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Abstract. Bayesian sequence prediction is a simple technique for pre-
dicting future symbols sampled from an unknown measure on infinite
sequences over a countable alphabet. While strong bounds on the ex-
pected cumulative error are known, there are only limited results on the
distribution of this error. We prove tight high-probability bounds on the
cumulative error, which is measured in terms of the Kullback-Leibler
(KL) divergence. We also consider the problem of constructing upper
confidence bounds on the KL and Hellinger errors similar to those con-
structed from Hoeffding-like bounds in the i.i.d. case. The new results
are applied to show that Bayesian sequence prediction can be used in
the Knows What It Knows (KWIK) framework with bounds that match
the state-of-the-art.

Keywords: Bayesian sequence prediction, concentration of measure, in-
formation theory, KWIK learning.

1 Introduction

Sequence prediction is the task of predicting symbol ωt having observed ω<t =
ω1ω2ω3 · · ·ωt−1 where the underlying distribution from which the sequence is
sampled is unknown and may be non-stationary. We assume sequences are sam-
pled from an unknown measure μ known to be contained in a countable model
class M. At time-step t having observed ω<t a predictor ρ should output a dis-
tribution ρt over the next symbol ωt. A predictor may be considered good if for
all μ ∈ M the predictive distribution of ρ converges fast to that of μ

Δ(ρt, μt)
fast−→ 0

where Δ(ρt, μt) is some measure of the distance between ρt and μt, typically
either the Kullback-Leibler (KL) divergence dt or the squared Hellinger distance
ht. One such predictor is the Bayesian mixture ξ over all ν ∈ M with strictly
positive prior. A great deal is already known about ξ. In particular the pre-
dictive distribution ξt converges to μt with μ-probability one and does so with
finite expected cumulative error with respect to both the KL divergence and the
squared Hellinger distance [BD62,Sol78,Hut01,Hut03,Hut05].

The paper is divided into three sections. In the first we review the main
results bounding the expected cumulative error between μt and ξt and prove
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high-probability bounds on this quantity. Such bounds are already known for
the squared Hellinger distance, but not the KL divergence until now [HM07].
We also bound the cumulative ξ-expected information gain. The second section
relates to the confidence of the Bayes predictor. Even though ht and dt converge
fast to zero, these quantities cannot be computed without knowing μ. We con-
struct confidence bounds ĥt and d̂t that are computable from the observations
and upper bound ht and dt with high probability respectively. Furthermore we
show that ĥt and d̂t also converge fast to zero and so can be used in the place
of the unknown ht and dt. The results serve a similar purpose to upper con-
fidence bounds obtained from Hoeffding-like bounds in the i.i.d. case to which
our bounds are roughly comparable (Appendix E). Finally we present a simple
application of the new results by showing that Bayesian sequence prediction can
be applied to the Knows What It Knows (KWIK) framework [LLWS11] where
we achieve a state-of-the-art bound using a simple, efficient and principled algo-
rithm.

2 Notation

The natural numbers are denoted by N. Logarithms are taken with respect to
base e. The indicator function is �expr�, which is equal to 1 if expr is true and 0
otherwise. The alphabet X is a finite or countable set of symbols. A finite string
x over alphabet X is a sequence x1x2x3 · · ·xn where xk ∈ X . An infinite string
is a sequence ω1ω2ω3 · · · . We denote the set of all finite strings by X∗ and the
set of infinite strings by X∞. The length of finite string x ∈ X∗ is denoted by
�(x). Strings can be concatenated. If x ∈ X∗ and y ∈ X∗ ∪X∞, then xy is the
concatenation of x and y. For string x ∈ X∗ ∪ X∞, substrings are denoted by
x1:t = x1x2 · · ·xt and x<t = x1:t−1. The empty string of length zero is denoted
by ε.

