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We demonstrate that nonlinear magnetic metamaterials comprised of a lattice of weakly coupled split-

ring resonators driven by an external electromagnetic field may support entirely new classes of spatially

localized modes—knotted solitons, which are stable self-localized dissipative structures in the form of

closed knotted chains. We demonstrate different topological types of stable knots for the subcritical

coupling between resonators and instability-induced breaking of the chains for the supercritical coupling.
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Knots appear in different branches of science, from
knotted molecules in biology [1] and chemistry [2] and
knot invariants in statistical mechanics [3] to liquid crystal
defects [4] and vortex tangles in excitable media [5]. It is
the idea of vortex knots in ether by Lord Kelvin [6] that
stimulated the early development of knot theory in the late
19th century. Vortices in electromagnetic fields are quan-
tized phase defects with zero intensity, dark spots in two
dimensions, and ‘‘threads of darkness’’ in the bulk, and
optical vortex knots were predicted theoretically [7] and
observed in experiments with laser beams [8].

In nonlinear fields, knotted solitons were introduced by
Faddeev and Niemi [9] as knotted lines without self-
crossings embedded into a three-dimensional space. The
existence of knot solitons as stationary solutions of non-
linear models was confirmed in numerical experiments
[10]. Knotted solitons were also predicted for the models
of spinor Bose-Einstein condensates [11] and multi-
component superconductors [12].

In this Letter, we predict that nonlinear magnetic meta-
materials composed of lattices of resonant elements such
as split-ring resonators (SRRs) can support a variety of
localized dissipative patterns, including stable dissipative
knotted solitons. Solitons in dissipative systems are, in
general, far more robust than conservative solitons [13],
and thus they are excellent candidates for the first realiza-
tion of stable knotted solitons in the experiment.

A suitable model that supports stable localized modes
such as knotted lines should be discretized with the possi-
bility to tune the dissipation and gain at each site (or
‘‘meta-atom’’) as well as the interatomic coupling. We
consider a nonlinear magnetic metamaterial comprised of
a cubic lattice of weakly coupled SRRs [14–18]. Such a
system exhibits a wealth of nonlinear dissipative phe-
nomena, including bistability, modulational instability,
switching waves, and one-dimensional dissipative solitons
[15]. Taking this model as an example of a general discrete
dissipative system, we analyze, for the first time to our

knowledge, knotted dissipative solitons in such discrete
systems and study their stability.
We begin with the equation for slowly varying ampli-

tudes of the electric currents c n in co-oriented SRRs at the
discrete locations in cubic lattice, n ¼ fnx; ny; nzg, with
integer nj ¼ 1 . . .Nj; here, j ¼ x; y; z. In the dimension-

less form, it can be derived as [15]

i
d

dt
c n � ð2�� i�þ �jc nj2Þc n �� ¼ kCn: (1)

Here, t is the time normalized to the period of the eigen-
modes of a single SRR and� and � are both normalized to
the eigenfrequency of a single SRR and denote, respec-
tively, the detuning of the eigenfrequency from the fre-
quency of the external pump radiation with amplitude �
and the current damping coefficient. Coefficient � ¼ �1
for (de-)focusing cubic nonlinearity. The coefficient k on
the right-hand side defines the strength of the anisotropic
magnetoinductive coupling between nearest neighbors,

Cn ¼ 2½c ðnx; ny; nz � 1� þ c ½nx; ny; nz þ 1Þ�
� ½c ðnx � 1; ny; nzÞ þ c ðnx þ 1; ny; nzÞ�
� ½c ðnx; ny � 1; nzÞ þ c ðnx; ny þ 1; nzÞ�: (2)

