
Diagnosis of Depression by Behavioural Signals:  
A Multimodal Approach  

Nicholas Cummins 
School of Electrical Eng. and Tele. 
The University of New South Wales 

and National ICT Australia 
n.p.cummins@unsw.edu.au  

Vidhyasaharan Sethu 
School of Electrical Eng. and Tele. 
The University of New South Wales 

Sydney NSW 2052 Australia 
v.sethu@unsw.edu.au  

Jyoti Joshi 
Human-Centred Comp. Lab 

University of Canberra 
Bruce ACT 2617 Australia 

jyoti.joshi@canberra.edu.au 
Roland Goecke 

Human-Centred Comp. Lab 
University of Canberra 

Res. School of Computer Science 
Australian National University 
roland.goecke@ieee.org 

 

   Abhinav Dhall 
Res. School of Computer Science 

Australian National University 
Canberra ACT 2601 Australia 

abhinav.dhall@anu.edu.au 
Julien Epps 

School of Electrical Eng. and Tele. 
The University of New South Wales 

and National ICT Australia 
j.epps@unsw.edu.au 

 

ABSTRACT 
Quantifying behavioural changes in depression using affective 
computing techniques is the first step in developing an objective 
diagnostic aid, with clinical utility, for clinical depression. As part 
of the AVEC 2013 Challenge, we present a multimodal approach 
for the Depression Sub-Challenge using a GMM-UBM system 
with three different kernels for the audio subsystem and Space 
Time Interest Points in a Bag-of-Words approach for the vision 
subsystem. These are then fused at the feature level to form the 
combined AV system. Key results include the strong performance 
of acoustic audio features and the bag-of-words visual features in 
predicting an individual’s level of depression using regression. 
Interestingly, in the context of the small amount of literature on 
the subject, is that our feature level multimodal fusion technique 
is able to outperform both the audio and visual challenge 
baselines. 

Categories and Subject Descriptors 
G.3 [Mathematics of Computing]: Probability and Statistics—
Correlation and regression analysis; Robust regression 
I.4.7 [Computing Methodologies]: Image Processing and 
Computer Vision—Feature measurement: Feature representation 
I.5.4 [Computing Methodologies]: Pattern Recognition – 
Applications: Signal processing; Computer vision; Waveform 
analysis 
J.3 [Computer Applications]: Life and Medical Sciences—
Medical information systems; 

General Terms 
Algorithms, Measurement, Performance, Design, Reliability, 
Experimentation, Verification. 

Keywords 
Depression, Behavioural Signals, Multimodal Technologies, 
Acoustic Speech Features, Space-Time Interest Points, Pyramid of 
Histogram of Gradients, Bag-of-Words, Multimodal Fusion, 
Support Vector Regression.  

1. INTRODUCTION 
Clinical depression has long been recognized as one of the leading 
causes of disability and burden worldwide; it has been estimated 
that depression will be one of the three leading causes of burden 
by disease along with HIV/AIDS and heart disease by 2030 [1]. 
Despite these growing socio-economic costs, diagnosis is 
achieved, almost exclusively, on the basis of an interview style 
assessment between a clinician and a patient, and patient self-
reporting. These assessments attempt to assign an objective score 
to a patient based on a weighted sum of key symptoms observed 
in depression [2], including but not limited to; negative 
conceptualizations, fatigue, cognitive impairments and observable 
psychomotor retardation [3]. In practice, these tests are subjective 
in nature, requiring a large degree of clinical training to produce 
acceptable results, and can be conducted only infrequently [4]. 
It is believed that finding a set of objective markers of depression 
will increase diagnostic accuracy, aiding optimal patient care. 
Whilst research into biological markers for depression has 
revealed several promising results, such as low serotonin levels, 
no biomarker specific to depression has been found [5]. Whilst 
biomarkers remain elusive, significant advances have been made 
in using affective computing and social signal processing as a 
diagnostic tool. These systems rely either on speech processing 
techniques [6]–[8],  facial and bodily expression analysis [9]–[11] 
or eye movement [12] to capture characteristic behavioural 
changes relating to depression.  
In this paper, we present our system design for the Depression 
Recognition Sub-Challenge (DSC) for the 2013 Audio/Visual 
Emotion Challenge and Workshop (AVEC 2013) [13]. This 
challenge requires participants to predict, using multimodal signal 
processing techniques, an individual’s self-reported level of 
depression from a given multimedia file. Herein, we compare the 
accuracy of systems designed to capture relevant audio and facial 
information, which represent some of the key behavioural changes 
associated with depression [14]. We will also present fused 
systems designed to capture the complementary information 
capture in the individual modes. The aim of all testing described is 
twofold, firstly to outperform the challenge benchmark [13] and 
secondly to help us gain further insights into the design of 
affective sensing systems, with clinical utility, to aid objective 
diagnosis of depression. 
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2. BEHAVIOURAL MARKERS 
ASSOCIATED WITH DERPESSION 
Although over 60% of human communication is believed to be 
non-verbal, large parts of this channel of communication are 
beyond conscious control, and current diagnostic methods for 
depression do not utilize this extra information [14]. 