Measures. The cylinder set of finite string x is Γx := {xω : ω ∈ X∞}. De-
fine σ-algebra F<t := σ(

{
Γx : x ∈ Xt−1}) and F := σ({Γx : x ∈ X∗}). Then

(X∞, {F<t} ,F) is a filtered probability space. Let μ be a probability measure
on this space. We abuse notation by using the shorthands μ(x) := μ(Γx) and
μ(y|x) := μ(xy)/μ(x). The intuition is that μ(x) represents the μ-probability
that an infinite sequence sampled from μ starts with x and μ(y|x) is the μ-
probability that an infinite sequence sampled from μ starts with xy given that
it starts with x. We write μ � ξ if μ is absolutely continuous with respect
to ξ. From now on, unless otherwise specified, all measures will be probability
measures on filtered probability space (X∞, {F<t} ,F).

Bayes Mixture. Let M be a countable set of measures and w : M → (0, 1]
be a probability distribution on M. The Bayes mixture measure ξ : F → [0, 1]
is defined by ξ(A) :=

∑
ν∈M wνν(A). By the definition ξ(A) ≥ wνν(A) for all

A ∈ F and ν ∈ M, which implies that ν � ξ. Having observed data x ∈ X∗

the prior w is updated using Bayes rule to be wν(x) := wνν(x)/ξ(x). Then
ξ(y|x) can be written ξ(y|x) = ∑ν∈M wν(x)ν(y|x). The entropy of the prior is
Ent(w) := −∑ν∈Mwν lnwν .
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Distances between Measures. Let μ and ξ be measures. The squared Hellinger
distance between the predictive distributions of μ and ξ given x ∈ X∗ is defined
by hx(μ, ξ) :=

∑
a∈X(

√
μ(a|x)−√ξ(a|x))2. If μ � ξ, then the Kullback-Leibler

(KL) divergence is defined by dx(μ‖ξ) :=
∑

a∈X μ(a|x) ln μ(a|x)
ξ(a|x) . The KL diver-

gence is not a metric because it satisfies neither the symmetry nor the triangle
inequality properties. Nevertheless, it is a useful measure of the difference be-
tween measures and is occasionally more convenient than the Hellinger distance.
Let ξ be the Bayes mixture over ν ∈ M with prior w : M → (0, 1]. If ρ ∈ M,
then define random variables on X∞ by

ρ1:t(ω) := ρ(ω1:t) ρ<t(ω) := ρ(ω<t) ρt(ω) := ρ(ωt|ω<t)

ht(ρ, ξ) (ω) := hω<t(ρ, ξ) dt(ρ‖ξ) (ω) := dω<t(ρ‖ξ)

The latter term can be rewritten as

dt(ρ‖ξ) = Eρ

[
ln

ρ1:t
ρ<t

· ξ<t

ξ1:t

∣
∣∣
∣F<t

]
= Eρ

[
ln

ρ1:t
ξ1:t

∣
∣∣
∣F<t

]
+ ln

ξ<t

ρ<t
. (1)

Now fix an unknown μ ∈ M and define random variables (also on X∞).

dt := dt(μ‖ξ) ht := ht(μ, ξ) ct(ω) :=
∑

ν∈M
wν(ω<t)dω<t(ν‖ξ)

D∞ :=
∞∑

t=1

dt H∞ :=
∞∑

t=1

ht C∞ :=
∞∑

t=1

ct.

Both ht and dt are well-known “distances” between the predictive distributions
of ξ and μ at time t. The other quantity ct is the ξ-expected information gain of
the posterior between times t and t+ 1 given the observed sequence at time t.

ct =
∑

ν∈M
wν

ν<t

ξ<t
dt(ν‖ξ) = Eξ

[
∑

ν∈M
wν

ν1:t
ξ1:t

ln
νt
ξt

︸ ︷︷ ︸
information gain

∣∣
∣
∣
∣
F<t

]

An important observation is that ct is independent of the unknown μ.

3 Convergence

In this section we consider the convergence of ξt − μt → 0 for all μ ∈ M where
convergence holds with μ-probability 1, in mean sum or with high μ-probability
of a small cumulative error. The first theorem is a version of the celebrated result
of Solomonoff that the predictive distribution of the Bayes mixture ξ converges
fast to the truth in expectation [Sol78, Hut05]. The only modification is the
alphabet is now permitted to be countable rather than finite.
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Theorem 1 (Sol78,Hut05). The following hold:

EμH∞ ≤ EμD∞ ≤ ln
1

wμ
lim
t→∞ dt = lim

t→∞ht = 0, w.μ.p.1.