Here, we denote c n ¼ c ðnx; ny; nzÞ. Importantly, as dis-

cussed in detail in Refs. [19,20], the anisotropy as well as
the relative strengths of the coupling kj in different direc-

tions (here, k ¼ kx ¼ ky ¼ �kz=2) are determined by the

mutual orientation of SRRs. Therefore, varying the reso-
nator’s orientation within the lattice as well as building
lattices of different symmetries (triangular, etc.) allow for
more complex generalizations of this system. Equation (1)
assumes uniformly distributed pump illumination �, the
approximation which might fail in deep layers because of
the radiation screening by the lattice. However, for small
number of layers and weak coupling between resonators,
this effect can be neglected; it can be also avoided by using
an independent pump for each layer.
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For small coupling k, the perturbative approach is effec-
tive, starting from the anticontinuum limit in Eq. (1) with
vanishing coupling k ! 0 and fully independent oscilla-
tors. Note also that the coupling term in Eq. (2) vanishes
for solutions with homogeneous magnetization, c nðtÞ ¼
c ðtÞ, i.e., Cn½c ðtÞ� � 0. In both these cases [Eq. (1) with a
zero right-hand part], the stationary solutions, c ðtÞ ¼ � ¼
const, satisfy j�j2½�2 þ ð2�þ �j�j2Þ2� ¼ j�j2, indepen-
dent of coupling k. The bistable regime [15], with two
stable states j�#j< j�"j, is realized for �2 > 3�2 and

��< 0; an example is shown in Fig. 1(a). Depending on
the initial excitation c nð0Þ in each decoupled resonator,
the dissipative temporal dynamics converges to one of the
two stable values of a steady state, c nðt ! 1Þ ! �#;".

In the following, we consider the dissipative solitons�n

obtained as the stationary states to which the system con-
verges after sufficient time, c nðt ! 1Þ ! �n, i.e., in the
steady-state limit with dc n=dt ¼ 0 in Eq. (1). In the first
order of the perturbation theory we can approximate the
soliton,�n ¼ �nð1þ k�nÞ, as a binary distribution,�n ¼
�#;", with the additional corrections �n due to the nonzero

coupling k. We study spatially extended chains of linked
(coupled) sites, for example, a ‘‘bright’’ soliton along a
contour s, �s ¼ �", on the background of low-amplitude

stable magnetization,�n�s ¼ �#. Such solutions are exact
in the anticontinuum limit, as the bistability allows for an
arbitrary two-level steady state, �nðk ¼ 0Þ ¼ �n, with
�n � 0. However, in contrast to the homogeneous

solutions with Cnð�Þ � 0, the coupling does not vanish,

Cð0Þ
n � Cnð�nÞ � 0, and it is a nontrivial question which

spatial configurations �n can be supported with coupled
resonators, k � 0.
Keeping linear terms only, we derive the equations

for the corrections, an�n þ bn�
�
n þ Cð0Þ

n ¼ 0, with bn ¼
�j�nj2�n, an ¼ bn ��, and the solution

�n ¼ bnC
ð0Þ�
n � Cð0Þ

n a�n
janj2 � jbnj2

: (3)

Numerical analysis of Eq. (3) shows that the corrections �n

remain small in the whole interval of bistability, with the
exclusions of small end regions of the S curve in Fig. 1(a).
Nevertheless, even for small coupling k, the dynamics of
the relaxation to the steady-state solution is essentially
nonlocal and involves a large number of sites.
The stability of the homogeneous nonlinear states was

studied analytically in Ref. [15], and the dynamics of one-
dimensional discrete switching waves and solitons was
explored numerically in Ref. [20]. In general, the stability
of a particular configuration depends crucially on its posi-
tion with respect to boundaries and the coupling strength;
here, it is complicated by the fact that the coupling in
Eq. (2) is strongly anisotropic. Thus, the stability of each
configuration needs to be tested numerically.
To illustrate the features of our system, we begin

with the simplest case of a single-site discrete soliton;

FIG. 1 (color online). (a) The S-shaped bistability curve; here and below, � ¼ �0:2, � ¼ 0:035, and � ¼ 1 for metallic SRRs of
radius r0 ¼ 2:5 mm and inter-resonator spacing of 2:4r0 [20]. Temporal dynamics of the (b) total and (c) peak magnetization of a
single-site discrete soliton for � ¼ 0:05 and two values of the coupling strength k indicated next to the curves. (d) The stable steady-
state solution for � ¼ 0:05 and k ¼ 0:01: the size and color of each sphere is proportional to the magnetization jc nj2, as shown in the
inset scale bar.

