
Pruning bad quality causal links in sequential satisfying planning

Sergio Jiménez Celorrio
sjimenez@inf.uc3m.es

Departamento de Informática,
Universidad Carlos III de Madrid, ESPAÑA

Patrik Haslum and Sylvie Thiebaux
firstname.lastname@anu.edu.au

Australian National University, Canberra and
Optimisation Research Group, NICTA

Abstract

Although current sequential satisficing planners are able to
find solutions for a wide range of problems, the generation of
good quality plans still remains a challenge. Anytime plan-
ners, which use the cost of the last plan found to prune the
next search episodes, have shown useful to improve the qual-
ity of the solutions. With this in mind this paper proposes
a method that exploits the solutions found by an anytime
planner to improve the quality of the subsequent ones. The
method extracts a set of causal links from the first plans, the
plans with worse quality, and creates a more constrained def-
inition of the planning task that rejects the creation of these
causal links. The performance of the proposed method is eval-
uated in domains in which optimization is particularly chal-
lenging.

Introduction
In this paper we are concerned with improving the quality of
solutions in sequential satisficing planning. The mainstream
approach for sequential satisficing planning is heuristic plan-
ning. Heuristic planners address the complexity of this plan-
ning task using search algorithms guided by heuristics com-
putable in polynomial time. Recent heuristics — such as
those based on relaxed plans (Hoffmann and Nebel 2001;
Bonet and Geffner 2001) or on the automatic extraction of
landmarks (Porteous and Sebastia 2004) — allow heuris-
tic planners to generate sequential satisficing plans in just a
few seconds on many different problems. However the gen-
eration of good quality plans is still challenging for current
heuristic planners and complicates their application to many
real-world problems.

In theory, sequential optimal planning is as complex as
sequential satisficing planning (Bylander 1994) but in prac-
tice, many planning tasks are harder to be solved optimally
(Helmert 2003). A notorious example are planning tasks
with goals reachable through multiple paths, typically be-
cause of symmetries or transpositions, whose search space
rapidly grow (Helmert and Röger 2008). This feature is
present in many scheduling and logistics domains like the
openstacks or the visitall domains from the last IPC, IPC-
2011.

Anytime heuristic planners, which iteratively refine the
quality of their solutions, have recently been shown use-
ful for optimization problems in sequential satisficing plan-

ning (Richter, Thayer, and Ruml 2010). In particular, this
is the approach followed by LAMA-2011, the winner of the
sequential satisficing track of the IPC-2011 (Coles et al.
2012). Planners taking this approach iteratively reduce the
search space of the planning task by pruning the nodes that
exceed the cost of the best solution found.

This paper proposes a new method to improve the quality
of solutions that exploits knowledge learned from the bad
plans found by an anytime planner. The method extracts a set
of causal links that appear in low quality solutions i.e., the
first solutions found by the anytime strategy, and creates a
new definition of the planning task that constrains the search
to reject causal links from this set. Since the method does
not alter the core elements that make the planner efficient,
other than indirectly as a consequence of the reduction of the
search space, the planner is expected to retain its efficiency
throughout this process.

The paper is organized as follows. The next section
gives the background necessary for presenting the proposed
method. The third section explains the method in detail. The
fourth section shows the empirical performance of the pro-
posed method in domains in which optimization is particu-
larly challenging and analyses the obtained results. The fifth
section reviews the related work and finally, the sixth section
poses conclusions and outlines future work.

Background
This section sets the scene for the method proposed in the
paper and presents the sequential satisficing planning task
and the concept of causal links in a given sequential plan.

Sequential satisficing planning
We consider the sequential satisficing planning task for-
mulated as a tuple Π = <S,A, s0, G> , where S
is the set of propositional state variables, A is a set
of ground actions, each of which is a tuple a =
<pre(a), del(a), add(a), cost(a)>, where: pre(a) are the
conditions for the action’s applicability, del(a) are the lit-
erals removed by application of the action, add(a) are the
literals added by application of the action and cost(a) is the
cost of applying the action. Last but not least s0 ⊆ S is the
initial state of the planing task and G is the set of literals that
defines the goal states.

45

Applying an action a ∈ A in a state s produces a state s�

such that s� = (s \ del(a)) ∪ add(a). A solution π to a se-
quential satisficing planning task Π is defined as a sequence
of actions π = [a1, . . . , an] corresponding to a sequence
of state transitions [s0, . . . , sn] such that, ai is applicable in
state si−1; applying action ai in si−1 produces state si; and
sn is a state that satisfies all the goal conditions defined in G.
The cost of the solution π is the sum of its action costs: for-
mally, cost(π) =

�

ai∈π

cost(ai). An optimal solution is one

that minimizes this sum. Since we consider satisficing plan-
ning, we do not seek plans that are guaranteed to be optimal,
but we still try to minimize cost.

