Visual attentional processes in adults with dyslexia

Judith Ann Buchholz

September 28, 2008

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University.
Declaration

I, Judith Ann Buchholz, hereby declare that, except where acknowledged, this work is my own and has not been submitted for a higher degree at any other university or institution.

Judith Ann Buchholz
Acknowledgements

I would like to thank my family, Ralph and Rebecca, for their continued support throughout my research. Thank you especially to Ralph, who provided the IT support needed for processing the large amount of data collected. Also for his criticisms of and help in producing some of the figures.

I would also like to thank my friends, and my adult dyslexia cases for allowing me to subject them to psychophysical experiments over many years, both for my PhD research and also for my Master of Clinical Psychology research.

Thank you to Dr Anne Aimola Davies who provided help and guidance throughout my PhD. While we did not have a great deal of face-to-face discussion the internet proved invaluable, with many hundreds of emails being exchanged. I particularly thank Anne for her gentle approach to keeping me on track, while still allowing me leeway to approach the research how I felt.

I would also like to thank the members of my supervisory panel, Dr Elinor McKone, Dr Cobie Brinkman and Dr Mark Edwards, who provided invaluable advice and encouragement.
Thanks must also go to:

- Dr. Timothy Bates, for providing the materials for the reading and spelling tests used for screening participants,
- Dr. Jin Fan for providing the stimuli for use in the Attentional Network Test, Experiment 2, and
- Dr. Michael Cook, who provided the eye monitoring equipment for my final experiment.

Finally, my research could not have progressed without the assistance of the technical and administrative staff in the ANU School of Psychology. In particular:

- Mary Dalton, who ensured the eye monitoring equipment was operational and maintained the computer systems necessary for running my research,
- Shane Pozzi and Petrina Daniel, who on several occasions had to set up a new office for me, and
- Kate Hogan, Jenny Sutton and Caroline Twang who ensured that I was informed of important course requirements, and provided with necessary documents both while in the USA and in Australia.
Publications and presentations arising from this research

The findings from the experiments discussed in Chapters 5, 6, 8, 9, and 10 that have been published and/or presented are presented below.

Papers

Abstracts

Presentations

Deficits in sensory processing of visual and auditory stimuli, specifically that associated with the magnocellular/dorsal pathways, have been extensively reported in individuals with dyslexia (McArthur and Bishop, 2001; Stein, 2001). Furthermore, significant relationships have been reported between reading ability and performance on sensory processing tasks, both in the auditory and the visual modalities (Cestnick and Coltheart, 1999; Cestnick and Jerger, 2000; Talcott et al., 2002). However, a central role for phonological difficulties in reading difficulties independent of visual and auditory processing deficits has been demonstrated (Ramus et al., 2003b). The inconsistent results may be explained by individual differences in attentional processes (Marshall et al., 2001; Olson and Datta, 2002). While many studies have been carried out investigating attentional difficulties experienced by children with dyslexia, relatively few have examined these difficulties in adults with dyslexia (ADys). Furthermore, the relationship of these difficulties to the phonological deficits most often seen has yet to be fully explored. By determining the difficulties experienced by individuals with dyslexia, it may be possible to develop strategies to overcome them. This thesis primarily examines and compares processes of visual attention in adults with and without dyslexia. Each adult with dyslexia demonstrated phonological deficits consistent with this difficulty being a core deficit in dyslexia. A case-based approach, in addition to the usual group comparisons, has been adopted.

Chapter 1 provides background information to the nature of dyslexia, in-
cluding the difficulty of definition. Several theories of causality are also presented. In Chapter 2, the rationale behind the aims of this thesis is presented. Chapter 3 provides an explanation of, and the results from, the screening measures and analytical tools used in this thesis. These measures provide a comprehensive account of the cognitive and literacy abilities of the participants in the experiments that follow.