PRL 108, 133902 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

30 MARCH 2012

133902-2



the results are shown in Figs. 1(b)–1(d). We choose a large
20�20�5 slab, to avoid the possible influence of bounda-
ries, with parameters indicated by dots in Fig. 1(a) and one
central site initially excited, namely, c 10;10;3ð0Þ ¼ �", i.e.,
the soliton profile of just one site, s ¼ ð10; 10; 3Þ.
The dynamics of total magnetization, MðtÞ ¼
P

njc nj2=NxNyNz, is shown in Fig. 1(b) for two character-

istic coupling strengths. Note that, in both cases, the
system successfully converges to a steady state. The dif-
ference between the two cases is illustrated in Fig. 1(c),
with the amplitude of the excited site jc sðtÞj2 converging
to the upper branch �" for k ¼ 0:01 and to the back-

ground lower branch �# for k ¼ 0:04; a more detailed

numerical study shows that the value kstab ¼ 0:032 distin-
guishes between the two scenarios. The stable soliton is
plotted in Fig. 1(d) and shows strong localization practi-
cally on a single site. We also found that the influence of
the soliton position on its stability threshold is minimal
for this choice of parameters, although it is noticeably
improved at the boundary, e.g., kstab ¼ 0:036 for
sz ¼ 1 or 5 and kstab ¼ 0:041 in a single-layer structure
Nz ¼ sz ¼ 1.

Next, we search for the linear-segment solitons as build-
ing blocks for more extended three-dimensional chains in
our cubic lattice. We can introduce the distinction between
the stable chain soliton for subcritical coupling, k < kstab,
and the unstable (broken) chain for supercritical coupling,
k > kstab. For an integral (unbroken) chain of resonators in
the upper state, �", the distance between neighbors within

the chain is a unit length, and the minimum distance from
the chain to other excited resonators (not belonging to the
chain) exceeds the unit length. An example for a five-site
vertical segment is shown in Figs. 2(a)–2(d). Similar to the
single-site soliton above, for small coupling, the chain is
stable in Fig. 2(a), while, close to the stability threshold,
we obtain a modulated chain-segment soliton in Fig. 2(b),
before the steady state shows two decoupled segments in
Fig. 2(c). Although, in all these cases, the final states in
Figs. 2(a)–2(c) are stable steady-state solutions, the chain
in Fig. 2(c) is broken, and thus we determine the chain
stability threshold as kstab ’ 0:008.

The mechanism of instability is illustrated in Fig. 2(d),
where the currents between sites, Jn, are plotted for differ-
ent values of coupling strength k. We find that the currents
are negligible in the region of stability, but the modulation
grows quickly as k approaches kstab, and the soliton in
Fig. 2(b) can be described as a chain of alternating sources
and sinks. The current is again negligible for k > kstab in
Fig. 2(c).

We performed a similar stability analysis for vertical and
horizontal chain segments of different length L; the results
are summarized in Fig. 2(e). In general, the stability thresh-
old is higher for horizontal segments at the surface [tri-
angle markers in Fig. 2(e)] than in the bulk (squares), and it
is several times higher than that for vertical segments

(circles); the latter is determined for slabs with 5�5�L
sites. The instability of horizontal chains follows the
scenario similar to the case of vertical chains—see
Fig. 2(d)—and the difference in stability between the two
is the consequence of strong coupling anisotropy. The
dependence of thresholds on the size of the slab is indi-
cated by large markers in Fig. 2(e).
The results above suggest that the optimal (more robust)