2.1 Non Linguistic Audio Cues 
Speech has long been recognized as a key component for any 
behavioural based depression recognition system. Speech in 
patients with depression is often described having diminished 
prosody, forcing it to sound dull, monotonous and “lifeless” [15]. 
This leads to depressed speech having longer pauses, decreased 
utterance length and a reduced speech rate [14], [15]. 
It has been hypothesized that it takes more articulatory effort for a 
depressed individual to produce and sustain speech; this is evident 
in decreased formant frequencies often reported with increasing 
levels of depression [4], [16]. This sustained effort causes a wide 
range of prosodic, articulatory and phonetic errors in depressed 
speech [17]–[20]. These effects, combined with changes to vocal 
tract properties potentially caused by increased vocal tract tension 
[16], [21], a lack of motor coordination [17], [20] or possibly the 
result of anti-depressant medications drying out the vocal tract 
[21], altering the spectral properties of the speech produced by a 
depressed individual [20]. 
Mel Frequency Cepstral Features (MFCC) are one of the strongest 
performing spectral features, when combined with Gaussian 
Mixture Models (GMM), for classifying either low/high levels of 
depression [22], [23], or the presence/absence of depression [7], 
[8]. Classification using MFCCs in combination with GMM-UBM 
(universal background model) supervectors has recently gained 
popularity for many paralinguistic tasks: many entrants to similar 
Interspeech Challenges on speaker affect, intoxication and 
sleepiness have used this style of system to obtain competitive 
results [24], [25]. 
Motivated by recent results showing a decrease in energy 
variability with increasing levels of depression, due in part to a 
decrease in the motor action associated with speech production 
[17], [20], and by results suggesting that this decrease in 
variability can be captured in a GMM [22], we explore a range of 
GMM-UBM supervector systems in combination with Support 
Vector Regression (SVR) for the task of predicting depression. 
Supervectors have been employed just once previously in a 
depression detection system [24], and have not been investigated 
for a regression problem. 

2.2 Non Verbal Visual Cues 
Facial expression cues are among the most popular visual cues 
that are utilized for behavioural analyses by both machines and 
humans. Whilst facial expression recognition in affect analysis 
and behaviour understanding is well researched, research in 
depression analysis via facial cues has been a more recent 
undertaking. Based on work done by Ellgring [26], in which 
depressed subjects showed significant decreases in facial activity,  
McIntyre et al. [27], proposed the use of person-dependent Active 
Appearance Models (AAM) [28], to compare the facial activity of 
depressed and healthy control subjects. At the same time, Cohn et 
al. [9] reported a 79% accuracy when combining AAM features 
with a Gaussian kernel Support Vector Machine for classifying 
the presence / absence of depression. 
In addition to facial activity, the relative movements of body parts 
have also been found to be indicators of both affect [29], [30] and 
depression [31]. Spatio-temporal features [32] extracted from 

upper body expression and head movement cues and combined in 
a bag-of-words framework, have shown strong performance when 
identifying the presence/absence of depression [11]. It can be 
argued that these spatio-temporal descriptors capture very subtle 
yet discriminative movements exhibited by individuals suffering 
from depression [11], [31].  
Based on these recent studies, this paper explores the use of facial 
cues for predicting levels of depression, specifically the suitability 
of both Space-Time Interest Points (STIP) [32] and Pyramid of 
Histogram of Gradients (PHOG) [33] in meeting our specified 
aims. The STIP concept has found much attention in computer 
vision and video analysis research. Our motivation for using this 
approach is its robustness to temporal misalignments within the 
spatio-temporal feature space [32]. Similarly, the motivation 
behind using PHOG is its superior performance in facial analysis 
tasks when using data collected in non-lab conditions [34]. 

2.3 Multimodal Prediction of Depression  
Whilst multimodal affect recognition is a well-established field 
[35], to the best of the authors’ knowledge, papers in this current 
challenge will represent some of the first attempts at depression 
recognition via fusion of audio and visual features. Both affect 
and depression recognition share common traits; a continuous 
negative affect is a key symptom of depression [36]. However, it 
should be stated that whilst affect is a more continually changing 
condition, depression is more steady-state in its nature, with 
individuals inflicted for weeks or months [24], [37]. A meta-
analysis, conducted by D’Mello and Kory, into multimodal affect 
detection has shown that across 30 different published studies, all 
of which report both unimodal and multimodal affect detection 
results, on average multimodal systems offer an 8% relative 
improvement over unimodal systems [35]. Whilst visual and 
audio modalities share considerable redundancy in terms of affect 
detection [35], the improvement when fusing both is often 
attributed to results seen in the valence-arousal space. Recent 
studies have shown that audio cues are often better at recognizing 
arousal, whilst visual cues correlate better with valence [38]. 
Motivated by these results, we perform feature-level fusion to find 
a complementary set of audio and visual features for the task of 
predicting an individual’s level of depression. 

