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ABSTRACT 

This paper improves the Lateralization (identification of the epileptogenic hippocampus) accuracy in Mesial Temporal 
Lobe Epilepsy (mTLE). In patients with this kind of epilepsy, usually one of the brain's hippocampi is the focus of the 
epileptic seizures, and resection of the seizure focus is the ultimate treatment to control or reduce the seizures. Moreover, 
the epileptogenic hippocampus is prone to shrinkage and deformation; therefore, shape analysis of the hippocampus is 
advantageous in the preoperative assessment for the Lateralization. The method utilized for shape analysis is the 
Spherical Harmonics (SPHARM). In this method, the shape of interest is decomposed using a set of bases functions and 
the obtained coefficients of expansion are the features describing the shape. To perform shape comparison and analysis, 
some pre- and post-processing steps such as "alignment of different subjects’ hippocampi" and the "reduction of feature-
space dimension" are required. To this end, first order ellipsoid is used for alignment. For dimension reduction, we 
propose to keep only the SPHARM coefficients with maximum conformity to the hippocampus shape. Then, using these 
coefficients of normal and epileptic subjects along with 3D invariants, specific lateralization indices are proposed. 
Consequently, the 1536 SPHARM coefficients of each subject are summarized into 3 indices, where for each index the 
negative (positive) value shows that the left (right) hippocampus is deformed (diseased). Employing these indices, the 
best achieved lateralization accuracy for clustering and classification algorithms are 85% and 92%, respectively. This is 
a significant improvement compared to the conventional volumetric method.  

Keywords: Hippocampus Shape Analysis, Mesial Temporal Lobe Epilepsy (mTLE), mTLE Lateralization, Spherical 
Harmonics (SPHARM), 3D Representation and Registration, Support Vector Machine (SVM). 
 

1. INTRODUCTION 
In recent years, shape analysis of brain structures has achieved great importance in the context of medical image 
computing. The increased research in this field has been inspired by the importance of neurodegenerative disorders (such 
as Alzheimer's, Schizophrenia, Parkinson and Epilepsy) and also evidences that show relations between these diseases 
and deformation of the brain structures [1-3]. 

1.1 Hippocampus and Mesial Temporal Lobe Epilepsy  

Hippocampus (HC) is a brain structure that belongs to the limbic system and is located in the mesial temporal lobe of the 
brain. It plays important roles in the short-term memory, the formation of memories and language tasks [4]. Hence, HC 
is a major structure of interest in many researches relevant to the above mentioned disorders.  

Temporal lobe epilepsy (TLE) is one of the most important types of focal epilepsy where the origination of the epileptic 
seizures is from the temporal lobe of the brain. More specifically, when the focus of the seizures is in the middle part of 
the temporal lobe (e.g. hippocampus), it is called mesial temporal lobe epilepsy (mTLE). For the patients with refractory 
mTLE suffering from intractable seizures, hippocampal resection is the ultimate treatment. For this treatment to be most 
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effective in controlling the seizures (with minimal side-effects), accurate identification of the epileptogenic HC 
(Lateralization) is critical. 

In mTLE, the most frequent pathologic finding is hippocampal sclerosis, which is the neuronal cell loss caused by 
seizures [5]. Considering the evidences of HC deformation due to hippocampal sclerosis [3, 5, 6], hippocampal 
volumetry is the conventional method for lateralization. However, these deformations do not always alter the volume, 
but sometime just the shape. So shape analysis can be beneficial in providing additional morphometric features and 
improving the lateralization accuracy. 