lowest-order knot, the unknot, should be built with a
horizontal chain, as in Fig. 3(a). In addition to the insta-
bilities of the chain segments, we also observed the insta-
bility of the corners of the rectangular chains in Fig. 3(a),
such as filling the rectangle with excited sites, as in
Fig. 3(b) for k ¼ 0:03 [21]. The stability thresholds here
are lower than that for a horizontal chain itself, such as
kstab ¼ 0:026 in Figs. 3(a) and 3(b), but always higher than
those for vertical segments. The stability border of com-
plex states is determined by the threshold for the weakest
link, here the vertical segments. Therefore, we choose
lattices with a small number of layers Nz which also
guarantee applicability of the homogeneous approximation
for the pump �.
The initial conditions for different knotted chains in our

simulations were chosen in order to maximize the occu-
pancy of the upper state �" at the top, nz ¼ Nz, and the

bottom, nz ¼ 1, horizontal layers; we also chose simple
segments of straight lines. These segments are then linked

FIG. 2 (color online). Steady-state vertical linear-segment so-
lutions in a 5� 5� 5 slab for (a) k ¼ 0:008, (b) k ¼ 0:0088,
and (c) k ¼ 0:00884; the scale is as in Fig. 1(d). Corresponding
currents, Jn ¼ 2 Im½c ðnzÞc �ðnz � 1Þ�, are shown in (d) with
numbers indicating k values. (e) The stability diagram for
horizontal and vertical linear-segment solitons of length L; a
soliton is stable for k < kstab and unstable otherwise.
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by vertical fragments at constant transverse locations
(nx, nz); the number of vertical segments is minimized.
This way, knotted lines of arbitrary complexity can be built
as initial excitation in a cubic lattice. Naturally, while this
is not a unique method to construct knotted lines, it appears
to be the most straightforward for our discrete dissipative
system.

A knot different from an unknot with two crossings in its
projection, as in the inset in Fig. 3(c), is the Hopf link,
consisting of two linked unknots. Note that, to link two
discrete loops in Fig. 3(c) without crossings in a vertical
direction, we need at least Nz ¼ 5 sites, which agrees
well with Fig. 2(e), as the stability of the vertical chain
does not improve with the increase of corresponding length
L. Thus, in the following, we keep Nz ¼ 5 and decouple
lines in horizontal directions, taking extended states with
Nx;y ¼ 40. The stability threshold for the Hopf link

coincides with those for the vertical chains, as they
break first, with an increase of coupling k, as shown in
Figs. 2(a)–2(c).

A similar stability threshold and the breakup scenario
are found for the trefoil knot shown in Fig. 4. Here, the
right column with a sequence of frames, from top to
bottom, shows how the vertical segments break up in
time, starting with the initial condition in Fig. 4(a) down
to the final steady state in Fig. 4(b). We conclude that the
trefoil knot in Fig. 4 is unstable for k ¼ 0:01, although,
of course, the stable solitons take the form of Fig. 4(a) for
k < 0:008.

Finally, we illustrate a freedom in building more
complex stable knotted solitons in our system with a
figure-eight knot and a cinqefoil knot in Fig. 5.

In conclusion, we have revealed the existence of stable
knotted solitons in dissipative discrete systems describing
nonlinear magnetic metamaterials. We have explored sta-
ble and unstable dynamics of knotted solitons and found
the stability threshold in terms of the strength of the

intersite coupling. These results can be generalized to the
lattices of different symmetries with anisotropic coupling,
and they will be useful in other fields of physics, chemistry,
and biology where the dissipative dynamics and knotted
structures are important.

FIG. 3 (color online). Unstable temporal dynamics of the
unknot at t ¼ 0 in (a) and t ¼ 150 in (b) [21]. (c) Stable Hopf
link soliton for k ¼ 0:008; here and below, in Figs. 4 and 5, the
color of spheres encodes the value of nz for better visibility.

FIG. 4 (color online). Temporal dynamics of an unstable tre-
foil knot chain for k ¼ 0:01. The initial knot in (a) breaks in time
on its weakest vertical links, as the right column shows, while it
converges to the steady state in (b). Here, the local magnetization
strength is encoded in a sphere’s transparency. Note that (a) also
shows a stable trefoil soliton for k < 0:008.

FIG. 5 (color online). Higher-order knotted solitons with 4 and
5 crossings: (a) figure-eight and (b) cinquefoil knots.
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