The proof can be found in Appendix B. Theorem 1 shows that the predictive
distribution of ξ converges to μ asymptotically and that it does so fast (with finite
cumulative squared Hellinger/KL error) in expectation. We now move on to the
question of high-probability bounds on D∞ and H∞. The following theorem is
already known and essentially unimprovable.

Theorem 2 (HM07). For all δ ∈ (0, 1) it holds with μ-probability at least 1−δ
that H∞ ≤ ln 1

wμ
+ 2 ln 1

δ .

We contribute a comparable concentration bound for D∞. A weak bound can
be obtained by applying Markov’s inequality to show that D∞ ≤ 1

δ · ln( 1
wμ

) with

μ-probability at least 1− δ, but a stronger result is possible.

Theorem 3. For all δ ∈ (0, 1) it holds with μ-probability at least 1 − δ that
D∞ ≤ e · (ln 6

δ ) · (ln 2
δ + ln 1

wμ
).

Proof. A stopping time is a random variable t : X∞ → N ∪ {∞} such that
t−1(n) is F<n measurable for all n. For stopping time t let X(t) ⊂ X∗ be the
set of finite sequences where t becomes known

X(t) := {x : t(xω) = �(x) + 1, ∀ω} .

Define random variable z<t := ξ<t/μ<t and L := �ln(2/δ)
 ≤ ln(6/δ) and stop-
ping times {tk} inductively by

t1 := 1 tk+1 := min

{
s :

s∑

t=tk

dt > e ·
(
ln z<tk + ln

1

wμ

)}
.

The result follows from two claims, which are proven later.

μ

(
sup
t

ln z<t ≥ ln
2

δ

)
≤ δ/2 (�) μ

(
tL+1 < ∞

)
≤ δ/2 (��)

By the union bound we obtain that if A is the event that tL+1 = ∞ and
supt ln z<t ≤ ln 2

δ , then μ(A) ≥ 1− δ and for ω ∈ A

D∞(ω) =

∞∑

t=1

dt(ω)
(a)
=

L∑

k=1

tk+1(ω)−1∑

t=tk(ω)

dt(ω)
(b)

≤
L∑

k=1

e ·
(
ln z<tk(ω) + ln

1

wμ

)

(c)

≤ e · L
(
ln

2

δ
+ ln

1

wμ

)
(d)

≤ e · ln
(
6

δ

)
·
(
ln

2

δ
+ ln

1

wμ

)
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where (a) follows from the definition of tk and because tL+1(ω) = ∞. (b) follows
from the definition of tk. (c) because supt ln z<t ≤ ln 2

δ . (d) by the definition of L.
The theorem is completed by proving (�) and (��). The first follows immediately
from Lemma 14. For the second we use induction and Theorem 1. After observing
x ∈ X(tn), ξ(·|x) is a Bayes mixture over ν(·|x) where ν ∈ M with prior weight
w(ν(·|x)) = wνν(x)/ξ(x). Therefore by Theorem 1

Eμ

[
∞∑

t=�(x)+1

dt

∣
∣
∣
∣∣
x

]

≤ ln
1

w(μ(·|x)) = ln
ξ(x)

μ(x)
+ ln

1

wμ
.

Therefore by Markov’s inequality

μ

(
∞∑

t=�(x)+1

dt > e ·
(
ln

ξ(x)

μ(x)
+ ln

1

wμ

) ∣∣
∣
∣
∣
x

)

≤ 1

e
.

Let n ∈ N and assume μ(tn < ∞) ≤ e1−n. By the definition tn+1 ≥ tn we have

μ

(
tn+1 < ∞

)
=
∑

x∈X(tn)

μ(x) · μ
(

∞∑

t=�(x)+1

dt > e ·
(
ln

ξ(x)

μ(x)
+ ln

1

wμ

) ∣∣
∣
∣
∣
x

)

≤ 1

e

∑

x∈X(tn)

μ(x) =
1

e
μ(tn < ∞) ≤ e−n.