As an example, Figure 1 shows a solution plan for prob-
lem p01 from the Openstacks domain of the sequential sat-
isficing track of IPC-2008.

#stacks cost
(open-new-stack n0 n1) 1 1
(start-order o1 n1 n0) 0
(open-new-stack n0 n1) 1 1
(start-order o2 n1 n0) 0
(make-product p2)
(ship-order o1 n0 n1) 1
(make-product p1)
(ship-order o2 n1 n2) 2
(start-order o3 n2 n1) 1
(start-order o4 n1 n0) 0
(make-product p3)
(ship-order o3 n0 n1) 1
(make-product p4)
(ship-order o4 n1 n2) 2
(start-order o5 n2 n1) 1
(make-product p5)
(ship-order o5 n1 n2) 2

Figure 1: Example plan for problem p01 from the Open-
stacks domain of the sequential satisficing track of the IPC-
2008. Column “#stacks” shows the number of stacks avail-
able (free) after each action, where it changes. The last col-
umn shows (non-zero) action costs.

The Openstacks domain will be used as a running exam-
ple throughout the paper. In this domain, a manufacturer has
a number of orders to ship and each order requires the com-
bination of different products. The manufacturer can only
make one type of product at a time but the total quantity
required for one type of product is made at the same time.
From the time that the first product in an order is made to
the time that all products in the order are made, the order
is said to be open and during this time it requires a stack, a
temporary storage space. When the order is complete, it can
be shipped and at that time the stack it occupied becomes
free for use again. This is illustrated by the plan in Figure
1. The objective is to sequence the production of the orders
so as to minimize the maximum number of stacks simulta-
neously in use. The planning formulation of this problem
models this with an extra action, open-new-stack, which
increases the number of stacks available by one. This action

has a cost of 1, while all other actions have zero cost. Find-
ing any solution to this planning task is easy, because is is
always possible to open enough stacks for all the orders, but
finding plans of good quality is difficult since it depends on
the sequencing of the actions.

Extracting causal links from a sequential plan
Let π = [a1, . . . an] be a solution to a planning task Π. The
triple cl = <ai, aj , p> that comprises two actions from the
plan, ai, aj ∈ π, and one proposition p forms a causal link
in π if: (1) p is added by ai, (2) p is also a precondition of aj
and (3), p is not deleted or added by any action that occurs
between ai and aj . Formally, i<j, p ∈ add(ai), p ∈ pre(aj)
and �ak s.t., i < k < j, p ∈ (del(ak) ∪ add(ak)). In such
a causal link, ai is called the producer and aj is called the
consumer. Note that this definition restricts the producer in
a causal link to be the last achiever of a proposition, and also
that links from propositions provided by the initial state are
not considered.

Figure 2 shows the algorithm for extracting the set of
causal links CLπ in a given plan π for a planning task Π.
This algorithm traverses the plan forward, registering the
propositions added by its actions in a list of started causal
links. Each entry in this list is a pair of the producer action
and the proposition produced. When an action of the plan
deletes a proposition, or when the last achiever changes, the
algorithm removes from the list of started causal links any
entry with this proposition. For each proposition required by
the precondition of an action in the plan, a complete causal
link is created and added to the set of causal links of the plan
if there is a started causal link for that proposition.

For each proposition p, we denote by Athreat(p) ⊆ A the
subset of actions that delete p. These are the actions that can
threaten a given causal link for p.

Method
This section describes our method for finding plans of bet-
ter quality. The method is structured in three phases: First, a
learning phase that takes a set of plans, of different quality,
and extracts a set of causal links that appear in plans of worse
quality, but not in the best plan. This set is further filtered to
focus on causal links that appear early in the plan. The intu-
ition is that these are most important for the search to avoid.
Second, a compilation phase uses these causal links to gen-
erate a more constrained definition of the planning task, that
disallows the creation of these “bad” causal links. The third
phase is to apply a planner to the modified definition of the
planning task. Since the restrictions placed on the modified
planning task are not strong enough to make the first plan
found match the quality of the best plan, we use an anytime
planner to continue searching for better plans. The remain-
der of this section describes each of these three phases in
detail.