1.2 Shape Analysis Methods 

As mentioned above, hippocampal volumetry along with some other MRI measures are the conventional methods for 
studying hippocampi variations. Although volumetry is capable of revealing major deformations and global differences 
in some disorders [7], it is blind to minuscule shape changes. So, in order to better compare the HCs, researches have 
focused on quantitative shape analysis methods with better discriminant features. Some researchers have proposed to 
apply deformable registration to a template [1, 8, 9]. Despite problems of template selection and high dimensionality of 
transformation, these studies achieved reasonable results. The methods in [10, 11] were among the first methods 
proposed for 3D shape analysis based on sampled descriptions. Cootes et al. [12] proposed Point Distribution Model for 
3D shape analysis and deformation study. Other shape analysis methods based on medial shape descriptions in 3D and 
2D were proposed by Styner [13] and Golland [14], respectively. Besides these, some methods build a simplified 
representation of anatomical structure by utilizing shape descriptors, such as spherical harmonics (SPHARM) [15], 
spherical wavelets [16], and Laplace-Beltrami operator [17]. In these methods, shape (volume) or surface is decomposed 
into series of bases and the coefficients are used as descriptive features. 

SPHARM, a 3D extension of Fourier analysis, is what we utilize in this paper. Applications of SPHARM have been 
widely reported in many articles. Styner et al. [18] developed a framework using SPHARM to analyze caudate and 
hippocampus shape in schizophrenia. Zhao et al. [19] used the same framework to analyze hippocampus shape in late-
life depression. McKeown et al. [20] employed SPHARM for thalami shape analysis in Parkinson’s disease (PD). They 
found some differences between “control and PD” thalami and also “left and right” thalami in each group that 
volumetric analysis was unable to distinguish between them. SPHARM has been widely used for hippocampus shape 
analysis in Alzheimer’s disease (AD) [21-23]. Gerardin et al. [24] obtained 88% accuracy in distinguishing AD from 
normal aging by hippocampus shape analysis using SPHARM. 

In epilepsy, shape analysis has not been as extensively researched compared to Alzheimer’s and Schizophrenia. Some of 
the researches have focused on statistical analysis of the hippocampus shape [25, 26]. These works provide a localized 
3D probabilistic surface that reveals the extent by which the HC shape is deformed in comparison with control subjects. 
In some other works, like those by Vemuri and his research group [27, 28], hippocampus shape analysis has been used 
for distinguishing between controls and epileptic patients, and also for lateralization. Recently, [29] has used the same 
dataset that we utilize in this research, and they distinguished between healthy and control subjects by hippocampus 
shape analysis using Laplace-Beltrami spectrum. 

1.3 Our Contribution 

We build upon our previous work [30] and perform SPHARM-based shape analysis of HCs. We utilize SPHARM 
coefficients and benefit from SVM classifiers to improve mTLE lateralization. The rest of this paper is organized as 
follows. In Section 2, we first introduce the datasets. Then we describe SPHARM-based shape representation and our 
proposed method for SPHARM registration. Next, we describe our feature selection and extraction methods.  In Section 
3, we provide the lateralization results, obtained using clustering of SPHARM coefficients and volumetry of the HCs. In 
addition, we present the achieved results using SVM classification. Finally, we conclude in Section 4 with discussion 
and future works. 

 
Figure 1.  The proposed procedure for shape analysis of hippocampus using SPHARM. 
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2. MATERIAL AND METHODS  
2.1 Data 

We use T1-weighted (T1W) MR provided by Department of Diagnostic Radiology at Henry Ford Hospital (HFH). This 
dataset contains T1W images of 25 healthy (“N”; 13 males, 12 females; age range 19-54, mean ± SD = 32 ± 9) and 66 
epileptic (“EP”; 24 males, 42 females; age range 15-66, mean ± SD = 40 ± 11) subjects. Images are either 256×256, 
voxel size=0.78×0.78×2 mm3 or 512×512, voxel size=0.39×0.39×2 mm3 (Slice thickness=2 mm). Therefore, images 
should undergo the same structural standardization described in [30]. 

For all images, accurate segmentation of HCs was made available, by manually outlining hippocampal contours with 
reference to an MRI atlas identifying the Hippocampus [4]. The segmentation technique is described comprehensively in 
[31], and the resultant dataset is available online1.*. 