Therefore μ(tn < ∞) ≤ e1−n for all n and so μ(tL+1 < ∞) ≤ e−L ≤ δ/2, which
completes the proof of (��) and so also the theorem. �
Theorem 3 is close to unimprovable.

Proposition 4. There exists an M = {μ, ν} such that with μ-probability at
least δ it holds that D∞ > 1

4 ln 2 ln
1
δ

(
ln 1

δ + 2 ln 1−w
w − 3 ln 2

)
.

Proof. Let X = {0, 1} and M := {μ, ν} where the true measure μ is the
Lebesgue measure and ν is the measure deterministically producing an infinite
sequence of ones, which are defined by μ(x) := 2−�(x) and ν(x) := �x = 1�(x)�
where 1n is the sequence of n ones.. Let w = wμ and wν = 1 − w. If n =⌊

1
ln 2 ln

1
δ

⌋ ∈ N, then μ(Γ1n) ≥ δ and for ω ∈ Γ1n

D∞(ω)
(a)

≥
n+1∑

t=1

d1t−1(μ‖ξ) (b)
=

n+1∑

t=1

(
1

2
· ln

1
2

ξ(1|1t−1) +
1

2
· ln

1
2

ξ(0|1t−1)
)

(c)
>

1

2

n+1∑

t=1

ln

(
1

4ξ(0|1t−1)
)

(d)
=

1

2

n+1∑

t=1

ln

(
w · 21−t + (1− w)

4w · 2−t
)

(e)

≥ 1

2

n+1∑

t=1

(
(t− 2) ln 2 + ln

1− w

w

)
(f)
=

(n+ 1)
(
2 ln 1−w

w + (n− 2) ln 2
)

4

(a) follows from the definition of D∞(ω) and the positivity of the KL divergence,
which allows the sum to be truncated. (b) follows by inserting the definitions of
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μ and the KL divergence. (c) by basic algebra and the fact that ξ(1|1t−1) < 1.
(d) follows from the definition of ξ while (e) and (f) are basic algebra. Finally
substitute n+ 1 ≥ 1

ln 2 ln
1
δ . �

In the next section we will bound dt by a function of ct, which can be computed
without knowing μ. For this result to be useful we need to show that ct converges
to zero, which is established by the following theorems.

Theorem 5. If Ent(w) < ∞, then EμC∞ ≤ Ent(w)/wμ and limt→∞ ct = 0
with μ-probability 1.

Proof. We make use of the dominance ξ(x) ≥ wμμ(x), properties of expectation
and Theorem 1.

EμC∞ := Eμ

∞∑

t=1

ct
(a)

≤ 1

wμ
Eξ

∞∑

t=1

ct
(b)
=

1

wμ
Eξ

∞∑

t=1

∑

ν∈M
wν

ν<t

ξ<t
dt(ν‖ξ)

(c)
=

1

wμ

∑

ν∈M
wνEν

∞∑

k=1

dt(ν‖ξ)
(d)

≤ 1

wμ

∑

ν∈M
wν ln

1

wν

(e)
=

Ent(w)

wμ

(a) follows by dominance μ(A) ≤ ξ(A)/wμ and linearity of expectation. (b) is
the definition of ct. (c) by exchanging sums and the definition of expectation.
(d) is true by substituting the result in Theorem 1. Finally (e) follows from
the definition of the entropy Ent(w). That limt→∞ ct = 0 with μ-probability 1
follows from the first result by applying Markov’s inequality to bound C∞ < ∞
with probability 1. �
In the finite case a stronger result is possible.

Theorem 6. If |M| = K < ∞ and w is the uniform prior, then EμC∞ ≤
6 ln2 K + 14 lnK + 8.

Theorem 6 is tight in the following sense.

Proposition 7. For each K ∈ N there exists an M of size K and μ ∈ M such
that if w is the uniform prior on M, then EμC∞ > 1

2 ln
2 K − 1.

See the appendix for the proofs of Theorem 6 and Proposition 7.