Phase I: Learning causal links to reject
Planning tasks, and particularly planning tasks in which op-
timization is the main difficulty, usually have many valid so-
lution plans with different quality. In practice solution plans

46

extractCausalLinks(π,Π) :
Input: π, a plan, and Π, a planning task
Output: CLπ , the set of causal links of the plan
———————–

CLπ = ∅
CLstarted = ∅

for a ∈ π do
for p ∈ pre(a) do

if ∃<a�, p> ∈ CLstarted then
add(<a�, a, p>,CLπ)

end if
end for

for p ∈ add(a) do
if ∃<a�, p> ∈ CLstarted then

replace(<a�, p>,<a, p>,CLstarted)
else

add(<a, p>,CLstarted)
end if

end for
for p ∈ del(a) do

remove(<�, p>,CLstarted)
end for

end for

return CLπ

Figure 2: Algorithm for extracting the set of causal links
from a sequential plan

with different quality can be generated by adding some vari-
ation to the planner, for example varying choices normally
made arbitrarily, the weight of the heuristics or the cost
bound, and then running the planner several times. Since
current sequential satisficing planners tend to be fast, it is
often feasible to repeat this process, collect a wealth of in-
formation about the planning process and thus obtain a basis
for learning which choices impact on the quality of the gen-
erated plans.

The learning phase uses a state-of-the-art planner to gen-
erate a collection of solutions for a given planning task and
examines the decisions that led to different plan qualities
to discover knowledge that helps focusing next planning
episodes on solutions with better quality. Specifically, this
knowledge takes the form of causal links that appear only
in worse plans. The input to the learning phase is a plan-
ning task Π and a planner P that is able to generate different
solution plans πi, for example by implementing an anytime
strategy that iteratively bounds the cost of the solutions. The
output of this phase is the set of causal links to reject in the
following planning episodes, CLrej .

Figure 3 presents the algorithm that implements the learn-
ing phase. First the planner P is run, up to some time limit,
to generate diverse solution plans for the planning task Π.
After that the set of causal links CLπi

, is computed for each
solution plan πi, using the algorithm of Figure 2. The al-

gorithm identifies the plan with the best quality i.e., with
minimum cost, among all the generated plans. For each of
the other plans, πi �= πbest, the algorithm filters its set of
causal links CLπi and creates a subset CL�

πi
⊆ CLπi that

only includes the causal links contained in the prefix of πi

that does not exceed the cost of the best plan. In other words,
if the summed cost of the actions in the prefix a1, . . . , aj of
a plan πi is higher than the cost of the best plan, πbest, then
the causal link cl = <ai, aj , p> in CLπi

is not included
in CL�

πi
. The purpose of this is to focus learning on bad

choices that appear early in the search process. The com-
pilation, described in the next subsection, prunes from the
problem plans that contain the rejected causal links, but this
pruning may not occur until the causal link has been com-
pleted, i.e., until the consumer action aj is added to a path in
the search space. If the cost of the prefix at this point already
exceeds the cost of the best plan, it will be pruned by the
much simpler mechanism of imposing a cost bound on the
planner. Thus, we reserve the compilation for those bad plan
prefixes that should be pruned earlier.

Finally the set of causal links to reject is computed as the
causal links present in the subsets, after filtering, extracted
from plans of worse quality that are not present in the best
plan. Formally,

CLrej = (
�

i�=best

CL�
πi
) \ CLΠbest

.

learningCausalLinks(Π, P) :
Input: Π, a planning task and P , a planner able to find dif-
ferent solutions.
Output: CLrej , set of causal links to reject.
———————–

plans = Plan(P,Π)

for πi ∈ plans do
CLπi = extractCausalLinks(πi,Π)

end for

πbest = argmin
πi∈plans

cost(πi)

for πi ∈ plans and πi �= πbest do
CL�

πi
= filter(CLπi

,πbest)
end for

CLrej = (
�

i�=best CL�
πi
) \ CLΠbest

return CLrej

Figure 3: Algorithm for extracting the set of causal links to
reject from a set of solution plans.

Phase II: Compilation of the causal links to reject
Machine learning has been used to improve planning pro-
cesses since the early days of automated planning, and a
wide range of different mechanisms have been developed
to exploit the learned knowledge. Because we aspire for our
learning method to be as generally applicable as possible, it

47

exploits the learned knowledge without introducing modifi-
cations to the planner. Instead, we create a new planning task
by compiling the learned knowledge into the original plan-
ning task. The new planning task resulting from the compi-
lation is more constrained because it prevents the creation
of the “bad” causal links learned in the previous phase. In
particular, the new planning task introduces extra precondi-
tions that only allow the application of actions when they are
not creating any of the learned causal links. The input to this
phase is the planning task to solve Π and the set of causal
links to reject CLrej . The output of this phase is the more
constrained planning task Π�.