To detect the epileptogenic HCs, all patients underwent a full complement of preoperative studies such as video-
electroencephalographic (vEEG) inpatient assessment over a minimum three-day period, MR imaging, sodium 
amobarbital study, and neuropsychological assessment. Some of the patients required extraoperative 
electrocorticography (ECoG) with intracranially implanted electrode arrays. The outcome revealed that in 33 of the 
patients (50%), the right HCs were epileptogenic and in the other 33 (50%) the left ones were epileptogenic. These 
finding were confirmed by seizure freedom after surgical removal of the presumed epileptogenic hippocampus and 
clinical follow-ups. 

2.2 Pre-Processing and HCs Surface Parameterization 

As described in [30], since not all images are with similar voxel size, mapping to Montreal Neurological Institute (MNI) 
atlas is performed to generate a common framework for all images. Additionally, the mirroring of the right hippocampi 
omits the directional differences of left (L) and right (R) HCs and makes the shape comparison of L and R HCs feasible. 
An Instance of segmented HCs mapped on MNI template is shown in Figure 2. 

 
Figure 2. Segmented EP-HCs mapped on the MNI template; (left) Top view of both hippocampi of a subject, 
(right) mirrored right HC [red] on the left one [blue]. (In grayscale printing, red appears darker than blue) 

Finally, before the segmented HC are being fed into SPHARM expansion, their surface should be parameterized. This is 
achieved by use of triangular meshes and is described in [30].  

2.3 SPHARM 

SPHARM was proposed by Brechbühler et al. [15] for modeling arbitrarily shaped but simply connected 3D objects. 
SPHARM, similar to volume, is a global shape analysis framework, but its multi-scale characteristics make it superior 
over simple volumetric analysis. As shown in Fig. 1, often three steps are taken in a typical SPHARM analysis: 

(1) Surface parameterization  
(2) SPHARM expansion 
(3) SPHARM registration 
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We briefly addressed the surface parameterization in 2.2. In this section, we focus on SPHARM expansion and we will 
discuss SPHARM registration in 2.4. The mathematics behind SPHARM has been fully described in [15] and also in 
[23]. Here we provide just the fundamentals required to describe our methods.  

SPHARM basis functions of degree l and order m ( ௟ܻ௠, െ݈ ൑ ݉ ൑ ݈) are defined as follows:  

௟ܻ௠ሺߠ, ߶ሻ ൌ ඨ2݈ ൅ 1ሺ݈ െ ݉ሻ!4ߨሺ݈ ൅ ݉ሻ! ௟ܲ௠ሺcos  ሻ݁௜௠థߠ

ߠ א ሾ0: ሿߨ , ߶ א ሾ0:  ሻߨ2

(1) 

where ௟ܲ௠ሺcos  :ሻ are the associated Legendre polynomials defined by the differential equationߠ

௟ܲ௠ሺݓሻ ൌ ሺെ1ሻ௠2௟݈! ሺ1 െ ଶሻ௠ݓ ଶൗ ݀௠ା௟݀ݓ௠ା௟ ሺ1 െ  ଶሻ௟ (2)ݓ

Therefore, considering a parameterized surface ݒԦሺߠ, ߶ሻ in spherical coordinate, the SPHARM expansion takes the form: 

,ߠԦሺݒ ߶ሻ ൌ ൫ݔሺߠ, ߶ሻ, ,ߠሺݕ ߶ሻ, ,ߠሺݖ ߶ሻ൯் ൌ ෍ ෍ Ԧܿ௟௠ ௟ܻ௠ሺߠ, ߶ሻ௟
௠ୀି௟

ஶ
௟ୀ଴  

Ԧܿ௟௠ ൌ ൫ܿ௟௫௠, ܿ௟௬௠, ܿ௟௭௠൯்
 

(3) 

The coefficients Ԧܿ௟௠ up to a user-desired degree (Lmax) can be estimated by solving a set of linear equations in a least 
squares fashion. The object surface can be reconstructed by these coefficients and using more coefficients leads to a 
more detailed reconstruction [21]. We set Lmax = 15 to keep appropriate amount of details of HC shape. This results in 
(Lmax +1)2 = 256 Ԧܿ௟௠ coefficients for each HC. Considering x, y, and z elements of Ԧܿ௟௠, the total number of features for 
each HC will be 256×3 = 768. These 768 features contain information about HCs’ shape as well as position and 
orientation. So, before comparing various HCs’ shape by analyzing these 768 features, they need to be aligned. To this 
end, methods to deal with the alignment (registration) of various HCs in the feature space will be described in the 
following section. Figure 3 depicts some parameterized HCs of healthy and epileptic subjects and also the reconstructed 
HCs when Lmax = 15. 

