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Abstract. This paper proposes a conceptual modelling paradigm for
network analysis applications, called the Network Analytics ER model
(NAER). Not only data requirements but also query requirements are
captured by the conceptual description of network analysis applications.
This unified analytical framework allows us to flexibly build a number of
topology schemas on the basis of the underlying core schema, together
with a collection of query topics that describe topological results of inter-
est. In doing so, we can alleviate many issues in network analysis, such
as performance, semantic integrity and dynamics of analysis.

1 Introduction

Network analysis has proliferated rapidly in recent years, and it has useful ap-
plications across a wide range of fields, such as social science, computer science,
biology and archaeology [2, 3, 10, 13, 15, 16]. One key aspect of network analysis
is to understand how entities and their interaction via various (explicit or im-
plicit) relationships take place within a network that is often represented as a
graph with possibly millions or even billions of vertices. In practice, network data
are often managed in a database system, e.g., Facebook uses MySQL to store
data like posts, comments, likes, and pages. Network analysis queries are per-
formed by extracting data from the underlying database, then analyzing them
using some software tools that incorporate data mining and machine learning
techniques [11]. Since different fragments of data may be of interest for different
analysis purposes, network analysis queries are usually performed in ad hoc and
isolated environments. Therefore, there is a divorce of data models and query
languages between managing network data and analyzing network data in many
situations, and several questions may arise.

– Semantic integrity
With more and more network analysis queries being performed, it becomes
increasingly important to semantically align and mine their relationships.
But how can we ensure that they are semantically relevant and consistent?

– Analysis efficiency
Network analysis queries are often computationally expensive. Regardless of
implementation details that different network analysis queries may have, the



need to capture semantics remains. Can the efficiency of network analysis
queries be improved by leveraging their semantics at the conceptual level?

– Network dynamics

Network analysis applications are dynamic and evolving over time. Can net-
work analysis be dynamically performed at different scales and over different
time periods so as to predict trends and patterns?

The root of these questions stems from two different perspectives on networks
- one is from the data management perspective (i.e., how to control data), and
the other is from the data analysis perspective (i.e., how to use data). These two
perspectives are closely related but have different concerns. We believe that con-
ceptual modelling can play an important role in bridging these two perspectives,
and contribute to answering the above questions. This paper aims to explore
this, and in a broader sense, it also attempts to envision the role of conceptual
modelling in the era of Big-data analytics since network analysis is at the core
of Big-data analytics.

Example 1. Fig. 1.(a) depicts a simple network in which each vertex represents
an author, and each edge represents that two authors have coauthored one or
more articles. Suppose that we have two network analysis queries: (1) Qc - find
the collaborative communities of authors according to how closely they collab-
orate with each other to write articles together, and (2) Qa - find the top-k
influential researchers. With the results of Qc and Qa available (i.e., as shown
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(b)

Fig. 1. (a) a simple network with collaborative communities described by dashed cir-
cles; (b) a collection of influential researchers

in Fig. 1.(a) and (b)), we may further ask: (3) Qca - what are the collabora-
tive communities of these top-k influential researchers? (4) Qac - are these top-k
influential researchers the central ties in their collaborative communities? To
answer Qca and Qac, we would like to know whether Qc and Qa are semanti-
cally consistent (i.e., use the same set of authors and articles). If they are, we



can leverage the results of Qc and Qa to efficiently answer Qca and Qac. Ide-
ally, we would also like to analyze the changes of collaborative communities and
influential researchers over time to discover unknown interactions and trends.

Contributions. The first contribution of this paper is the development of a
conceptual modelling method for network analysis applications. We propose the
Network Analytics ER model (NAER) that extends the concepts of the tradi-
tional ER models in three aspects: (a) the structural aspect - analytical types
are added; (b) the manipulation aspect - topological constructs are added; and
(c) the integrity aspect - semantic constraints are extended.