Chapters 4-10 present the findings of several experiments which have examined various aspects of attentional processing. In Chapter 4, visual selective attention is measured using a visual search paradigm. Both response time and accuracy of target detection as a function of set size were examined. A difficulty was demonstrated by the dyslexia cases only where searching involved a conjunction of stimulus features. However, while suggesting a compromised attentional system the nature of the visual search difficulties were not addressed in this experiment. For example, attention involves a number of processes, each of which may be responsible for the observed deficits in performance. Furthermore, the deficits may also be due to a slower attentional system, and/or relate to the processing of spatial and/or object information, and/or vary with visual field of presentation.

In Chapter 5, attentional dwell time is examined. The attentional blink (AB) refers to a deficit in the ability to identify a second target following a first target when both appear randomly within a rapid sequence of distractor items. Two tasks were completed which differed in the conceptual category of the target items (a red digit or letter) relative to the distractor items (all black digits). In the digit condition, all ADys cases showed a longer AB. In the letter condition, all participants showed improvement in accuracy compared to the digit condition, but three ADys cases continued to have longer AB compared to the control group. The results suggest that a) AB performance depends on task requirements, and b) the attentional system is compromised in dyslexia. However, examination of individual case performance suggests that prolonged attentional dwell time is not a core deficit in dyslexia.
Chapter 6 examines the space- and object-based components of attention using a spatial cueing paradigm. The group with dyslexia were generally slower to detect validly-cued targets. Costs of shifting attention toward the periphery when the target was invalidly cued were significantly higher for the group with dyslexia, while costs associated with shifts toward the fovea tended to be lower. Higher costs were also shown by the group with dyslexia for up/down shifts of attention in the periphery. A visual field processing difference was found, in that the group with dyslexia showed higher costs associated with shifting attention between objects in the left visual field. These findings indicate that adults with dyslexia have difficulty in both the space-based and the object-based components of covert visual attention, and more specifically to stimuli located in the periphery. However, Vecera (1994) found that object-based attention effects are sensitive to spatial manipulations. Thus, any difference observed between the control and dyslexia groups may merely reflect differences in space-based attentional orienting, rather than object-based attentional orienting.

An attempt to examine object-based attention in isolation was made in Chapter 7, using a methodology developed by Duncan (1984), which examines the accuracy of attending to two objects as opposed to one. The results of this experiment indicated a difficulty in processing rapidly presented stimuli in dyslexia. With respect to object-based processing, it appears that task difficulty may have been a confound. The results of the control group did not replicate those found by Valsangkar-Smyth et al. (2004), and performance was as poor as the dyslexia group.

In Chapter 8, a case study approach was taken to examine the role of visual attention and auditory memory processes in dyslexia. Individual data revealed that, although one adult with dyslexia showed overt visual attention deficits on a visual search task, and five showed auditory working memory deficits, the difficulty that all of the adults with dyslexia had in common was with covert shifts of attention toward and away from fixation. These results indicate that
deficits in overt visual attentional processing and working memory can be present with dyslexia, but neither is a necessary requirement. Overall, the results suggest that covert visual attention makes a significant contribution to phonological ability, which thus has implications for reading ability.

Chapter 9 examines the specificity of the attentional deficit observed in the previous chapters. Alerting, orienting and executive control of attention is investigated in five adult cases of dyslexia. Two spatial cueing tasks were employed. For the task requiring target detection, orienting difficulties were evident only in peripheral locations. While orienting attention to parafoveal stimuli was intact for this detection task, it was found to be impaired for the discrimination task. These results are discussed with respect to the methodological differences of the two tasks.

In addition to the unusual findings of Chapter 9, a specific attentional deficit has not been consistently demonstrated across studies of adults and children with dyslexia, possibly due to differences in methodology. In Chapter 10, three spatial cueing tasks were used to examine the effects of manipulating task variables, such as cue size, stimulus onset asynchrony (SOA), eccentricity and visual field of presentation, on attentional orienting. Visual orienting difficulties were observed when adjusting and maintaining attentional focus, but only under specific task conditions. Although increasing the size of the cue improved orienting performance, increasing stimulus onset asynchrony had a negative effect on this initial improvement. The poorest performance was observed at peripheral locations and in the right visual field. The observed difficulties may compromise reading since a difficulty in automatic orienting may affect the planning of eye movements, while a difficulty maintaining attention may hinder decoding due to increased distraction from nearby text. This study further highlights the need to consider task variables when designing attentional studies.