3. DEPRESSION CORPUS 
The AVEC corpus is part of the Audio-Visual Depressive 
Language Corpus (AVDLC). Tasks completed by speakers 
include vocal exercises, free and read speech tasks. It is important 
to note that there is a large degree of phonetic variability captured 
within each file: not all files include all tasks. For an in-depth 
description of the corpus, the reader is referred to [13].  
The clinical annotation of the corpus employs the Beck 
Depression Inventory (BDI), comprising 21 items with each item 
scored between 0-3, to give a total score range of 0-63. The BDI 
is the most widely used self-reported measure, originally 
developed in 1978 and updated in 1996 [2]. BDI has been shown 
to have clinical validity when differentiating between depressed 
and non-depressed individuals and when tracking changes in a 
patient’s level of depression as they undergo treatment. Its major 
criticism is that it reflects the BDI authors’ interest in the negative 
self-evaluative symptoms experienced in depression [2].  
Given the steady-state nature of depression, the extent of 
depression in AVDLC files is likely not the strongest source of 
variability in all the behavioural signals available in this corpus 
[8], [11]. Therefore, the make-up of the corpus provides unique 
challenges in the DSC: the varying length of the files (Table 2), 



the variety of speech tasks contained within each file, the skewed 
distribution of BDI scores in both the training and development 
data (Figure 1) – both favoring lower BDI scores, and the 
continually changing speaker affect [13]. These all introduce 
unwanted variability into the files making it harder to produce an 
accurate, meaningful regression score over larger file lengths. 

Table 2. Summary of AVEC 2013 Depression Corpus 

Partition Number 
of Files 

Max 
Length 

Min 
Length 

Average 
Length 

Score 
Range 

Train 50 27min  
20s 

8min  
5s 

14min  
20s 0-44 

Devel. 50 23min  
55s 

14min  
20s 

14min  
20s 0-45 

Test 50 23min  
57s 

5min  
15s 

15min  
57s N/A 
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Figure 1. Distribution of BDI scores in both the training (top) 

and development (bottom) partitions 

3.1 System Performance Metric 
All system accuracies reported, unless otherwise stated, are in 
terms of Root Mean Square Error (RMSE). A baseline RMSE has 
been set by the challenge organisers: using the audio baseline 
feature set and an epsilon-SVR (ε-SVR), with a linear kernel. The 
audio baseline RMSE, for the development set, is 10.75. The 
visual baseline set using the baseline feature set and an ε-SVR 
with an intersection kernel is 10.72. For details of the baseline 
system and feature sets the reader is referred to [13].  

3.2 Chance-Level System Accuracy 
To establish the chance-level RMSE on the development partition, 
we ran four different tests (Table 3). The first was a repeated trial 
of a uniformly distributed random guesses between 0-45 where 45 
represents the highest BDI score appearing in the development 
partition. The second was also repeated trials of uniformly 
distributed random guesses, this time generating numbers between 

0-63, where 63 is the highest possible BDI score. The third and 
fourth tests used the mean (15.02) and median (12.5) scores of the 
training set respectively as an estimate for all development set 
scores. These scores are higher than the development set chance-
level RMSE of 11.90 stated in the challenge baseline paper [13].  

Table 3. Chance-level RMSE’s for AVEC 2013  
development partition 

System 1 2 3 4 
RMSE  

(st.dev.) 
19.1 

(0.01) 
27.1 

(0.015) 12.3 12.5 

4. MULTIMODAL DEPRESSION 
RECOGNITION SYSTEM  
4.1 Audio Subsystem 
All speech systems were based on supervectors extracted using 
the GMM-UBM paradigm, using MFCCs appended with the first 
and second order time derivatives as the extracted features. A 
Gaussian Mixture Model (GMM) trained using the Expectation-
Maximisation (EM) algorithm was employed as the UBM, which 
serves as a rough acoustic model.  
In order to form a statistically rich audio description, a single 
supervector was formed per audio segment (file or subfile as 
shown in Fig. 2) by first adapting the UBM to fit the distribution 
of the features extracted from that segment via MAP-adaptation. 
The Gaussian mixture components were then stacked (as outlined 
in the following sections) to form the supervector. An SVR 
system was trained to operate on this supervector space. An 
advantage in using supervectors is the range of transforms that 
exist to help minimize variability in the acoustic supervector 
space, such as Nuisance Attribute Projection [39]; a similar 
methodology was used in depressed speech in [23] with promising 
results. Finally, the use of appropriate kernels in place of the 
standard inner product used in linear-SVR allows much more 
powerful non-linear support vector regression. 
4.1.1 Kullback-Leibler Divergence Kernel 
The use of the Kullback-Leibler (KL-means) divergence kernel 
allows a method of estimating the similarity between two 
utterances. It is possible to estimate this kernel by the means from 
a speaker-specific GMM, then transform these means by 
normalizing them by the corresponding non-adapted (UBM) 
covariance and weights. Using the transformed supervectors in 
combination with a linear SVR kernel is equivalent to using a KL-
means kernel in the SVR model [39]. The KL transformation of 
the set of speaker-adapted means corresponding to the i-th 
mixture is given by: 

           ̃  √     
   

 

   
  (1) 

where    represents the weight component and   
  the covariance 

matrix from the i-th UBM mixture and   
  the i-th mean vector 

from λ-th speaker adapted GMM. The overall supervector for a 
given speaker (MAP adapted GMM) is formed by stacking all the 
speaker specific   ̃ ’s: 

           
  [ ̃ 

   ̃ 
     ̃ 
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where M represents the total number of GMM mixtures. 