In the new planning task Π�, the rejected causal links
are represented explicitly by objects of a new type
causalLink. The initial state and action definitions of Π�

are modified to monitor the state of each of these causal
links, whether they are started or not, and prevent their ap-
pearance in solution plans.

The new initial state The initial state s�0 of the new plan-
ning task Π� is created by extending the initial state of
the original planning task with static facts that describe the
causal links to reject and their threats. Accordingly, for each
causal link clid = <ai, aj , p> such that clid ∈ CLrej the
initial state is extended with:

• A new static fact that describes the producer,
(isproducer-<n(ai)>-of-<n(p)> cl<id>
<arg(ai)>). The name of the predicate is the con-
catenation of the name of the producer action, n(ai),
and the name of the proposition of the causal link, n(p).
The arguments of the predicate are the object cl<id>
that represents the causal link, and the arguments of the
producer.

• A new static fact that describes the consumer,
(isconsumer-<n(aj)>-of-<n(p)> cl<id>
<arg(aj)>). As above, the name of the predicate
contains the name of the consumer, n(aj), and the name
of the proposition of the causal link. The arguments are
the object cl<id> that represents the causal link and the
arguments of the consumer action.

• New static facts describing each threat to the causal link.
That is, for each action ak ∈ Athreat(p) that threat-
ens the causal link, (isthreat-<n(ak)>-for-<n(p)>
cl<id> <arg(p)>). The name of the predicate is the con-
catenation of the name of the threatening action, n(ak),
and the name of the proposition of the causal link. The
arguments are the causal link object and the arguments of
the proposition.

An example of an extended initial state s�0 is shown
in Figure 4. The example illustrates the compilation
of two causal links on the planning task p01 from the
Openstacks domain of the sequential satisficing track of
the IPC-2008. The causal links compiled in the exam-
ple are cl1 and cl2, where cl1 = < (start-order o2
n1 n0), (open-new-stack n0 n1), (stacks-avail
n0) > and cl2 = < (open-new-stack n0 n1),
(start-order o10 n1 n0), (stacks-avail n1) >.

(:init

;;; Begin - Initial state from the original task

(next-count n0 n1) (next-count n1 n2) (next-count n2 n3)

(next-count n3 n4) ...

;;; End - Initial state from the original task

;;; Begin - Extension to the original initial state

;; for the causal link cl1

(isproducer-start-order-of-stacks-avail cl1 o2 n1 n0)

(isconsumer-open-new-stack-of-stacks-avail cl1 n0 n1)

(isthreat-ship-order-for-stacks-avail cl1 n0)

;; for the causal link cl2

(isproducer-open-new-stack-of-stacks-avail cl2 n0 n1)

(isconsumer-start-order-of-stacks-avail cl2 o10 n1 n0)

(isthreat-ship-order-for-stacks-avail cl2 n1)

;;; End - Extension to the original initial state

)

Figure 4: Example of the extensions introduced to the initial
state of a planning task to constrain the creation of learned
causal links.

The new action model The action model of the planning
task Π� is also extended. In particular, for each causal link to
reject:

• A new literal (clstarted cl<id>) is added to the
positive effects of the action ai, the producer of the
causal link. Adding this literal makes the application
of the action ai modify the state of the causal link to
started. This is implemented by introducing a new
quantified conditional effect in the model of the pro-
ducer action. Figure 5 shows the new PDDL model of ac-
tion ship-order after compiling the causal link cl3 =
< (ship-order o9 n0 n1), (start-order o7 n1
n0), (stacks-avail n1) >. Although this implemen-
tation increases the size of the planing task, and may make
instantiation more expensive, it results in a more compact
and understandable model of the modified planning task.

(:action ship-order

:parameters (?o - order ?avail - count ?new-avail - count)

:precondition (and (started ?o) (stacks-avail ?avail)

(next-count ?avail ?new-avail))

(forall (?p - product)

(or (not (includes ?o ?p)) (made ?p)))

:effect (and (not (started ?o)) (shipped ?o)

(not (stacks-avail ?avail))

(stacks-avail ?new-avail)

;;; Begin - New quantified conditional effect

(forall (?clid - causalLink)

(when (isproducer-ship-order-of-stacks-avail

?clid ?o ?avail ?new-avail)

(clstarted ?clid)))

;;; End - New quantified conditional effect

))

Figure 5: Example of the extension to the PDDL model of
an action that is producer in a causal link to reject.

• A new precondition

48

(or (not (clstarted cl<id>))
(not (isconsumer-<n(aj)>-of-<n(p)>

cl<id> <arg(aj)>)))

is added to the action aj , the consumer of the causal link.
This new precondition makes the action applicable only
when it is not creating the causal link. Similar to the pre-
vious, this extension is implemented with a quantified pre-
condition in the model of the consumer action. Figure 6
shows the new PDDL model of the action start-order
after compiling causal link cl3.