Finally, Chapter 11 provides a general discussion of the findings and their implications to dyslexia research.
Contents

Declaration ii

Acknowledgements iii

Publications vi

Abstract viii

List of Figures xviii

List of Tables xix

1 The nature of dyslexia 1
1.1 Defining dyslexia 2
1.2 Models of reading and dyslexia subtypes 5
1.3 Theories of dyslexia 10
 1.3.1 Phonological deficit 11
 1.3.2 Double-deficit 13
 1.3.3 Temporal processing deficit 14
 1.3.4 Magnocellular deficit 16
 1.3.5 Visual attention deficit 19

2 Rationale 27
2.1 Specificity of attentional deficit 28
2.2 A case for case studies 30
Contents

2.3 Aims .. 30

3 Screening and Assessment .. 31
3.1 The modified t-test .. 32
3.2 Psychometric Testing .. 33
 3.2.1 The Wide Range Achievement Test-3rd edition 33
 3.2.2 Dyslexia Adult Screening Test 35
 3.2.3 The Wechsler Adult Intelligence Scale-III 38
 3.2.4 Test of Everyday Attention 42
 3.2.5 Brown Attention-Deficit Disorder Scales 45
3.3 Reading and Spelling .. 47
 3.3.1 Test of non-word reading 47
 3.3.2 Test of reading and spelling 48
3.4 Visual Acuity .. 50
 3.4.1 Landolt ring-gap detection 50

4 Visual selective attention .. 53
4.1 Experiment 1 .. 56
 4.1.1 Method .. 57
 4.1.2 Results .. 59
 4.1.3 Discussion .. 61

5 Attentional blink .. 65
5.1 Experiment 2 .. 69
 5.1.1 Method .. 69
 5.1.2 Results .. 72
 5.1.3 Discussion .. 78

6 Space- and object-based attention ... 85
6.1 Experiment 3 .. 87
 6.1.1 Method .. 88
 6.1.2 Results .. 90
CONTENTS

6.1.3 Discussion ... 93

7 Examining object based attention ... 95
 7.1 Experiment 4 ... 96
 7.1.1 Method ... 96
 7.1.2 Results ... 98
 7.1.3 Discussion ... 100

8 Attention, memory and phonology .. 103
 8.1 Experiment 5 ... 105
 8.1.1 Method ... 106
 8.1.2 Results ... 107
 8.1.3 Discussion ... 116

9 Specificity of attentional deficit 119
 9.1 Experiment 6 ... 122
 9.1.1 Method ... 122
 9.1.2 Results ... 123
 9.2 Experiment 7 ... 132
 9.2.1 Method ... 132
 9.2.2 Results ... 134
 9.2.3 Discussion ... 140

10 Characterising the attentional orienting deficits observed in adults with dyslexia ... 149
 10.1 Experiment 8 ... 154
 10.1.1 Method ... 154
 10.1.2 Results ... 157
 10.1.3 Discussion ... 159
 10.2 Experiment 9 ... 161
 10.2.1 Method ... 161
 10.2.2 Results ... 162
List of Figures

1.1 The dual-route cascaded model of reading aloud............... 7

3.1 DAST profile for each dyslexia case. 37
3.2 WAIS-III framework. .. 39
3.3 TEA framework. .. 43
3.4 Landolt-C test of visual acuity. 51

4.1 Visual search procedure. 58
4.2 Performance measures for serial search. 60

5.1 RSVP paradigm procedure 71
5.2 Mean T1 response accuracy for each group. 74
5.3 Mean T1 response accuracy for the control group and each individual ADys case. 75
5.4 Mean T2 response accuracy for each group. 76
5.5 Mean T2 response accuracy for the control group and each individual ADys case. 77