4.1.2 GMM-UBM Mean Interval Kernel 
A potential drawback of the KL divergence kernel is the lack of 
speaker-specific covariance information included in the 
supervector. Work in [22] shows the potential importance of 
including covariance information when forming an acoustic 



model of depressed speech. The Bhattacharyya distance based 
GMM-UBM mean interval (GUMI) kernel allows us to include 
both covariance and weighting information in the kernel in a SVR 
kernel. It is possible to implement the GUMI SVR kernel by 
combining stacked and transformed speaker-specific GMM 
parameters with a linear SVR kernel [40]. The GUMI 
transformation of the i-th set of speaker adapted GMM parameters 
corresponding to the i-th mixture is given by: 
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where   
 ,   

  and   
  are the UBM’s i-th weight, mean and 

covariance components, respectively, and   
 ,   

  and   
  are the 

i-th weight, mean and covariance components, respectively, from 
λ-th speaker adapted GMM. As with the KL kernel, the overall 
supervector for a given speaker is formed by stacking all the 
speaker-specific  ̆ ’s: 
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4.1.3 UBM Weight Posterior Probability 
The UBM weight posterior probability (UWPP) supervector is 
defined as the averaged posterior probability associated with each 
GMM-component [41]: 

                     
  [√   √     √     √  ]

 
 (5) 

where    is the posterior probability of the i-th mixture 
component,   , given a set of training vectors    {     } for 
a given GMM mixture component: 
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where   denotes the normal distribution. The UWPP uses the 
Bhattacharyya probability (BPP) kernel [41].  
As with the KL and GUMI transformations, it is possible to apply 
a transformation outside the SVR and use a linear kernel, this 
operation is achieved through the square root operator in (5). As 
the posterior probability reflects the amount data assigned to a 
Gaussian component during training, the UWPP represents 
spectral variability on a global level as opposed to the localized 
variance captured in the covariance matrices.  

4.1.4 Nuisance Attribute Projection 
Nuisance Attribute Projection (NAP) removes subspaces that 
cause variability in the SVR kernel space [39]. NAP constructs a 
new kernel space through a projection matrix P, which projects 
the training and testing data into a more resilient subspace. NAP 
was originally designed as a way of mitigating effects due to 
different recording channels for speaker recognition.  
After first extracting overlapping windows of voiced data from 
each file in the development partition, we then trained a NAP 
projection matrix. Viewing each of the different files as belonging 
to the same class and each of the extracted windows of data 
(subfiles) as representing a different ‘channel’ (Figure 2), we 
attempted to mitigate the effects of phonetic and affect variability 

captured in a file using NAP. First, we formed the matrix A from 
the supervectors formed from each extracted subfile: 

              [  
      

     
     

       
       

  ] (8) 

where   
  is the supervector extracted from the n-th subfile of the 

m-th file in the development set. The projection matrix is formed 
by solving the eigenvalue problem: 

                                     (9) 

where   is a column matrix of all ones and   is the weighting 
matrix formed using: 

                 = {                                

          

 
  (10) 

the effect of              in Eq. (9) is to replace every 
matching vector with the extent of its deviation from the average 
vector in its file. The projection matrix P is formed by 
concatenating the eigenvectors corresponding to the k-th highest 
eigenvalues calculated in Eq. (9). The projection matrix will be 
used to project out unwanted variability across all supervectors 
used in the formation of A: 

                 ̂ 
           

  (11) 

where I is the identity matrix. 
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Figure 2. Example of creating different ‘channels’ from a 

single audio file for use with NAP compensation  

4.1.5 Experimental Settings 
The experimental settings (unless otherwise stated) of the 
classification system were as follows: a 39-dimensional feature 
vector was formed from thirteen MFCCs, including C0, extracted 
using the openSMILE toolkit [42], every 10ms using a 25ms 
window. The 13 coefficients were concatenated with delta (Δ) and 
delta-delta (ΔΔ) coefficients extracted using the conventional 
regression equation, 39 features in total. Only voiced frames were 
used in the modeling, determined using openSMILE’s voicing 
probability function. UBMs were formed with 10 iterations of the 
EM algorithm using MFCCs, Δ and ΔΔ features extracted from 
the entire training partition. 
Where multiple scores were generated per file, using overlapping 
subfiles to extract multiple supervectors per file, the median 
operators were used to generate one regression score per file from 
all scores predicted per file. All features were normalized to a 
range of [0, 1] before SVR with the testing features being 
normalized by the range of the training features. All system 
testing and training was done using LIBSVM’s built-in ε-SVR, in 
combination with a linear kernel, and default settings were used to 
avoid overfitting [43]. 



