q2+2n1 and z = q−2n3 . Using Heine’s transformation of 2φ1 (see (III.3) in [54]) we
obtain

2φ1
(
q−2n2, x;xq−2n′

2
∣∣q2, z

)= (q2/z;q2)n2−n′
2
(−z/q2)n2−n′

2

q(n2−n′
2)(n2−n′

2+1)

× 2φ1
(
q−2n′

2 , xq2(n2−n′
2);xq−2n′

2;q2, zq2(n′
2−n2)

)
. (A.3)

The factor (q2/z)n2−n′
2

in the right hand side of (A.3) is equal to zero for z = q2k ,
k = 1, . . . , n2 − n′

2 which exactly corresponds to the range for the index n3 from (A.1).

Appendix B

Here we prove the identity between terminating balanced 4φ3 series which we used to
prove (5.10). Let us start with the second Sears’ transformation [54]

4φ3

(
q−m,a, b, c

d, e, f

∣∣∣∣q, q

)
= (a, ef/ab, ef/ac;q)m

(e, f, ef/abc;q)m
4φ3

(
q−m,q1−m/d, e/a,f/a,

q1−m/a, ef/ab, ef/ac

∣∣∣∣q, q

)
(B.1)

where def = abcq1−m, m ∈ Z+.
One can rewrite (B.1) in terms of regularized terminating series (2.16) as follows

4φ3

(
q−m;a, b, c

d, e, f

∣∣∣∣q, q

)
= qm(m−1)(ad)m4φ3

(
q−m;q1−m/d, e/a,f/a,

q1−m/a, ef/ab, ef/ac

∣∣∣∣q, q

)
. (B.2)

Now let us choose d = q1−m+n, where m and n are two positive integers and apply the for-
mula (B.2) first with respect to the index m and then with respect to the index n. After simple
transformations we get the following result

4φ3

(
q−m;a, b, c

q1−m+n, e, f

∣∣∣∣q, q

)
= (−1)m+n(ab)n(a, b, c;q)m−n

qn+ (m−n)(m−n−1)
2

4φ3

(
q−n; q

a
,

q
b
, cqm−n

q1−n+m,
qe
ab

,
qf
ab

∣∣∣∣∣q, q

)
, (B.3)

where abc = ef qn.
We also need another useful identity which allows to relate matrix elements of two local

L-operators A
(J)
+ (λ) and A

(J)
− (λ). It reads

(−1)j+j ′ (q2;q2)J−j (λ
2q1−J−2(n−j ′);q2)J−j−j ′

(q2+2n;q2)j−j ′(q2;q2)j
3φ2

(
q−2j ;q−2j ′

, λ2q1−J

q−2J , q2(1+n−j ′)

∣∣∣∣q2, q2
)

= qj (j−1)−j ′(j ′−1)+2J (J−2j−n)+2n(j+j ′)
3φ2

(
q−2(J−j);q−2(J−j ′), λ2q1−J

q−2J , q2(1+n−J+j)

∣∣∣∣q2, q2
)
(B.4)

provided that 0 � j, j ′ � J , J ∈ Z+ and n,n + j − j ′ � 0. This formula can be proved by using
transformations (III.9–III.13) in [54] for 3φ2 series. We omit the details.
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Appendix C

In this appendix we derive the recurrence relations which completely determine matrix ele-

ments [RI,J (λ;1)]i′j ′
i,j . Eq. (5.13) can be represented as a two-by-two matrix equation and leads

to four difference equations for matrix elements. These four equations split into six equations if
we decouple them with respect to the spectral parameter μ. Further algebra shows that only three
of them are linearly independent provided that the indices satisfy the condition i + j = i′ + j ′.
Using the notation (5.15) we obtain(

1 − λ2q2(1+i+j)−I−J
)(

1 − q2+2i′)Si′,j ′
i,j

− λqi′−j
(
1 − q2(1+i+i′−I )

)(
1 − q2+2j

)
S

i′+1,j ′
i,j+1

− q3j−J−j ′(
1 − q2+2i

)(
1 − λ2q2(1+i′−j)+J−I

)
S

i′+1,j ′
i+1,j = 0, (C.1)

λqi−j−2i′+J−2(1 − q2(2+j+j ′−J )
)(

1 − q2+2i′)Si′,j ′+1
i,j+1

− (1 − λ2q2i−2j ′+J−I
)(

1 − q2+2j ′)
S

i′+1,j ′
i,j+1

+ q3i−i′−I−1(1 − λ2qI+J−2(1+i+j)
)(

1 − q4+2j
)
S

i′+1,j ′+1
i,j+2 = 0, (C.2)

λq3+3i−j−2I+J
(
1 − q2I−2i

)(
1 − q2(J−j−j ′))Si′,j ′

i,j

+ (1 − q2(1+J−j)
)(

1 − λ2q2(1+i−j ′)+J−I
)
S

i′,j ′
i+1,j−1

− q3+3i−i′−I
(
1 − q2J−2j ′)(

1 − λ2qI+J−2i−2j
)
S

i′,j ′+1
i+1,j = 0. (C.3)

We can exclude shifts in two spins in the system (C.1)–(C.3) and derive a second order recurrence
relation in one spin variable. This recurrence relation is very similar to a recursion satisfied by
q-Racah polynomials. It has a unique solution which truncates for negative values of indices and
is given by (5.8).
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