4 Confidence

In the previous section we showed that ξt converges fast to μt. One disadvantage
of these results is that errors dt and ht cannot be determined without knowing μ.
In this section we define d̂t and ĥt that upper bound dt and ht respectively with
high probability and may be computed without knowing μ. Let M ⊇ M1 ⊇
M2 · · · be a narrowing sequence of hypothesis classes where Mt contains the
set of plausible models at time-step t and is defined by

Mt :=

{
ν ∈ M : ∀τ ≤ t,

ν<τ

ξ<τ
≥ δ

wμ

wν

}
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Then ĥt is defined as the value maximising the weighted squared Hellinger dis-
tance between ν and ξ for all plausible ν ∈ Mt and d̂t is defined in terms of the
expected information gain.

d̂t :=
ct
wμδ

ĥt := sup
ν∈Mt

{
wν

wμ
ht(ν, ξ)

}

Both d̂t and ĥt depend on wμ, which is also typically unknown. IfM is finite, then
the problem is easily side-stepped by choosing w to be uniform. The countable
case is discussed briefly in the conclusion. First we prove that ht ≤ ĥt and dt ≤ d̂t
with high probability after which we demonstrate that they are non-vacuous by
proving that ĥt and d̂t converge fast to zero with high probability. Now is a good
time to remark that hypothesis testing using the factor ν<t/ξ<t is not exactly a
new idea. For discussion, results, history and references see [SSVV11].

Theorem 8. For all δ ∈ [0, 1] it holds that:

μ(∀t : dt ≤ d̂t) ≥ 1− δ (�) μ(∀t : ht ≤ ĥt) ≥ 1− δ (��)

Proof. To prove (�) define event A :=
{
ω : supt ξ(ω<t)/μ(ω<t) <

1
δ

}
. By Lemma

14 in the appendix we have that μ(A) ≥ 1−δ. If ω ∈ A, then μ(ω<t)/ξ(ω<t) > δ
for all t and

ct(ω)
(a)
=
∑

ν∈M
wν

ν(ω<t)

ξ(ω<t)
dω<t(ν‖ξ)

(b)

≥ wμ
μ(ω<t)

ξ(ω<t)
dω<t(μ‖ξ)

(c)
> wμ · δ · dω<t(μ‖ξ)

(d)
= wμ · δ · dt.

(a) is the definition of ct. (b) follows by dropping all elements of the sum except
μ. (c) by substituting the bound on μ/ξ. (d) is the definition of dt. Therefore
dt · wμ · δ ≤ ct with μ-probability at least 1 − δ as required. For (��) we note

that by the definition of ĥt, if μ ∈ Mt, then ht ≤ ĥt. The result is completed
by applying Lemma 14 in the appendix to show that μ ∈ Mt for all t with
probability at least 1− δ. �

Theorem 9. The following hold:

1. Eμ

∑∞
t=1 d̂t ≤ Ent(w)

δw2
μ

.

2. w.μ.p. at least 1− δ it holds that
∑∞

t=1 d̂t ≤ Ent(w)
δ2w2

μ
.

Theorem 10. The following hold:

1. Eμ

∑∞
t=1 ĥt ≤ 2

wμ

(
ln 1

wμ
+ ln 1

δ + Ent(w)
)

2. w.μ.p. at least 1− δ,
∑∞

t=1 ĥt ≤ 2
wμ

(
2 ln 1

wμ
+ 5 ln 1

δ + 3Ent(w)
)
.
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The consequences of Thereoms 6, 9 and 10 are summarised in Figure 1 for
both countable and finite hypothesis classes. The proof of Theorem 9 follows
immediately from Theorem 5 and Markov’s inequality. If M is finite and w
uniform, then one can use Theorem 6 instead to improve dependence on 1

wμ
. For

Theorem 10 we use Theorem 2 and the following lemma, which is a generalization
of Lemma 4 in [HM07].

Lemma 11. Let κ > 0 and stopping time τ := mint {t : ν<t/μ<t < κ}. Then
Eμ

∑τ−1
t=1 ht(ν, μ) ≤ 2 lnEμ exp

(
1
2

∑τ−1
t=1 ht(ν, μ)

)
≤ ln 1

κ .