6.1 The Egly paradigm. 89
6.2 Mean RT costs as a function of rectangle orientation, invalid-cue condition and visual field. 92

7.1 Object representation procedure. 97
7.2 Response accuracy for each group in the object based attention task. 98

xvii
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Response accuracy for the control group and each ADys case in the object based attention task.</td>
</tr>
<tr>
<td>8.1</td>
<td>Results for within-object shifts of attention.</td>
</tr>
<tr>
<td>8.2</td>
<td>Distribution of performances on the psychometric and experimental measures.</td>
</tr>
<tr>
<td>9.1</td>
<td>No-cue condition: Effects of eccentricity.</td>
</tr>
<tr>
<td>9.2</td>
<td>Invalid-within condition: effects of eccentricity.</td>
</tr>
<tr>
<td>9.3</td>
<td>Invalid-across condition: effects of eccentricity.</td>
</tr>
<tr>
<td>9.4</td>
<td>Attentional Network Test procedure.</td>
</tr>
<tr>
<td>9.5</td>
<td>Alerting, orienting and conflict measures of attention.</td>
</tr>
<tr>
<td>10.1</td>
<td>Eye Monitoring Equipment.</td>
</tr>
<tr>
<td>10.2</td>
<td>An example of the valid-cue procedure.</td>
</tr>
<tr>
<td>10.3</td>
<td>RT as a function of eccentricity for each cue condition.</td>
</tr>
<tr>
<td>10.4</td>
<td>RT as a function of eccentricity (1°, 3°) and visual field for each stimulus onset asynchrony.</td>
</tr>
<tr>
<td>10.5</td>
<td>RT as a function of eccentricity for each cue size.</td>
</tr>
<tr>
<td>10.6</td>
<td>RT as a function of eccentricity (3°, 7°) and visual field for each stimulus onset asynchrony.</td>
</tr>
<tr>
<td>10.7</td>
<td>An example of the invalid-cue procedure.</td>
</tr>
<tr>
<td>10.8</td>
<td>RT as a function of cue size and eccentricity for each stimulus onset asynchrony.</td>
</tr>
<tr>
<td>10.9</td>
<td>RT costs as a function of stimulus onset asynchrony for each cue size.</td>
</tr>
<tr>
<td>10.10</td>
<td>RT costs as a function of eccentricity for each cue size.</td>
</tr>
<tr>
<td>10.11</td>
<td>RT costs as a function of eccentricity and stimulus onset asynchrony for each cue size.</td>
</tr>
<tr>
<td>10.12</td>
<td>RT costs as a function of visual field for each cue size.</td>
</tr>
<tr>
<td>10.13</td>
<td>Diagram of proposed attentional drift.</td>
</tr>
</tbody>
</table>
List of Tables

3.1 Control group performance on the WRAT-3. ... 34
3.2 Dyslexia group and individual ADys case performance on the WRAT-3. 34
3.3 Subtests of the Dyslexic Adult Screening Test. ... 36
3.4 Unique abilities tested by the WAIS-III. ... 40
3.5 Control group age and cognitive function. ... 41
3.6 Dyslexia group and individual case age and cognitive function. 41
3.7 Control group (n=16) and dyslexia case scaled scores on TEA. 44
3.8 Control group and dyslexia case T-scores on BADDS. 47
3.9 Control and dyslexia group, and dyslexia case scores on non-word reading. 48
3.10 Control and dyslexia group, and dyslexia case scores on reading and spelling tests. 50

5.1 Accuracy of single target identification as a function of notional lag. 72
8.1 Scores for psychometric and experimental measures. 108
8.2 Correlations between variables. ... 115
9.1 Summary RTs of no-cue, invalid-cue and valid-cue conditions. 124
9.2 Summary RT costs associated with attention shifts. 129
9.3 Accuracy and RTs as a function of flanker condition. 136

11.1 Attentional profile of dyslexia individuals. ... 189