Then we introduce an analytical framework for network analysis applications,
which has three components: a collection of query topics, a number of small
topology schemas, and a relatively large core schema. The core schema consists
of base types, while topology schemas consists of analytical types that have
support from base types in the core schema. A query topic is a tree representing
a hierarchy of object classes with each level being built from lower levels, and
the leaves of such a tree can be specified using topological constructs over one or
more topology schemas, or using the core schema. Topology schemas are usually
small and dynamic, which describe topological structures of interest based on
query requirements. The reason for having small topology schemas is to support
flexible abstraction on topological structures.

We further develop the design guidelines of establishing such an analytical
framework for network analysis applications. The key idea is that, in addition
to data requirements, query requirements should also be taken into account in
the modelling process. This enables an integrated view on the semantics of anal-
ysis tasks, and can thus provide a conceptual platform for sharing the theories
and algorithms behind different analytical models. In doing so, such a conceptual
model can circumvent the design limitations of conventional modeling techniques
which do not consider analysis queries. It thus brings us several significant advan-
tages for managing analysis tasks in networks, such as managing the complexity
of computational models, handling the semantic integration of different data
analysis results, and enabling comparative network analysis.

Outline. The remainder of the paper is structured as follows. We start with a
motivating example in Section 2. Then we introduce the NAER model in Section
3. After that, we present a high-level overview for the analytical framework of
network analysis applications, and discuss the general design principles that un-
derlie the development of such an analytical framework in Section 4. We discuss
the related works in Section 5 and conclude the paper in Section 6.

2 Motivating Example

We start with a bibliographical network, i.e., each article is written by one or
more authors, an article is published in a conference or a journal, and one article
may cite a number of other articles. Using the traditional ER approaches [5, 19],
one can design a simple ER diagram as depicted in Fig. 2.
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Fig. 2. An ER diagram

Based on this network, a variety of network analysis tasks can be performed.
Typical examples include: community detection [8, 10] that is to identify sets of
entities that have certain common properties, cocitation analysis [4] that is to
identify sets of articles that are frequently cited together, and link predication
[14] that is to find out links among entities which will probably appear in the
future. We exemplify some of such analysis tasks by the following queries.

Q1: (Collaborative communities) Find the communities that consist of authors
who collaborate with each other to publish articles together.

Q2: (Most influential articles) Find the most influential article of each VLDB
conference, together with the authors of the article.

Q3: (Top-k influential researchers) Find the top 10 influential researchers in
terms of the influence of articles (i.e., the citation counts) they have pub-
lished.

Q4: (Correlation citation) Find the correlation groups of journals which publish
articles that are often cited by each other.

Conceptually, these network analysis queries either require or generate some
entities and relationships that are not explicitly represented in Fig. 2. For in-
stance, the query Q1 generates a set of author groups, each being referred as a
collaborative community, and the detection of such collaborative communities is
based on the coauthorship relationships between authors, i.e., two authors have
written an article together.

Capturing implicit entities and relationships, and represent them explicitly
in a conceptual model can bring several benefits for network analysis applica-
tions: (1) It enables semantic integrity checking across different analysis results.
(2) It supports comparative analysis on different dimensions in order to predict
trends and discover new insights. (3) It can improve query performance by refor-
mulating queries in a way that can leverage existing results whenever possible.
Nevertheless, how should we specify such entities and relationships? Take the
query Q1 for example, the question is how to model the concept of collaborative
community and the relationship of coauthorship among authors. In most cases,



they are algorithmically defined, without a precise a priori definition. Motivated
by these questions, we will discuss the NAER model in Section 3.

3 Network Analytics ER Model

Our NAER model extends the concepts of the traditional ER models in three
aspects: (a) the structural aspect - analytical types are added; (b) the manipu-
lation aspect - topological constructs are added; and (c) the integrity aspect -
semantic constraints are extended.

3.1 Base Types vs Analytical Types

Two kinds of entities and relationships are distinguished in the NAER model: (1)
base entity and relationship types contain entities and relationships, respectively,
as defined in the traditional ER models; (2) analytical entity and relationship
types contain analytical entities and relationships, respectively, such that

– an analytical entity is an object of being analyzed, which may be a concrete
thing or an abstract concept;

– an analytical relationship is a link among two or more analytical entities.