 
Figure 3. Some samples of (up) parameterized HCs, and (down) reconstructed HCs with Lmax = 15; (left) epileptic 
HCs, (right) normal HCs. 

2.4 Registration 

The whole brain registration introduced as a pre-processing in section 2.2 can slightly help with bringing the HCs to a 
common framework. However, due to the variable HC position and orientation in different subjects, fine tuning is still of 
great importance. In other words, without SPHARM registration, the coefficients are not comparable. 
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To cope with this problem, some methods have been proposed in the literature. Mckeown et al. [20] uses the 3D 
invariants proposed in [32]. In this method, SPHARM coefficients are considered as tensors. By applying the concepts 
of tensor theory, any dependency upon orientation is eliminated. Shen et al. [22] uses landmarks for registration of 
SPHARM objects. In his method, landmarks are manually placed on some corresponding surface points of all subjects. 
By minimizing the root mean square distance between landmark vectors of two subjects, they are aligned. This step is 
not performed in the object space; rather it is performed in the SPHARM feature space. 

Both of the above methods are efficient but very complicated. The latter could also be greatly subjective. Here we 
describe our method for SPHARM registration, which is conducted in the SPHARM feature space. 

Talking about registration, usually scaling, translation and rotation are required. In our problem, scaling is not an issue 
since various brains have been already scaled to be mapped on the MNI atlas.  

About the translation, as described in [18], we can easily normalize the position of HCs by setting x, y, and z elements of Ԧܿ଴଴ to zeros. This brings the center of all HCs into Cartesian origin of (0,0,0) and reduces the number of features to 765. 

For the rotation, we propose a simple yet practical method by benefiting from the SPHARM description of degree 1, 
which is called first order ellipsoid (FOE).  The following steps can briefly express this method: 

1- Compute the FOE of each HC. 
2- Represent it using [vertices, faces] format described in [30] for parameterization by triangular meshes. 
3- Calculate principal components (PCs) of the matrix ‘vertices’ (3 principal components exist). 
4- Compute the 3×3 matrix M for mapping these three principal components on the three main axes. 
5- Multiply SPHARM coefficients by M to obtain new coefficients ԦܿԢ௟௠. 

Since Ԧܿ௟௠ consists of x, y, and z elements, applying the same mapping on the corresponding coefficients is possible. 
Modified coefficients generated by this method are representative of shapes with complete alignment on the Cartesian 
axes, so ԦܿԢ௟௠ will be used to compare different hippocampi, such as N and EP ones. Figure 4 depicts an example of 
mapping PCs on the main axes and also a sample result of our method for fine alignment.  

 
Figure 4. (a) Mapping PCs of FOE to main axes for SPHARM registration in feature space. (b) SPHARM 
description of two subjects’ HC; (left) Raw SPHARM description, (right) Aligned SPHARM description by 
mapping PCs of FOE on main Cartesian axes, (top) Degree 15 SPHARM description, (bottom) Degree 5 
SPHARM description. 

2.5 Feature Selection for Lateralization 

The final step is to extract meaningful features from SPHARM coefficients in order to lateralize the mTLE patients. In 
[30], we have proposed three Lateralization Indices (LIs) based on SPHARM, and also one standard LI based on 
Volumetry. These indices are brought in Table 1; we briefly describe them here. 
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Table 1. Definition of three SPHARM-based LIs and the LI based on volume. 