4.2 Visual System 
All visual systems reported on here are based on the following 
four steps: (1) Extract STIPs on aligned faces for each entire 
video file. (2) Perform K-means clustering on STIP over time, 
allowing for variable durations. (3) Form time slices from the 
clusters. (4) Compute Bag-of-Words (BoW) where the time slices 
form the words. Similar to the audio system, an SVR is trained on 
these visual features to determine a subject’s BDI score. 
A limitation when using spatio-temporal visual descriptors is that 
they require robust alignment [13]. To preserve local temporal 
information, a reasonable approach is to obtain time slices 
(subfiles) prior to visual feature extraction by dividing the video 
file into time slices  [44], [45]. A similar approach is followed in 
the systems explored here. However, determining the appropriate 
time slice duration is a non-trivial problem ([44], [45] used fixed 
duration) and, further, the complexity of the approach increases 
with an increasing duration of the overall video files. To over-
come these alignment challenges, STIPs [32] are computed for 
creating variable duration time slices, which are created on the 
basis of the presence of facial activity. 
4.2.1 Space-Time Interest Points 
STIPs detect salient points in a video by extending the idea of the 
Harris interest point detector to local structures in the spatio-
temporal domain. Salient points are detected where image values 
have sufficient local variation in both the space and time domain. 
The STIPs reflect the spatio-temporal changes, which account for 
movements inside the facial area and elsewhere; such as hands, 
shoulders and head movements. Finally, K-means clustering is 
performed on the STIPs, which lie within the face blob area using 
temporal separation as the distance metric. The clusters then 
determine the time slice, i.e. each time slice extends from the 
earliest STIP in a cluster to the final STIP in that cluster.  
4.2.2 Time Slice based Bag-of-Words  
For each word (time slice), a Pyramid of Histogram of Gradients 
(PHOG) [33] descriptor is computed. PHOG is an extension of the 
popular Histogram of Gradient descriptor, where an image is 
divided into blocks on various pyramid levels and orientation 
histograms are computed based on orientations. Orientations are 
fused at block and pyramid level into histograms. This approach 
represents an image by both its local shape, the individual 
histograms calculated per block, and its spatial layout, the result 
of multiple resolution tiling [33]. The motivation behind using 
PHOG is based on its superior performance for face analysis as 
compared to local binary patterns and its variants, especially when 
the data is recorded in non-lab conditions, which introduces errors 
in alignment [34]. PHOG features have also been used 
successfully in automatic emotion recognition [34]. One method 
to compute PHOG for a time slice is to evaluate all its frames and 
then to perform an averaging or max operation. Averaging can 
dampen the signal and max can be biased towards inaccuracy in 
alignment. Therefore, we use a simpler approach where the 
central frame of each time slice is selected for computation of the 
PHOG descriptors, which the results suggest performs better than 
the organisers’ baseline (see Section 6.1.2). 
BoW represents a sample as an unordered frequency of words and 
has been very popular in computer vision for its performance 
advantage of handling the change in appearance of an object 
under consideration easily. A BoW dictionary is computed using 
the PHOG descriptors. The dictionary is learnt by considering 
each time slice a word and each video file a document. This 
approach allows the vision system to cater for varying file lengths. 

From the STIPs, one can also compute histograms of gradient and 
flow around the interest point. Following [45], we compute 
histograms and we refer to this method as STIP_BoW, which we 
use as a visual baseline with which to compare the performance of 
the PHOG based systems in the experiment section below. Similar 
features have been used for the classification of the presence / 
absence of depression using visual features [11], [31], [45]. 
4.2.3 Experimental Settings 
To perform facial dynamics analysis, first a face tracker [46] was 
employed to each video to register the face. This gave 66 face 
landmark points, which were further used for face alignment. 
STIP and PHOG feature extraction was then performed on these 
aligned faces. The STIP features were extracted using the 
methodology presented in [45], with the number of clusters 
empirically set to 1000. This results in 1000 time slices extracted 
per video clip, the range of times for these slice, across the entire 
corpus, is 0.04s to 131.2s with an average time slice time of 0.49s. 
The default PHOG implementations [34] were used here, in which 
the pyramid size was set to 3, the orientation range was [0-360] 
and the number of bins of the histogram was set to 8. The aligned 
faces were then rescaled to 96×96 pixels and the BoW computed. 
Deciding the dictionary size is non-trivial and has an effect on the 
performance of the system. Similar to the method used in [11], a 
BoW was computed, the dictionary was learnt using approximate 
nearest neighbour and the dictionary size was decided empirically 
(a range of 100-300 was tested). For our STIP_BoW baseline, the 
dictionary size was empirically set 2000. 
System testing and training was done using LIBSVM’s built-in ε-
SVR in combination with either the histogram intersection (HIK) 
or Chi-Squared (Chi2) kernel due to their proven suitability with 
the chosen visual features [47], with both kernels implemented 
using the Maji et al. add-on package [48]. Again, to avoid 
overfitting, default hyper parameters were used with both kernels. 

4.3 Fused Systems 
Common fusion approaches in affect detection include both naïve 
feature based fusion and modal level fusion [35]. Given the 
different extraction methods used when calculating the audio and 
visual features it is highly unlikely that the important cues in each 
feature group match up in temporally, therefore we will be fusing 
together file length feature representations. As the challenge 
requires prediction of an individual depression score, which lends 
itself to regression analysis, we performed feature level fusion on 
different combinations of features described in Sections 4.1 and 
4.2. We also compared accuracy of the non-linear Chi2 and HIK 
SVR kernels described in Section 4.2. 

4.3.1 Experimental Settings 
All features used in fusion were extracted in the methods 
described in Sections 4.1.5 and 4.2.3. All features were 
normalized to a range of [0, 1] before SVR, with the testing 
features being normalized by the range of the training features. 
Again LIBSVM’s built-in ε-SVR was employed with both kernels 
implemented using the Maji et al. add-on package. Default kernel 
settings were used to avoid overfitting of hyper parameters. 