Base and analytical types serve rather different purposes. Base types specify
first-class entities and relationships from the data management perspective, and
analytical types specify first-class entities and relationships from the data anal-
ysis perspective. These two perspectives may lead to different decisions about
which entities and relationships to emphasise, and which to ignore. For example,
coauthorship and author are often interesting analytical types to consider
in network analysis queries like Q1, but the corresponding base types author,
write and article are more natural and informative for managing what enti-
ties involve and how they interact.

In the NAER model, base types are the root from which analytical types can
be derived. Let B(Υ ) be a set of base types that represent data in a network Υ .
Then a set A(Υ ) of analytical types in Υ can be defined over B(Υ ) such that
each A ∈ A(Υ ) is determined by a subset of base types in B(Υ ), and these base
types that define A are called the support of A, denoted as supp(A). To ensure
that analytical types are well-defined, the following criteria must be applied:

– supp(A) ⊆ B(Υ ) for each analytical type A;
– supp(AE) ⊆ supp(AR) for each analytical relationship type AR, and every

analytical entity type AE that associates with AR.

An analytical type A may have attributes, each of which must be derivable
from the base types in its support supp(A). To avoid redundant information, it
is prohibited to have attributes in an analytical type as a copy of some attributes
in base types. A schema S consists of a set of connected and well-defined types
that are complete, i.e., if a relationship type TR ∈ S, then for every type T that
participates in TR, we have T ∈ S.



Example 2. Suppose that all the entity and relationship types in Fig. 2 are base
types in the network Υbib , then we can define several analytical types over these
base types, as depicted in Fig. 3.(a)-(c), i.e.,

– B(Υbib) = {author,article, conference, journal,write,cite,publish};
– A(Υbib) = {author∗,coauthorship,article∗,citation, journal∗,

cocitation}.

Both coauthorship and cocitation may have an attribute weight, which
respectively indicate how many articles two authors have written together, and
how many times two journals are cocited by articles. The analytical types in
A(Υbib) have the following support:

(a) supp(author∗) = {author} and
supp(coauthorship) = {author,article and write};

(b) supp(article∗) = {article} and supp(citation) = {article and cite};
(c) supp(journal∗) = {journal} and

supp(cocitation) = {article,cite, journal and publish}.
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Fig. 3. (a) coauthorship schema Sco; (b) citation schema Sci; (c) cocitation schema Sjo

3.2 Topological Constructs

A common scenario in network analysis is to analyze topological structures that
are hidden underneath base entities and relationships. To explicitly represent a
topological structure of interest, one can define analytical entities as vertices and
analytical relationships as edges in a graph that may be directed or undirected,
weighted or unweighted, etc. However, as illustrated by the following example,
base and analytical types alone are still not sufficient to provide a clearly defined
conceptual description for network analysis applications.

Example 3. To analyze collaborative communities as described in the query Q1,
we may design the coauthorship schema Sco, i.e., Fig. 3.(a), consisting of the ana-
lytical entity type author∗ and the analytical relationship type coauthorship.
Nevertheless, the problem of how to model the concept of collaborative commu-
nity in terms of Sco still remains. Solving this problem requires us to take into
account topological measures and operators, together with analytical types.



Topological measures play an important role in characterizing topology prop-
erties of a network [2, 12]. Two of the most commonly used topological measures
are centrality and similarity. Let A be an analytical type.

– Cent: A 7→ N is a centrality measure that describes how central elements
are in A, and return a rank Cent(v) for an element v. This measure can
be implemented in different ways, such as degree, betweenness and closeness
centrality [9].

– Simi: A×A 7→ N is a similarity measure that describes the similarity between
two elements in A, and generates a rank Simi(v1, v2) for a pair (v1, v2) of
elements. This measure can also be implemented in different ways, such as
q-gram, adjacency-based and distance-based similarity [8].

Based on topological measures, we introduce two families of topological con-
structs in the NAER model - clustering and ranking. Let S be a schema, T ∈ S,
and m be a topological measure. Then we have

(1) cluster-by(S, T,m) that contains a set of clusters over T , according to the
structure specified by S and the measure m;

(2) rank-by(S, T,m) that contains to a set of ranked elements over T , according
to the structure specified by S and the measure m.