(:action start-order

:parameters (?o - order ?avail - count ?new-avail - count)

:precondition
(and (waiting ?o) (stacks-avail ?avail)

(next-count ?new-avail ?avail)

;;; Begin - New quantified precondition

(forall (?clid - causalLink)

(or (not (clstarted ?clid))

(not (isconsumer-start-order-of-stacks-avail

?clid ?o ?avail ?new-avail)))))

;;; End - New quantified precondition

:effect (and (not (waiting ?o)) (started ?o)

(not (stacks-avail ?avail))

(stacks-avail ?new-avail)))

Figure 6: Example of the extension to the PDDL model of
an action that is consumer in a causal link to reject.

• A new negative effect (not (clstarted cl<id>)) is
added to each action ak ∈ Athreat(p) that threatens the
causal link. The new delete effect makes the application
of action ak modify the state of the causal link. Again, in
order to make the compilation more compact, it is imple-
mented by introducing a new quantified conditional effect
in the model of the action is a threat. Figure 7 shows the
new PDDL model of the action open-new-stack after
compiling causal link cl3.

(:action open-new-stack

:parameters (?open - count ?new-open - count)

:precondition (and (stacks-avail ?open)

(next-count ?open ?new-open))

:effect (and (not (stacks-avail ?open))

(stacks-avail ?new-open)

;;; Begin - New quantified conditional effect

(forall (?clid - causalLink)

(when (isthreat-open-new-stack-for-stacks-avail

?clid ?open)

(not (clstarted ?clid))))

;;; End - New quantified conditional effect

(increase (total-cost) 1)))

Figure 7: Example of extension to the PDDL model of an
action that threatens a causal link to reject.

Phase III: Planning rejecting bad causal links
The aim the modified planning task is to focus planners on
solutions with better quality, even planners that are not nec-
essarily good optimizers, like planners that ignore action
cost. Moreover, planners are expected to retain their effi-
ciency since that the core elements that make a planner ef-
ficient, particularly the heuristic, are not altered other than
indirectly as a consequence of the modification of the search
space. The inputs to this third phase are the new planning
task Π� and a state-of-the-art sequential satisficing planner
P . The output is, if found, a solution plan that does not in-
clude causal links from the set CLrej .

Planning with the new planning task Π� is correct in the
sense that any solution to Π� is also a solution to the original
planning task Π. Briefly, this is because the new planning
task is a more constrained version of the original one. In
detail, both the initial state and goals from the original task
Π are also present in the new task Π�. Furthermore the new
predicates only serve to monitor the state of the causal links,
whether they are started or not. The new effects added to
the actions of Π� that either work as producers or threats
in causal links from CLrej only modify the state of these
causal links. Examples of these new effects are shown in
Figures 5 and 7. Finally, the new preconditions added to
actions that are consumers of causal links from CLrej only
constrain the application of these actions, as shown in the
example in Figure 6.

Planning with the new planning task Π� is not complete, in
the sense that optimal solutions for the original planning task
Π may be pruned by the new preconditions of the planning
task Π�. The explanation for this is that the set of plans used
in the learning phase may be only a subset of plans. The plan
identified as the plan with the best quality in the learning
phase, πbest, may not be optimal. In fact, an optimal plan
may include causal links that are rejected. Therefore, there
is no guarantee that optimal solutions are not pruned from
the new planning task.

Planning with the new planning task Π� can be computa-
tionally more expensive than planning with the original task
Π. In particular, the size of the state space increases with the
introduction of the new predicate (clstarted cl<id>)
that monitors the state of the selected causal links. The com-
plexity of actions is also increased by including quantified
conditional effects in the actions that act as producers or
threats of the causal links in CLrej . However, the new pre-
conditions added to consumer actions are expected to re-
duce the size of the search space by constraining the states
in which these actions can be applied. Thus, the final im-
pact of the proposed compilation on planner performance
depends on this trade-off between the size of the new plan-
ning task and the benefits achieved by pruning causal links
from bad quality solutions. An experimental analysis of the
performance of the proposed method examining this trade-
off is provided along the next section.

Results
This section shows the experimental evaluation of the pro-
posed method. First it details the design of the experiments

49

and next it analyses the performance of the proposed method
in its three phases: learning, compilation and planning.