4.4 System Development Settings 
To help minimize our chances of overfitting, two separate cross-
fold validation systems were used for system development. The 
first was employed for all audio development set tests. The UBM 
was formed from the training partition; supervectors were then 
extracted from the development partition. 20 trials of 5-fold cross-
validation were then employed, where the development set was 
randomly split into 5 folds, which were used in all different 



training and test permutations in each trial (Figure 3). This 
experimental scheme was used to generate the development 
results for the audio systems. 
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Figure 3. Regression scheme used to generate all system 

development audio scores  
The experimental scheme for visual and fused scores uses both 
training and development data to train the SVR. Again 20 trials of 
5-fold cross-validation were used. Within each trial, a different set 
of development files was randomly split into different training and 
test permutations for each trial, only this time the development 
vectors held out for training were combined with the training 
partition vectors to form the SVR model (Figure 4). This system 
was used for all visual and fusion system development results. 
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Figure 4. Regression scheme used to generate all system 

development visual and fusion scores  
For both validation systems, mean RMSE was recorded for each 
trial. Overall scores for system development were then reported in 
terms of the mean, minimum and maximum RMSE, and standard 
deviation of all trials. To meet the challenge requirement of 
predicting a single depression score per file, all testing was done 
using LIBSVM’s built-in ε-SVR. Default settings were used to 
avoid overfitting of hyper parameters. 

5. SYSTEM DEVELOPMENT 
5.1 Audio Sub System 
5.1.1 Initial System Design 
An initial series of comprehensive tests were run on 3 supervector 
systems in which the number of Gaussian mixtures (powers of 2 
between 8 and 1024) and number of MAP adaptations (2, 5, 10, 
20) were varied. All tests were done both with and without C0, 
and corresponding deltas appended to the feature set. The results 
confirmed that on average, across the three supervectors, a feature 
space of 39 dimensions, twelve MFCC coefficients appended with 
C0, and corresponding deltas and a supervector space of 128 
mixtures adapted from the UBM using 5 iterations of MAP gave 
the best results (Table 4). 
For the multi subfile systems, we then ran an exhaustive series of 
tests to determine the optimal parameters in terms of subfile 
length (measured in seconds) and subfile overlap. Results from 
this analysis indicated that changing the window size between 30 
and 60s and varying the amount of overlap between 5 to 30s does 

not have a large effect on system RMSE. However, increasing the 
VP (voicing probability) setting beyond 0.55 resulted in a 
significant increase in RMSE. On average, the best results across 
the 3 supervector systems, KL-means, GUMI and UWPP were 
found using a window size of forty seconds overlapped by 20s 
(Table 4). Herein, this is the default audio multi subfile setting. 

Table 4. A selection of RMSEs generated using AVEC 2013 
Development Partition from tests run to determine suitable 

parameters for the audio systems. 
System mean min max st.dev. 
KL-mean 10.07 9.40 11.17 0.40 

GUMI 10.13 9.34 11.35 0.46 
UWPP 12.21 11.06 13.39 0.62 

KL-mean (mult.) 10.35 9.47 11.66 0.52 
GUMI (mult.) 10.60 9.93 11.63 0.48 
UWPP (mult.) 12.22 11.34 13.03 0.50 

Whilst both the KL-mean and GUMI systems give below chance-
level RMSE (according to [13]), results of the UWPP system were 
disappointing and could be a reflection of the acoustic variability 
seen within the corpus. We speculate that if the corpus had 
matched utterances, UWPP performance might improve.  
Whilst better results, not shown, could be found for each 
supervector, to fine-tune the number of mixes, MAP iterations, 
subfile length and overlap could result in overfitting to the 
development partition.  
To test the effect of variability captured within a file on score 
prediction, we extracted a number of supervectors per 
development set file, using the overlapping methodology 
described in Section 3.1, and generated a range of prediction 
scores per file (Figure 3). Results shown in Figure 4 were found 
using KL-means with 30s windows overlapping every 5s and 
leave-one-out (file) cross-validation.  

 
Figure 4. Range of scores predicted per development set file 

using KL-means supervector, 30s windows overlapping every 
5s and leave-one-out (file) cross-validation 

5.1.2 NAP Results 
The dimensionality of the projection matrix is the critical 
parameter in ensuring how much variability is removed from each 
supervector. If too much variability is removed then useful 
depression information contained in the speech signal may also be 
removed. To ascertain how much variability is captured per 
dimension, the eigenvalues extracted in Eq. (9) were sorted in 
descending order (these can be considered estimates of variability 
along the directions defined by the corresponding eigenvectors). 
The percentage of variability captured by a given number of 
dimensions can then be estimated from a plot of the ratio of 



eigenvalues to the sum of all eigenvalues. For the KL means and 
GUMI systems, almost 100% of the variability is captured by the 
first 500 eigenvectors whilst for the UWPP supervector the full 
dimensionality is needed, 128, to capture all the variability 
(Figure 5).  

 
Figure 5. Variability captured by increasing dimensionality of 

NAP projection matrix for the KL-mean (left), GUMI 
(middle) and UWPP (right). 

The results of applying Eq. (11) are shown in Figure 6. Again, to 
minimize the effects of overfitting, no attempts were made to fine 
tune the dimensionality of the projection matrix. Both the GUMI 
and UWPP systems were able to lower their RMSEs when 
compared with the results seen in Table 5, whilst the KL-means 
system was unable to. None of the systems beat the RMSE set in 
Table 4. We speculate that this is due to the uncontrolled nature 
calculating the NAP variability - we have no guarantees that the 
variability being removed is useful or detrimental - as well as the 
(relatively) small amount of data being used to compute P. A less 
naïve partition of the data set, such as turn based, might also be 
able to help improve results in both sections 5.1.1 and here.  