A cluster-by construct classifies a set of elements over A into a set of clusters
(i.e., each cluster is a set of elements), while a rank-by construct assigns rank-
ings to a set of elements over A. Both cluster-by and rank-by constructs
need to be augmented with a topological measure. These topological constructs
provide us an ability to specify existing prominent techniques of network anal-
ysis into the conceptual modelling process without being exposed to low-level
implementation details.

Example 4. Consider the following concepts relating to the queries Q1-Q4.

• Collaborative community in the query Q1 can be modelled using

cluster-by(Sco,author
∗,cent-closeness).

That is, each collaborative community is a group of authors in a network
specified by Sco, and the measure for determining community membership
is closeness centrality.

• Influence of article in the queries Q1-Q2 can be modelled using

rank-by(Sci,article
∗,cent-indegree).

That is, each article is associated with a ranking that indicates its influence
in terms of a network specified by Sci, and the measure for determining
rankings is indegree centrality.

• Correlation group in the query Q4 can be modelled using

cluster-by(Sjo, journal
∗,cent-betweenness).

That is, each correlation group contains journals that are correlated in a
network specified by Sjo and the measure for determining the correlation
among journals is betweenness centrality.



3.3 Integrity Constraints

In the NAER model, integrity constraints that are allowed in the traditional ER
models can be extended to analytical entity and relationship types in a simi-
lar manner. Moreover, we can also define integrity constraints over topological
constructs. The following are some typical constraints:

– disjoint (resp. overlapping) constraints on cluster-by
Clusters identified by a cluster-by construct must be disjoint, i.e., no ele-
ment can be a member of more than one cluster, (resp. can be overlapping).

– connected constraints on cluster-by
For each cluster identified by a cluster-by construct, there is a path be-
tween each pair of its members, running only through elements of the cluster.

– edge-density constraints on cluster-by
For each cluster identified by a cluster-by construct, its members have
more edges inside the cluster than edges with other members who are outside
the cluster.

– total (resp. partial) constraints on rank-by
Every element in a given set must be (resp. may not necessarily be) ranked
by a rank-by construct.

4 Analytical Framework

In this section, we discuss how to use the NAER model to establish an analytical
framework for network analysis applications at the conceptual level.

4.1 High-level Overview

Fig. 4 illustrates an analytical framework of the bibliographical network de-
scribed in our motivating example. In general, such an analytical framework has
three components 〈Sq,St, Sc〉 : (1) a collection of query topics Sq, (2) a number
of small topology schemas St, and (3) a relatively large core schema Sc. The core
schema Sc contains a set of base types. Each topology schema S ∈ St contains a
set of analytical types, and the support of each analytical type in S is a subset of
base types in Sc. Each query topic in Sq is a tree representing a hierarchy of ob-
ject classes with each level being built from lower levels, and the leaves of such a
tree can be specified using topological constructs cluster-by or rank-by over
one or more topology schemas, or using the core schema if the attributes of base
types need to be processed.

In Fig. 4, three topology schemas {Sco, Sci, Sjo} are built upon the core
schema, which represent three topological structures that are of interest for net-
work analysis queries over Υbib: (1) the coauthorship schema Sco for the query
Q1, (2) the citation schema Sci for the queries Q2 and Q3, and (3) the cocitation
schema Sjo for the query Q4. Consequently, the four queries Q1-Q4 lead to four
query topics, in which the query topics of the queries Q2 and Q3 are overlapping
and having the same leave Influence of article (will be discussed in detail
in the next subsection).
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Fig. 4. An analytical framework

4.2 Design Principles

We now present the design guidelines that support the development of an ana-
lytical framework for network analysis applications. The central idea is to incor-
porate both data and queries into the conceptual modelling process. Generally,
there are six steps involved:

(1) Identify data requirements (i.e., a set of business rules of interest);
(2) Design the core schema based on the data requirements;
(3) Identify query requirements (i.e., a set of analysis queries of interest);
(4) Design topology schemas based on the query requirements and query topics;
(5) Identify constraints on the query topics, and core and topology schemas.