Experimental setup
The presented evaluation is a direct comparison of the per-
formance of the winner of the last IPC, LAMA-2011 and
the proposed method. Like in the competition LAMA-2011
is run with a time bound of 1800 seconds per problem. On
the other hand the proposed method is run with the same
time bound which is distributed as follows: 300 seconds for
the learning phase, 100 seconds for the compilation phase,
despite in practice it is always completed in milliseconds
time, and 1400 secs for the planning phase. In more detail
the three phases of the proposed method are configured as
follows:

I. Learning causal links to reject.

(a) Run LAMA-2011 on the original planning task for 300
seconds.

(b) Compute the causal links to reject following the learn-
ing algorithm of Figure 3 and using the solution plans
generated by the anytime strategy of LAMA-2011 dur-
ing the 300 seconds.

II. Compilation of the causal links to reject.

(a) A maximum of 100 causal links is compiled to not
overload the size of the new planning task

(b) When the number of learned causal links for a given
problem is greater than 100, a subset is selected
that only comprises the most expensive causal links.
The cost of a given causal link is computed adding
the cost of its producer and its consumer. Formally,
cost(clid) = cost(ai) + cost(aj).

III. Planning rejecting bad causal links.

(a) Run LAMA-2011 on the new planning task for 1400
seconds.

(b) The anytime strategy of LAMA-2011 is initiated with
the cost bound of the best plan found in the learning
phase.

The proposed method is evaluated in the openstacks,
parking, nomystery and visitall domains from the IPC-2011.
These domains are selected because they are hard for opti-
mization. In particular all of them present symmetries and
transpositions that cause a rapid growth of their search
space.

Phase I: Learning causal links to reject
LAMA-2011 implements an anytime strategy that uses
the cost of the last plan found to prune, in the next
search episodes, the nodes exceeding this cost. The any-
time strategy of LAMA-2011 comprises the following search
episodes: two greedy best first searches, the first one qual-
ity blind, followed by a sequence of weighted A* searches
with decreasing weights 5, 3, 2 and 1. The Table 1 illus-
trates the outcome of the learning phase in the evaluation
domains showing, for each problem, two data: plans, the
number of solution plans found by LAMA-2011 during the

Openstacks Parking Nomystery VisitAll
Prob plans clinks
000 8 19 2 88 3 36 4 100
001 11 43 7 100 1 0 2 62
002 7 26 5 100 5 92 1 0
003 14 41 3 37 2 15 2 100
004 5 15 1 0 5 100 1 0
005 10 55 5 100 1 0 3 100
006 12 31 6 100 1 0 2 100
007 8 100 2 100 - - 3 100
008 4 13 1 0 1 0 3 100
009 12 86 1 0 3 49 1 0
010 15 86 2 41 2 21 3 100
011 5 1 4 100 1 0 2 100
012 5 25 4 100 - - 2 100
013 5 3 1 0 1 0 2 100
014 5 29 5 100 - - 1 0
015 4 1 50 100 - - 2 100
016 5 41 1 0 - - 2 100
017 4 0 1 0 - - 1 0
018 5 32 5 100 - - 1 0
019 5 2 3 69 2 17 1 0

Table 1: Number of solution plans found and number of
causal links to reject extracted from these solution plans.
Dashed lines indicates that no solution plan was found for
this problem during the learning phase.

learning phase and clinks, the number of causal links learned
from these solution plans.

The reported data show that the number of causal links
to reject is not directly related with the number of solu-
tions. A good example are problems 000 and 007 from the
openstack domain. In the learning phase of problem 000
eight solutions were found producing 19 causal links while
in problem 007, with the same number of solutions, the
learning phase produced more than 100 causal links. Pre-
cisely, the number of learned causal links for a given prob-
lem strongly depends on how different is the best plan found
with respect to the rest of generated plans and the length of
all these plans.

We can also observe that the learning time bound of 300
seconds is not enough for extracting a set of causal links to
reject for every problem in the evaluation domains. In par-
ticular, the cases marked with a dashed line, for example
problem 007 from the nomystery domain, indicate that no
solution plan was found for this problem during the learn-
ing phase. Likewise when the number of solutions is 1 no
causal link to reject can be extracted because our learning
algorithm requires at least two plans to compute the set of
causal links to reject, an example is problem 002 from the
visitall domain.

Phase II: Compilation of the causal links to reject
At this point we evaluate the drawbacks of the new plan-
ning task resulting from the compilation of the set of causal
links CLrej . In particular we evaluate the increase in the
size of the planning task resulting from the introduction of
the causal links to reject. Note that this increase is some-
how limited since only a maximum of 100 causal links is

50

compiled into the new planning task to deal with the utility
problem (Minton 1988). For each problem the Table 2 illus-
trates the increase in memory and instantiation time caused
by the use of the new planning task.