Volume  1. Self-distance I 2. Distance to normal subjects 3. Self-distance II 

௩௢௟ܫܮ ൌ ௩௢௟ܮ െ ܴ௩௢௟ܮ௩௢௟ ൅ ܴ௩௢௟ ܫܮௌ஽ଵ ൌ ෍ |ሺ݅ሻܮܥ| െ |ሺ݅ሻܮܥ||ሺ݅ሻܴܥ| ൅ ሺ݅ሻ|ଶ଴ܴܥ|
௜ୀଵ

஽ଶேܫܮ ൌ ෍ ܵܫܦ൫݊݃݅ݏ ோܶሺ݆ሻ െ ܵܫܦ ௅ܶሺ݆ሻ൯ଶே
௝ୀଵ  

ܵܫܦ ௑ܶሺ݆ሻ ൌ ෍ ቀܺܥሺ݇ሻ െ ܥ ௝ܰሺ݇ሻቁଶଶ଴
௞ୀଵ , ܺ ൌ ܮ ݎ݋ ܴ

ௌ஽ଶܫܮ ൌ ෍ |ሺ݅ሻܮܰ| െ |ܴܰሺ݅ሻ||ܰܮሺ݅ሻ| ൅ |ܴܰሺ݅ሻ|௅೘ೌೣ
௟ୀଵ

ܰܺሺ݈ሻ ൌ  ෍ | ԦܿԢ௟௠|௟
௠ୀି௟  

LIvol is the simplest index where Lvol and Rvol are volumes of the L and R HCs. Negative (positive) values of LIvol indicate 
smaller left (right) hippocampus. In mTLE, the smaller hippocampus is more likely to be epileptogenic. For normal 
subjects, this index is usually around zero.  

As detailed in the previous sections, each HC after SPHARM registration is described by 765 coefficients, which are 
positive and negative real numbers. Since not all of them are useful, some coefficients selection is necessary. We select 
the coefficients that have the same sign (൅ or െ) for all L and R hippocampi of normal and epileptic subjects. This leads 
to 20 coefficients (CL and CR) for each HC. This method of selection is justified by the fact that the coefficients with 
multiple changes in sign for different subjects are not accurate representer of HC shape, as they are not matched 
sufficiently to the HC shape and thus are not consistent. 

Using CL and CR of patients and CN (Normal subjects’ CL and CR), LISD1 and LID2N are obtained. LISD1 definition is 
exactly similar to LIvol but in a multi-scale manner. LID2N is defined in a way to reflect the degree in which each HC is 
similar to Normal HCs. 2N is the total number of normal left and right HCs. 

Another method to establish a criterion for measuring left-right HCs distance is using the simplest invariants discussed in 
[32] that results to LISD2. This is a multi-scale method and summarizes all the coefficients to Lmax+1 values called ܰሺ݈ሻ. 
These Lmax+1 values are used to generates another lateralization index based on self-distance. 

In section 3, we benefit from these indices and provide the results of simple clustering and classification by SVM for 
mTLE lateralization. 

3. RESULTS 
3.1 Simple Clustering by Volumetric Analysis 

By simple clustering we mean deciding on each patient just by using the sign of its own LIs, with no training. So by 
using LIvol and simple clustering (if LIvol <0, L-HC is epileptogenic and if LIvol >0, R-HC is epileptogenic), lateralization 
accuracy of 78.8% is achieved (52 out of 66). However, as table 2 suggests, there exists an overlap between the range of 
LIvol for EP and N subjects.  

Table 2. LIvol for healthy and epileptic subjects, STD=Standard Deviation. 

 No. Of subjects Mean LIvol STD LIvol Max LIvol Min LIvol 
Healthy 25 -0.002 0.037 0.079 -0.071 
Epileptic 66 -0.033 0.189 0.349 -0.539 

So, we divide EPs into two groups by considering the range of LIvol for N subjects as [µെ2σ, µ൅2σ] ≈ [െ0.08, 0.08]:  

- 40 Patients with LIvol outside the range for normal subject (the LIvol-based lateralization accuracy was 92.5%), 
- 26 Patients with LIvol inside the range for normal subject (the LIvol-based lateralization accuracy was 57.7%). 

The former can be confidently classified as R or L, but the latter will remain as the input to the next analysis steps, which 
are SPHARM analysis. 