Proof of Theorem 10. The proof is neccesarily brief with a complete version
available in [LHS13]. Define stopping time τ̄ν := mint {t : ν<t/μ<t < wνδ}, then
it may be shown that

∞∑

t=1

ĥt ≤ 2

wμ

(

H∞ +
∑

ν∈M
wν

τ̄ν−1∑

t=1

ht(ν, μ)

)

(2)

where we used the fact that 1
2ht(ν, ξ) ≤ ht(ν, μ) + ht(μ, ξ) and the definitions of

H∞ and τ̄ν . Let Δν :=
∑τ̄ν−1

t=1 ht(ν, μ). The first claim is proven by taking the
expectation with respect to μ and substituting Theorem 1 to bound EμH∞ ≤
ln 1

wμ
and Lemma 11 with τ = τ̄ν and κ = wνδ to bound EμΔν ≤ ln 1

wν
+ ln 1

δ .

For the high probability bound let λν := 3 ln 1
δwν

+ ln 1
wμ

and apply Lemma 11

and Markov’s inequality.

μ (Δν ≥ λν) = μ
(
eΔν/2 ≥ eλν/2

)
≤ e−λν/2Eμ[e

Δν/2] ≤ e−λν/2

√
wνδ

= wνδ.

By Theorem 2 we have that H∞ ≤ ln 1
wμ

+ 2 ln 1
δwμ

with μ-probability at least

1 − wμδ and by the union bound and the fact that
∑

ν wν = 1 we obtain with
probability at least 1− δ that Δν ≤ λν for all ν and H∞ ≤ ln 1

wμ
+2 ln 1

δ , which

when substituted into Equation (2) leads to
∑∞

t=1 ĥt ≤ 2
wμ

(2 ln 1
wμ

+ 5 ln 1
δ +

3Ent(w)) as required. �

|M| Expectation High Probability

∞
Eμ

∑∞
t=1 d̂t �

Ent(w)

δw2
μ

∑∞
t=1 d̂t �

Ent(w)

δ2w2
μ

Eμ

∑∞
t=1 ĥt � 1

wμ

(
Ent(w) + ln 1

wμδ

) ∑∞
t=1 ĥt � 1

wμ

(
Ent(w) + ln 1

wμδ

)

K

wν=
1
K

Eμ

∑∞
t=1 d̂t � K

δ
ln2 K

∑∞
t=1 d̂t � K

δ2
ln2 K

Eμ

∑∞
t=1 ĥt � K

(
lnK + ln 1

δ

) ∑∞
t=1 ĥt � K

(
lnK + ln 1

δ

)

� ignores constant multiplicative factors

Fig. 1. Confidence bounds
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5 KWIK Learning

Algorithm 1. KWIK Learner
1: Inputs: ε, δ andM := {ν1, ν2, · · · , νK}.
2: t← 1 and ω<t ← ε and wν = 1

K

3: loop

4: if ĥt(ω<t) ≤ ε then
5: output ξ(·|ω<t)
6: else
7: output ⊥
8: observe ωt and t← t + 1

The KWIK learning framework
involves an environment and agent in-
teracting sequentially as depicted be-
low. Suppose |M| = K < ∞ and
ε, δ > 0 are known to both parties.
A run starts with the environment
choosing an unknown μ ∈ M. At
each time-step t thereafter the agent
chooses between outputting a predic-
tive distribution ρ(·|ω<t) and special symbol ⊥. The run is failed if the agent
outputs ρ and hω<t(ρ, μ) > ε, otherwise ωt is observed and the run continues.
An agent is said to be KWIK if it fails the run with probability at most δ and
chooses ⊥ at most B(ε, δ) times with probability at least 1 − δ. Ideally, B(ε, δ)
should be polynomial in 1

ε and 1
δ [LLWS11].

Am I confident?output ρ(·|ω<t) output ⊥

hω<t (ρ, μ) ≤ ε? present ωt to agent

agent fails run

choose μ ∈ M

A
g
e
n
t

E
n
v
ir
o
n
m
e
n
t

yes no

yes
no

Fig. 2. KWIK learning framework

Theorem 12. Algorithm 1 is KWIK.

Proof. By Theorem 8, Algorithm 1 fails a run with probability at most δ. Using
� to ignore constant multiplicative factors, by Theorem 10 we have that

μ

(∣
∣
∣
{
t : ĥt ≥ ε

}∣∣
∣ � K

ε
ln

K

δ

)
≤ μ

( ∞∑

t=1
ĥt � K ln

K

δ

)
≤ δ.