 
Figure 6. Effect on RMSE, for overlapping window technique, 
of increasing dimensionality of NAP projection matrix for the 

KL-mean (top), GUMI (middle) and UWPP (bottom)  

5.2 Visual Sub System 
A series of initial tests was run to help determine the dictionary 
length for the PHOG feature, (Table 6).  All results were 
generated, using the second testing methodology from Section 
4.4. There are small performance gains to be found when 
increasing the PHOG dictionary length from 100 to 200, but there 
is a saturation effect when increasing this length above 200. We 
speculate this effect can be attributed to the curse of 
dimensionality. The PHOG appears better suited to the 
challenge’s regression task than the STIP_BoW feature. The 
reason behind this is that the STIP_BoW descriptors are computed 
around interest points only; therefore may miss potentially 
important global information. It is noticeable that the Chi2 kernel 
performs best for histogram based visual features. This re-affirms 

earlier results seen for similar features used in human action 
recognition [32]. 

Table 6. RMSE for Initial Visual System Design 
System kernel mean min max st.dev. 

STIP_BoW 
Chi2 13.21 12.70 13.67 0.27 
HIK 12.18 11.73 12.56 0.23 

PHOG_100 
Chi2 8.18 7.72 8.73 0.28 
HIK 8.32 7.76 8.82 0.28 

PHOG_200 
Chi2 7.27 6.97 7.69 0.18 
HIK 8.05 7.35 8.39 0.25 

PHOG_ 300 
Chi2 9.16 8.76 9.70 0.21 
HIK 9.16 8.71 9.85 0.25 

5.3 Fused Systems 
To accurately allow for comparison between our unimodal and 
multimodal results, we firstly generated a set of results on a subset 
of individual systems using the experimental settings described in 
Section 4.3.1 and the second experimental scheme from Section 
4.4 (Table 7). All results in this section are reported in terms of 
mean RMSE only.  Surprisingly, the HIK kernel worked well with 
the KL-mean audio feature; this result could be due in part to the 
increased training data in this regression system (90 vectors vs. 
40). We speculate that as the KL-means works well with the HIK 
kernel, it could potentially have properties, which resemble Bag-
of-visual words (BOV) based features, as in [47]. For the visual 
features, we see an improved system performance when using the 
non-linear SVR kernels; this matches well with results presented 
in [47] for the comparison of different kernel methods for 
evaluating histogram based visual features. The differences in 
visual results between those presented in Table 6 and those in this 
section can be attributed to the normalisation of the feature space 
(Section 4.3.1); as the visual features are histograms they typically 
do not need further normalisation. 
Table 7. RMSE found for features from different modes using 

the same regression system. 

System Mode Kernel 
Lin Chi2 HIK 

STIP_BoW V 12.23 11.67 11.81 
PHOG_100 V 12.01 11.72 11.81 
PHOG_200 V 12.15 11.84 11.84 
PHOG_300 V 12.12 11.85 11.89 
KL-means A 11.36 11.40 9.88 

When fusing the KL-means with visual features, small 
improvements can be found (Table 8). The results for the fusion 
with HIK kernel are well below chance level RMSE, whereas 
only the KL-means feature, with HIK kernel, is significantly 
lower than chance level in Table 7. This result matches well with 
experimental work presented in [45], where increases in system 
performance for a presence/absences of depression classifier are 
found using feature level fusion. 

Table 8. RMSE found fusing KL-means with a range of 
different visual features 

System Kernel 
Lin Chi2 HIK 

KL-Means + STIP_BoW 11.74 11.67 10.30 

KL-Means + PHOG_100 11.39 11.38 9.75 

KL-Means + PHOG_200 11.29 11.32 9.67 

KL-Means +PHOG_300 11.36 11.44 9.84 



6. AVEC 2013 CHALLENGE RESULTS 
6.1 Development Set Results 
To make results comparable with baseline system accuracy, a 
selection of the systems presented in Section 5 was trained using 
the training partition and tested using the development partition 
(Figure 7).  
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Figure 7. Regression system experimental scheme to generate 

RMSE scores comparable with AVEC 2013 baseline 
To generate the audio results default experimental settings were 
used, whilst for the visual and fusion results results Chi2 and HIK 
kernels were used, respectively in the SVR. All features were 
normalized to lie in the range [0, 1] before SVR training and 
testing, except for a subset of the non-fused visual features. 
6.1.1 Audio Systems 
All KL-means and GUMI audio systems outperformed the AVEC 
development baseline of 10.75 (Table 9). Whilst the single UWPP 
result is not surprising given results in Section 5, the performance 
of the two UWPP (multiple subfile) systems is encouraging. Both 
these systems almost match the challenge baseline on a feature 
whose dimensionality is 128, compared with 95256 features 
supplied in the challenge feature set [13]. 

Table 9. RMSE generated using Audio (A) feature systems 
trained using the AVEC 2013 Training Partition and tested on 

Development Partition. 