The steps (1) and (2) are exactly the same as in the traditional ER models, the
steps (3) and (4) are additional but critical for network analysis applications,
and the step (5) extends integrity constraints of the traditional ER models to
analytical types in topology schemas and topological constructs in query topics
accordingly. In the rest of this section, we focus on discussing three key aspects:
(i) what are data and query requirements; (ii) how are query requirements and
query topics related; and (iii) how are the core and topology schemas designed.

Data and query requirements. Data and queries are two different kinds
of requirements. Data requirements describe what information an application



should manage, while query requirements describe how the information of an
application should be used. Although our NAER model can conceptually rep-
resent both data and query requirements for network analysis applications, the
questions to be clarified are: (a) Do we need to consider all queries? (b) If not,
what are the query requirements of interest?

Queries in network analysis applications may exist in various forms. For ex-
ample, database queries in the traditional sense, such as “find all journal articles
published in 2013”, often use a database language (e.g., SQL) to process data,
and analysis queries from a topological perspective, such as the queries Q1, Q3
and Q4, often use certain data mining and machine learning techniques to pro-
cess data. In a nutshell, database queries and analysis queries are fundamentally
different in two respects:

– Logical vs topological : Database queries are concerned with the logical prop-
erties of entities and relationships, while analysis queries focus on the topo-
logical properties of entities and relationships. In most cases, analysis queries
are formulated using software tools in a much more complicated way than
database queries.

– Indefinite vs definite: Analysis queries often have indefinite answers, which
depends on not only the underlying structure but also the choice of topo-
logical measures. It can be difficult to know which measure is better than
the others, and which answer is optimal. In contrast, database queries have
definite answers that are determined by the underlying database.

In many real-life applications, analysis and database queries are commonly com-
bined in order to find useful information [17]. For example, the query Q2 can
be viewed as the combination of an analysis query “find the most influential
articles” and a database query “find articles of each VLDB conference, together
with the authors of the article”.

When designing a conceptual model for network analysis applications, we are
only interested in analysis queries. There are two reasons: (1) analysis queries
are often computationally expensive so that modelling analysis queries can help
improve performance; (2) analysis queries are often isolated so that modelling
analysis queries can help maintain their semantic integrity. Therefore, given a
set Q of queries for modelling a network analysis application, which may contain
database queries, analysis queries or a combination of both, queries in Q are first
transformed into Q′ by removing any database queries in Q.

Query topics. After identifying query requirements, i.e., queries of interest,
we need to analyze these queries to understand their semantics and required
computations. Analyzing queries is to unravel the structures of queries, which
has at least two aspects to consider: (1) the structure of a query, and (2) the
structure among a set of queries. Since queries may be described in various
syntactical forms, here we focus on exploiting the semantic structures of queries.

For each query Q, we associate it with a query topic t(Q), which is a tree
with each node C corresponding to an object class, and an edge from a node



C1 to a node C2 expressing that C1 depends on C2. This dependence relation
between object classes is closed under transitivity, i.e., if C1 depends on C2, and
C2 depends on C3, then C1 depends on C3. The query topic t(Q) of a query Q
can be defined at a flexible level of abstraction. That is, the level of granularity
for nodes in a query tree is a design choice depending on individual applications.

For each query Q, we thus have a set of object classes that are in one-to-one
correspondence with the nodes of t(Q). A node C1 ∈ t(Q1) in one query topic
may have certain relationships with a node C2 ∈ t(Q2) in a different query topic.
Such relationships include that: (1) C1 depends on C2; or (2) C1 and C2 are the
same. Nevertheless, it is impossible that C1 depends on C2, and meanwhile C2

depends on C1 or any of its descendant nodes. If two different query topics t(Q1)
and t(Q2) contain the same node C, then t(Q1) and t(Q2) are connected by the
node C, and merged as one tree.