Therefore the agent will choose ⊥ at most O
(
K
ε ln K

δ

)
times with probability at

least 1− δ. �
The Hellinger distance upper bounds the total variation distance. δx (μ, ξ) =
1
2

∑
a∈X |μ(a|x)− ξ(a|x)| ≤√hx(μ, ξ). Therefore if Algorithm 1 is run with ε =

ε21, then with high probability when predicting it will be ε1-optimal with respect

to the total variation distance and it will output ⊥ at most O
(

K
ε21

ln K
δ

)
times,

which is the same bound achieved by the k-meteorologist algorithm [DLL09].

6 Conclusions

The bound on the squared Hellinger distance ĥt is especially nice because the
results are rather clean. While the super-linear dependence on the size of the
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model class in Figure 1 is unfortunate, it is a worst-case bound that is only
achieved when at each time-step only one model differs from ξ (see the proof of
Proposition 7 for an example environment class when this occurs). For Bernoulli
classes the estimator performs comparably with the Hoeffding bound (Appendix

E). In the case when M is countable ĥt is independent of μ, but not wμ, which
is also typically unknown. Either choose a conservatively small w and pay the
1
w ln 1

w price, or decrease w with t at some slow rate, say w =
√
1/t. Analyzing

this situation is interesting future work.
There is opportunity for some improvement on the bound d̂. Intuitively we

expect the real dependence on 1
δ ought to be logarithmic, not linear. The unim-

provable result of Theorem 3 is interesting when compared to Theorem 2. Re-
searchers frequently bound the total variation distance via the KL divergence.
These results show that this is sometimes weaker than using the Hellinger dis-
tance when high-probability bounds are required.

KWIK learning for sequence prediction was chosen because our new results
can easily be applied to prove a state-of-the-art bound in that setting. Al-
though we have the same theoretical guarantee as the k-meteorologist algo-
rithm [DLL09], our simple algorithm eliminates environments smoothly as they
become unlikely while in that work no model (expert) is discarded before at
least m = O( 1

ε2 ln
1
δ ) differentiating samples have been observed. This distinc-

tion makes us suspect that Algorithm 1 may perform more efficiently in practice.
Additionally, assuming ν(·|x) can be computed in constant time, then Algo-
rithm 1 runs in O(K) time per time-step, while a naive implementation of the
k-meteorologist algorithm appears to have O(K2) running time per time-step.

Finally, we want to emphasize the generality of the results, especially Theorem
10, which although tight in a minimax sense, can likely be improved in easier
cases without changing the definition of ĥt. An interesting continuation is the
parametric case that is intuitively straight-forward, but technically challenging
(see [CB90] and [Hut05, §3] for some of the required techniques).

References

[BD62] Blackwell, D., Dubins, L.: Merging of opinions with increasing information.
The Annals of Mathematical Statistics 33(3), 882–886 (1962)

[CB90] Clarke, B., Barron, A.: Information-theoretic asymptotics of Bayes meth-
ods. IEEE Transactions on Information Theory 36, 453–471 (1990)

[DLL09] Diuk, C., Li, L., Leffler, B.: The adaptive k-meteorologists problem and
its application to structure learning and feature selection in reinforcement
learning. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) Proceedings
of the 26th Annual International Conference on Machine Learning, ICML
2009, pp. 249–256. ACM (2009)

[HM07] Hutter, M., Muchnik, A.: On semimeasures predicting Martin-Löf random
sequences. Theoretical Computer Science 382(3), 247–261 (2007)

[Hut01] Hutter, M.: Convergence and error bounds for universal prediction of non-
binary sequences. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS
(LNAI), vol. 2167, pp. 239–250. Springer, Heidelberg (2001)



334 T. Lattimore, M. Hutter, and P. Sunehag

[Hut03] Hutter, M.: Optimality of universal Bayesian prediction for general loss and
alphabet. Journal of Machine Learning Research 4, 971–997 (2003)

[Hut05] Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on
Algorithmic Probability. Springer, Berlin (2005)