System Mode 
RMSE 

Single Multi. Multi. (NAP) 
KL-means (single) A 9.60 9.00 8.94 (P dim. 5) 

GUMI (single) A 9.56 9.39 9.39 (P dim. 5) 
UWPP (single) A 12.01 10.81 10.77 (P dim. 2) 

6.1.2 Visual Systems 
All variants of the non-normalized PHOG features outperformed 
the challenge visual baseline of RMSE of 10.72 (Table 10). The 
disappointing performance of the STIP_BoW helps support our 
earlier speculation that these features, computed around interest 
points only, may omit potentially important global cues, in terms 
of depression recognition. 

Table 10. RMSE generated using Visual (V) feature systems 
trained using the AVEC 2013 Training Partition and tested on 

Development Partition. 
System Mode RMSE (No Norm.) RMSE 

STIP_BoW V 12.58 11.90 
PHOG_100 V 8.64 12.07 
PHOG_200 V 8.37 12.08 
PHOG_300 V 8.84 11.98 

6.1.3 Fused Features 
Whilst the fusion results were unable to match the non-fused 
RMSE of KL-means, both systems were able to outperform both 
the audio and visual challenge baselines, with feature 

dimensionality well below that used to set the challenge baselines. 
These results show the potential that combining modalities has in 
predicting an individual’s self-reported level of depression.  

Table 11. RMSE generated using both audio and visual 
features system trained using the AVEC 2013 Training 

Partition and tested on Development Partition. 

System Mode RMSE 

KL-Means + STIP_BoW A+V 10.65 

KL-Means + PHOG_200 A+V 10.44 

6.2 Test Set Results 
We submitted two audio systems, two visual systems and a fusion 
system as our official challenge entry (Table 12). For the audio 
systems and fusion system, the training and development set were 
used to train the SVR, again the features were normalized to lie 
within [0, 1] and the ranges of the training and development set 
were used to normalize the testing features. No feature level 
normalisation was used to generate our visual predictions. 
The first system tested (Table 12) was KL-means, representing the 
most consistent performing audio feature in system development. 
This feature obtained a very competitive RMSE of 10.17, well 
below the Challenge test audio baseline of 14.12. Given the 
consistent performance of this feature in system development and 
in other paralinguistic tasks [24], [25], this result is not surprising. 
The second audio system chosen was another KL-mean system. 
This time the multi system including NAP, the training and 
development set was used to calculate the projection matrix, with 
a dimensionality of 5, and this was then applied to the test set. The 
same feature normalisation method was applied to the 
training/development set and test set. The RMSE for this system 
was 13.34, still beating the challenge baseline. We speculate that 
the increase in RMSE could be due to an incorrectly chosen P 
dimensionality due to combining the training and development 
data, as well as the controlled nature of NAP (see Section 5.1.3). 
Two versions of the most consistent performing visual system, 
PHOG_200 in combination with a Chi2 SVR kernel, were 
submitted for test evaluations. To generate our predictions for the 
first visual system, the SVR was trained using both the 
challenge’s training and development sets, and using this set-up 
we just beat the Challenge’s visual baseline of 13.61. Given the 
strong performance of this feature in system development, this 
result was disappointing. Therefore, we re-ran our system but this 
time only used the training partition for SVR training, and we 
were able to significantly lower our RMSE. We argue that in 
certain cases more training data does not always guarantee better 
system performance [49]. 
To generate our fusion result, we combined the two strongest 
performing visual and audio features in development: KL-mean 
and PHOG_200, in combination with a HIK SVR. As with the 
development set results for this feature combination we 
outperformed the baseline RMSE of both modalities.  

Table 12. AVEC 2013 Test Set Results 
System Mode RMSE 

KL-means (single) A 10.17 

KL-means (multi + NAP P dim. =5) A 13.34 

PHOG_200 (Train + Devel.) V 13.51 

PHOG_200 (Train Only) V 10.45 

KL-mean+PHOG_200 A+V 10.62 



7. CONCLUSION 
Learning from previous challenges, overfitting to development 
sets can be a major confounding factor [50]. As a result, various 
attempts, such as random trials of cross fold validation and no 
system fine tuning were made during system development. When 
comparing our scores to those presented in the challenge baseline 
paper [13], we feel we met our stated aim of outperforming the 
challenge benchmark. Secondly, given the strong performance of 
our features in both system development and testing, our attempts 
minimize overfitting were successful. 
In terms of audio features, whilst the NAP approach to 
minimizing speaker variability did not perform as strongly in the 
test conditions, the development results show promise and future 
work will be spent developing this approach further. Interestingly, 
results seem to show that correctly choosing the correct number of 
Gaussian Mixtures and MAP iterations to suit the task at hand 
goes a long way towards minimising unwanted variability. For the 
visual features, dividing the video clip into variable duration time 
slices preserves local temporal change information and the PHOG 
feature is well suited to the task of depression detection and future 
work will be done developing systems around this feature. 
A key result in this paper was the promising result shown for the 
feature level fusion results in both system development and test 
conditions. Given the wide range of symptoms associated with 
depression, and recent affect recognition studies showing the 
benefits of multimodal approaches [35], [38], we feel that a 
multimodal approach represents the best prospect for building a 
successful depression classification system. Therefore, future 
research will focus on improving our fusion strategies.  
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