Openstacks Parking Nomystery VisitAll
Prob Mem Time
000 0.96 0.26 0.91 0.03 0.95 0.07 0.74 0.03
001 0.94 0.09 - - * * 0.86 0.05
002 0.96 0.20 0.92 0.03 0.96 0.03 * *
003 0.95 0.10 0.96 0.07 0.99 0.19 0.86 0.03
004 0.98 0.32 * * 0.97 0.03 * *
005 0.94 0.07 0.90 0.03 * * 0.90 0.03
006 0.95 0.12 0.91 0.03 * * 0.92 0.03
007 0.93 0.05 - - * * 0.93 0.03
008 0.99 0.28 * * * * 0.94 0.03
009 0.93 0.05 * * 0.99 0.06 * *
010 0.94 0.05 0.96 0.07 0.95 0.11 0.95 0.04
011 0.99 0.9 0.93 0.03 * * 0.95 0.03
012 0.99 0.26 0.93 0.03 * * - -
013 0.98 0.76 * * * * 0.96 0.04
014 0.99 0.16 0.93 0.03 * * * *
015 0.99 0.87 0.93 0.03 * * - -
016 0.98 0.12 * * * * 0.97 0.04
017 - - * * * * * *
018 - - 0.94 0.03 * * * *
019 0.99 0.82 0.96 0.04 0.99 0.17 * *

Table 2: Ratios of the memory and instantiation time re-
quired by the original and the new planning task resulting
from the compilation. Stars indicate that no causal link was
learned for this problem. Dashed lines indicate that the in-
stantiation of the new planning task exceeded memory or
time bounds.

The increase is shown by the ratio of these two values,
memory and instantiation time, in the original planning task
with respect to the new one. The values of the ratio are
obtained with the prepossessing tools of the FAST DOWN-
WARD planning system (Helmert 2006). A value of 1 means
that there is no increase caused by using the new planning
task while a ratio under 1 means that the new task is more ex-
pensive, in terms of memory or instantiation time. The lower
the ratio the more expensive the new task is. Please note that
only the ratio of problems in which the learning phase ex-
tracted causal links is shown. Stars indicate that no causal
link was learned for this problem because less than two so-
lutions were found for this problem in the learning phase.
Dashed lines indicate that new planning task was not instan-
tiated successfully because it exceeded the memory or time
bounds.

As expected the increase in the size of the planning task
and the corresponding instantiation time depends on the
number of causal links compiled into the new task. This ef-
fect can be observed looking again to problems 000 and
007 from the openstack domain. The reported data also
shows that while the memory required by the new planning
task is not far from the required by the original one, the in-
stantiation time easily blows up growing, in most cases, in
one order of magnitude. This observation suggest the study
of further compilations of the learned causal links that hold

better the instantiation time in the new planning task.

Phase III: Planning rejecting bad causal links
Finally we compare the planning performance of the winner
of the last IPC, LAMA-2011 and our method for planning
with the task resulting from compiling the learned causal
links. Table 3 shows, for each problem, the quality of the
best plan found by the two approaches in the following for-
mat: LAMA-2011/our proposed method. The dashed lines
indicate that no causal link was learned for this particular
problem so no comparison is shown.

Prob Openstacks Parking Nomystery VisitAll
000 7/7 61/37 18/18 181/179
001 15/12 31/31 -/- 260/260
002 9/9 42/44 25/25 -/-
003 20/19 62/60 29/29 410/410
004 17/14 -/- 34/34 -/-
005 20/22 41/42 -/- 604/604
006 11/10 44/45 -/- 763/706
007 34/31 75/75 -/- 860/860
008 30/34 -/- -/- 1027/1027
009 32/33 -/- 52/50 -/-
010 32/31 67/67 18/18 1300/1300
011 100/100 50/66 -/- 1455/1455
012 48/47 62/62 -/- 1725/1769
013 128/128 -/- -/- 1887/1895
014 76/74 52/54 -/- -/-
015 155/155 47/50 -/- 2168/2168
016 107/105 -/- -/- 2387/2387
017 189/190 -/- -/- -/-
018 137/138 50/51 -/- -/-
019 221/221 74/74 48/48 -/-

Total 1388/1380 758/758 224/222 15027/15020

Table 3: Total cost of the best solution found by LAMA-2011
and our method, in the problems from the IPC-2011. Dashed
lines indicate that no causal link was learned for this prob-
lem.