3.2 Simple Clustering by SPHARM Analysis   

Here, we calculate the three SPHARM-based LIs, defined in Table 1, for all normal and epileptic subjects. Our method 
failed in the calculation of the SPHARM coefficients for one subject1.*Hence, 25 EP subjects of HFH with |LIvol| ≤ 0.08 
                                                            
1 This subject was lateralized correctly by volumetric clustering 
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are considered in this level of analysis. Again, we find the confidence interval of normal state for each of these features, 
and classify those subjects outside the bounds. Table 3 gives some information about these LIs. 

Table 3. Mean, standard deviation, maximum, and minimum value for SPHARM-based LIs. N="25 normal 
subjects", EP="25 epileptic subjects with |LIvol| ≤ 0.08". 

 Mean STD Max Min 

LISD1 
N 0.28 4.87 7.94 -11.74 
EP 1.15 8.57 14.96 -19.66 

LISD2 
N 0.04 1.14 2.32 -1.78 
EP 0.32 2.12 4.52 -3.13 

LID2N 
N 0.05 1.10 3.00 -2.00 
EP -0.4 2.89 6.00 -7.00 

Almost in all epileptic cases (except three of them), three LI values have the same sign, and all subjects have at least one 
LI outside the normal state intervals. So, the simple clustering is performed and the results are provided in Table 4. 

Table 4. Results of simple clustering for EP HCs lateralization, CL=Correctly Lateralized. 

 No. of subjects No. of CL, VOL No. of CL, SPHARM 
|LIvol| ≤ 0.08 26 (25 in SPHARM) 15 (57.7%) 18 (72.0%) 
|LIvol| > 0.08 40 37 (92.5%) 37 (92.5%) 
EP - total 66 (65 in SPHARM) 52 (78.8%) 55 (84.6%) 

Considering the above results and the footnote in previous page, it is evident that in patients with |LIvol| ≤ 0.08, using 
SPHARM has increased the No. of CL by 4. It is also clearly shown that the SPHARM method produced exactly the 
same result for those with |LIvol| > 0.08, of course not only in overall CL ratio, but also in subject wise analysis.  

3.3 Classification of Patients Using SVM 

Up to this level of our analysis for mTLE lateralization, a simple clustering of the patients was performed; that is we 
only relied on normal state of HCs and deviations from this state was used to find the diseased HCs. In other word, our 
diagnostic system was trained using the normal subjects and the only prior knowledge considered regarding the epileptic 
HCs was that they may get deformed due to the disease. In addition, LIs were interpreted independently.  

Therefore, in order to improve the sensitivity of our system, first we consider LIs jointly. Then, we train our system with 
the features of the diseased hippocampi. This procedure is done for the 25 epileptic patients with |LIvol| ≤ 0.08, because 
the other 40 showed reasonable results in the previous steps.  

Through a close inspection of the LIs features in 3D, we noticed that LISD2 and LID2N can together separate the patients 
with the left seizure foci from those with the right seizure foci. This is shown in Figure 5.  

 
Figure 5.  2D feature space of LISD2 and LID2N. 
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Therefore, we utilized these two features along with a Support Vector Machine (SVM) classifier to test their 
classification ability. The arrangements of the data points in 2D feature spaces suggest using linear SVM and SVM with 
Radial Basis Function (RBF). 20 subjects are used in the training phase while the remaining 5 subjects are used in the 
testing phase. This is repeated for various combinations of [20 train, 5 test subjects] and the average of the correctly 
classified ratios (ACCR) is calculated which turns out to be 89% for the SVM-RBF and 74% for the linear SVM (5-fold 
cross-validation). 

To test the generalization power of our system, we leave K samples out (various values of K) and evaluate the 
performance of the system [33]; results are provided in Table 5. 

Table 5. K samples out cross validation. Classification accuracy of the second group of patients (25 EPs), using 
linear SVM and SVM with Radial Basis Function (RBF). 

 K=1 (leave one out) K=2 K=5 (5-fold cross validation) K=7 K=10 

SVM-RBF 92% 91.2% 89.1% 87.5% 83.6% 

Linear SVM 80% 75.5% 73.9% 70.5% 67.1% 

Note that the SVM-RBF has generated satisfactory results for the classification of the left and right mTLE patients. 
Figure 6 depicts examples of Linear and RBF SVM. 