Example 5. Consider the queries Q1-Q4 in our motivating example. We have
one query topic for each of the queries as depicted in Fig. 5.(a), and three trees
corresponding to the whole set {Q1, Q2, Q3, Q4} as depicted in Fig. 5.(b).
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Fig. 5. Query topics (a). for individual queries; (b) for a set of queries

Core and topology schemas. For a network analysis application, the design
of its core schema and topology schemas is carried out in two steps. First, the
core schema is designed based on data requirements as in the traditional ER
models. Second, the topology schemas are designed based on query requirements
following a method of grouping the leaves of query topics that are associated with
query requirements. All leaves that can be handled by database queries over the



core schema are grouped together, while the other leaves are grouped in terms of
what analytical types they need for analysis, and each of such groups correspond
to one topology schema. It also implies that, each object class represented by
a leave corresponding to some topology schema St can be specified by using
a topological construct over St. In general, the central idea is that all data
requirements should be captured by the core schema, and the analysis part of
all query requirements should be captured by a collection of topology schemas.

Example 6. For the query topics of Q1-Q4, we can group their leaves as below,
where Ci denotes the leave with the initials i. As a result, three topology schemas
{Sco, Sci, Sjo} can be designed as described in Fig. 4.

Queries Core schema
Topology schemas

Sco Sci Sjo

Q1 Ccc

Q2 Cva Cioa

Q3 Cr Cioa

Q4 Ccg

Example 4 showed that the object classes collaborative community, influence of
article and correlation group, which are respectively represented by Ccc, Cioa

and Ccg, can be specified using topological constructs.

One distinguished feature of topology schemas is that, rather than taking
objects in all their complexity, topology schemas only focus on specifying a
simple but concise representation for objects. Therefore, topology schemas need
to be designed in accordance with the following criteria:

1. Topology schemas should be small. Topology schemas are the basic building
blocks of supporting analysis queries. The smaller topology schemas are, the
easier they can be composed to support flexible modelling needs.

2. Topology schemas should be dynamic. Query requirements may be changing
over time. Correspondingly, topology schemas need to be adaptive enough
to reflect the dynamics of query requirements.

Two topology schemas in an analytical framework may be overlapping. In
fact, certain degree of overlapping can facilitate comparative analysis over dif-
ferent topology schemas. Nevertheless, duplicate topology schemas should be
avoided because this would cause redundant storage and inconsistence. The fol-
lowing example shows that our analytical framework supports an integrated and
coherent view on core and topology schemas.

Example 7. The three topology schemas {Sco, Sci, Sjo} can be composed by
leveraging base types in the core schema. Fig. 6 shows three possible compo-
sitions: (a) three topology schemas are composed by an analytical relationship
type has that is determined by several base types; (b) two schemas are composed
by a base relationship type (i.e., publish and write) directly.
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5 Related Works

Recently, a number of works have proposed to use database technologies for man-
aging and analyzing network analysis [6, 7, 20]. However, they have mostly fo-
cused on designing logical data models and their corresponding query languages
for supporting network analysis. So far, only very limited work has considered
the design process of conceptual modeling [1]. In general, the previous works on
modelling network analysis applications at the logical level fall into two lines of
research:

(1) Extending traditional database technologies (i.e., the relational model and
SQL) to support data mining algorithms, such as SiQL [20] and Oracle Data
Miner.

(2) Extending object-oriented or graph database technologies to incorporate
graph-theoretic and data mining algorithms, such as GOQL [18], and other
works discussed in the survey paper [21].

Our work in this paper focused on the conceptual modelling of network analysis,
and leaves the transformation to a logical model (e.g., the relational model,
a graph model or a combination of several data models) as a decision of the
user. For example, in [17], a hybrid memory and disk engine was developed for
evaluating queries, which maintains topological structures in memory while the
data is stored in a relational database. An analytical framework designed in our
work can be well transformed into this data model and be implemented over the
hybrid engine by separating topological structures specified by topology schemas
from the database structure specified by the core schema.

6 Conclusions

In this paper, we proposed the NAER model and a conceptual modelling paradigm
that incorporates both data and query requirements of network analysis. This
was motivated by the rapid growth of network analysis applications. Such a con-
ceptual view of network analysis applications can enable us to better understand
the semantics of data and queries, and how they interact with each other. In do-
ing so, we can avoid unnecessary computations in network analysis queries and
support comparative network analysis in a dynamical modeling environment.

In the future, we plan to implement the NAER model, and based on that to
establish an analytical framework for supporting network analysis applications,



including the development of a concrete modelling language for network analysis
and a query engine for processing topic-based queries.
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