Results show that the openstacks is the more promising
domain for the proposed method. In this domain our method
actually improves the best plan cost in 9 out of 20 prob-
lems getting worse only in 5. There is no guarantee to al-
ways achieve the quality of the plans found with the orig-
inal planning task. In some cases, like problem 005 from
this domain, the quality achieved by the proposed method
is worse that the one achieved by LAMA-2011. As we al-
ready observed the size of the planning task is increased by
the introduction of the causal links so if the learned causal
links are not effective for a particular problem this will cause
larger planning times that might prevent the planner to reach
the best plan cost achieved by the original planning task.

In the parking and visitall domains certain sets of learned
causal links are able to significantly deteriorate the quality
of the solutions found. In particular this is observed in prob-
lems in which the number of learned causal links is over
100. This observation suggests that better strategies for se-
lecting the causal links to compile should be studied. Finally,
despite the accumulated total cost is slightly better in the no-
mystery domain, in most of the problems of this domain the

51

cost of the best plan found by the two planning approaches
is the same.

Related Work
Machine learning has been extensively used in planning to
learn heuristics for faster search, to learn rules for selecting
which planner from a given set to apply to a problem, and to
learn domain models, but very rarely with the explicit aim
of improving plan quality. The most significant work to our
method is related to the learning of control rules for guiding
the search of the PRODIGY planner towards good quality so-
lutions (Pérez 1996).

There are recent work that introduces control knowledge
into the domain model of a planning task. In particular
(Baier and McIlraith 2008) shows how to compile proce-
dural control knowledge, described in temporal logic, into
a classical planning domain model. However, unlike the
cited work, we propose a method not only to compile use-
ful knowledge but to learn it from examples of solutions to
the same problem. There are previous approaches that also
succeed performing intra-problem learning for example, to
automatically select the heuristic to compute (Domshlak,
Karpas, and Markovitch 2012) or for creating macros to es-
cape from plateaus (Coles and Smith 2007). Nevertheless
these works modify the planner to exploit the learned knowl-
edge while our method, based on a compilation of the plan-
ning task, does not need to modify the planner algorithms.

Finally, we also find previous works that enforce causal
links to generate justified plans, in the case of automatic
story telling (Haslum 2012) but again this knowledge is not
automatically learned from examples.

Conclusions and future work
In this paper we have proposed a method that exploits the so-
lutions found by an anytime planner to improve the quality
of the subsequent ones. The method extracts a set of causal
links from the first plans, the plans with worse quality, and
compiles them into a more constrained definition of the plan-
ning task that rejects the creation of these causal links.

Despite the reported results show slight improvements of
the quality of plans further research is needed to achieve
more conclusive results. In particular several aspects of the
three phases of the proposed method can be refined in or-
der to improve the results. We observed that in some prob-
lems the proposed method was not able to learn anything
because the anytime strategy was not able to find more than
one solution. However, anytime strategies are not the only
mechanism to produce a base of multiple plans with differ-
ent quality. In practice solution plans with different quality
can also be generated by introducing some randomization to
the planner.

In addition the proposed compilation still causes high in-
stantiation times when the number of learned causal links
is high, examples are various problems from the evaluated
openstack, parking and visitall domains. Further compila-
tions have to be studied in order to hold instantiation time in
these cases. Moreover, when the number of causal links is

high, algorithms for choosing an effective subset of causal
links to reject are necessary to improve the reported results.

References
Baier, J. A., and McIlraith, S. A. 2008. Planning with pref-
erences. AI Magazine 29(4):25–36.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bylander, T. 1994. The computational complexity of propo-
sitional strips planning. Artificial Intelligence 69:165–204.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. J. Artif. Intell.
Res. (JAIR) 28:119–156.
Coles, A. J.; Coles, A.; Olaya, A. G.; Jiménez, S.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33(1).
Domshlak, C.; Karpas, E.; and Markovitch, S. 2012. Online
speedup learning for optimal planning. J. Artif. Intell. Res.
(JAIR) 44:709–755.
Haslum, P. 2012. Narrative planning: Compilations to clas-
sical planning. J. Artif. Intell. Res. (JAIR) 44:383–395.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proceedings of the 23rd national conference on
Artificial intelligence - Volume 2, AAAI’08, 944–949.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. Artif. Intell. 143(2):219–262.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Minton, S. 1988. Learning Effective Search Control
Knowledge: An Explanation-Based Approach. Boston, MA:
Kluwer Academic Publishers.
Pérez, M. A. 1996. Representing and learning quality-
improving search control knowledge. In Proceedings of the
Thirteenth International Conference on Machine Learning
(ICML ’96), 382–390.
Porteous, J., and Sebastia, L. 2004. Ordered landmarks
in planning. Journal of Artificial Intelligence Research
22:215–278.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy of for-
getting: Faster anytime search via restarting. In Proceedings
of the ICAPS.

52