 
Figure 6.  Example results of 5-fold cross-validation for SVM classification of left and right mTLE. (left) SVM-
RBF (right) linear SVM. 

4. CONCLUSION AND DISCUSSION 
In this article, we made use of a well-known shape analysis framework, SPHARM, for lateralization in mTLE. 

To perform a comparison between healthy and epileptic subjects, some pre-processing such as voxel-size unification and 
rigid registration of the brain images are performed. Next, SPHARM-based representations of the HCs are achieved by 
calculating the coefficients. Then, we use our simple method for fine alignment of the HCs. The method is based on 
mapping the principal components of the FOE of each HC on Cartesian axes, and is carried out in the space of SPHARM 
coefficients. Finally, some features are extracted and the corresponding LIs are calculated. 

The utilization of the extracted features for lateralization is carried out in two distinct manners: clustering and 
classification. The former uses the normal hippocampi to train the system, but in the latter, epileptic hippocampi are 
involved in the training phase.  

About the clustering, as Table 4 suggests, the SPHARM-based method has improved the lateralization accuracy for 
patients with |LIvol| ≤ 0.08. This improvement is achieved by the extra information in SPHARM coefficients in 
comparison to volume. If volume of a shape is considered to be equivalent to energy of a signal, then SPHARM 
coefficients will be the same as the Fourier coefficients; obviously the latter provide more information about our signal 
(shape) of interest. Also, similar to 1D Fourier expansion, in 3D analysis, the problem of choosing an optimum value for 
Lmax (similar to maximum frequency in 1D signals) to keep appropriate amount of details while preventing noise, exists. 
Hence, the trade-off among dimensionality, accuracy, and sensitivity to noise should be considered. 

Proc. of SPIE Vol. 8314  83144H-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/17/2013 Terms of Use: http://spiedl.org/terms



 

 

The above discussion is also applicable to support the method of feature selection for CL and CR. In 1D signal 
processing, we sometimes filter some prominent frequency components to omit other unwanted and irrelevant 
components, and this is very similar to what we proposed in that section. 

Considering the SVM classification and comparing the results presented in Tables 4 and 5, the benefit of using the 
diseased hippocampi in the training phase is confirmed.  Even after leaving 10 samples out, the accuracy of the trained 
system for lateralization outperforms the clustering result by almost 12%. 

To compare our lateralization results to others, the only available studies using shape analysis for lateralization are [27, 
28]. In both of these references, a common dataset consisting of 23 healthy subjects and 31 epileptic patients is used. 
Patients are with epileptic focus of either Left or Right Anterior Temporal Lobe (LATL or RATL), and from this point 
of view, their dataset is more specific than ours with patients from different types of mTLE. Their best result of 90.32% 
for classification of LATL and RATL is validated by the leave-one-out method. The same cross-validation in our 
method produced 92% accuracy. Of course, differences in the datasets can contribute to the differences of the results. 
However, the power of SPHARM for hippocampus shape classification in mTLE is confirmed.  

We can also compare our results to those in [34]. In that paper, mean and standard deviation of FLAIR signal intensities 
are used for mTLE lateralization. 36 patients (from the same dataset we utilized in this paper) were analyzed and the 
lateralization accuracy of 98% was achieved. For this group of patients, the lateralization accuracy by the hippocampal 
volumetry is reported to be 83%. 

To sum up, considering our results and those in [27-29], importance of shape analysis in epilepsy is evident. Our 
proposed novel LIs can form a system for diagnosis and prognosis of mTLE patients. It can also compliment other 
methods (e.g. [34]) to decrease lateralization error and increase the likelihood of correct outcome prediction. 

For the future work, localized features such as wavelets [16] and Point Distribution Models [12] can be used. We will 
also aim at using statistical analysis (like SPHARM-PDM in [35]) of mTLE HCs to find areas of the hippocampi that are 
mostly deformed in our dataset and combine it with localized features to improve the lateralization accuracy further.     
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