[LHS13] Lattimore, T., Hutter, M., Sunehag, P.: Concentration and confidence for
discrete Bayesian predictors. Technical report (2013),
http://arxiv.org/abs/1307.0127

[LLWS11] Li, L., Littman, M., Walsh, T., Strehl, A.: Knows what it knows: a frame-
work for self-aware learning. Machine Learning 82(3), 399–443 (2011)

[Sol78] Solomonoff, R.: Complexity-based induction systems: Comparisons and
convergence theorems. IEEE Transactions on Information Theory 24(4),
422–432 (1978)

[SSVV11] Shafer, G., Shen, A., Vereshchagin, N., Vovk, V.: Test martingales, Bayes
factors and p-values. Statistical Science 26(1), 84–101 (2011)

[Vil39] Ville, J.: Etude critique de la notion de collectif. Gauthier-Villars, Paris
(1939)

[Vov87] Vovk, V.: On a randomness criterion. Soviet Mathematics Doklady 35, 656–
660 (1987)

A Technical Lemmas

Lemma 13 (Vov87). Let p and q be distribution on X, then

∑

a∈X

√
p(a)q(a) ≤ exp

(
−1

2

∑

a∈X

(√
p(a)−

√
q(a)

)2)
.

Lemma 14 (Vil39). If z<t := ξ<t/μ<t, then z<t is a μ-super-martingale,
μ (limt→∞ z<t < ∞) = 1 and μ

(
supt z<t ≥ 1

δ

) ≤ δ.

Lemma 15. Both Eμ ln(μ<n/ξ<n) and Eμdn exist and are finite.

The proof can be found in the technical report [LHS13].

B Proof of Theorem 1

First we note that the squared Hellinger distances is bounded by the KL diver-
gence, so H∞ ≤ D∞. We now bound EμD∞, which follows from the chain rule
for the conditional relative entropy. Fix n ∈ N and assume that

Δn−1 := Eμ

n∑

t=1
dt = Eμ ln

μ<n

ξ<n
, (�)

which is easily verified when n = 1. Therefore

Δn
(a)
= Eμ ln

μ<n

ξ<n
+ Eμdn

(b)
= Eμ

[
Eμ

[
ln

μ1:n

ξ1:n

∣∣
∣
∣F<n

]]
(c)
= Eμ ln

μ1:n

ξ1:n
.

(a) holds by Lemma 15. (b) by Equation (1) and the definition of expectation.
(c) by the definition of (conditional) expectation. Therefore (�) holds for all

http://arxiv.org/abs/1307.0127
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n by induction. By substituting dominance ξn ≥ wμμn into (�) one obtains
that Δn ≤ −Eμ lnwμ = − lnwμ. The proof is completed by taking the limit as
n → ∞ and applying the Lebesgue monotone convergence theorem to show that
EμD∞ = limn→∞Δn ≤ − lnwμ. That dt and ht converge to 0 with μ-probability
1 follows from Markov’s inequality applied to D∞ and H∞ respectively.

C Proof of Theorem 6

If t ≤ t′ are stopping times, then I(ω) = [t(ω), t′(ω)) is called a stopping interval
and X(I) := X(t) is the set of finite sequences when the start of I becomes
known. If ρ is a measure, then ρ(I) :=

∑
x∈X(I) ρ(x) is the ρ-probability of

encountering interval I at some point.

Lemma 16. Let ν ∈ M and I be a stopping interval. Then

Eν

∑

t∈I
dt(ν‖ξ) ≤

∑

x∈X(I)

ν(x)

(
ln

1

wν
+ ln

ξ(x)

ν(x)

)
.

Proof. The result follows from Theorem 1 and definitions. Let t be the stopping
time governing the start of interval I. Then

Eν

∑

t∈I
dt(ν‖ξ) (a)

=
∑

x∈X(I)

ν(x)Eν

[
∑

t∈I
dt(ν‖ξ)

∣
∣∣
∣
∣
x

]
(b)

≤ ∑
x∈X(I)

ν(x)Eν

[
∞∑

t=�(x)+1

dt(ν‖ξ)
∣
∣∣
∣
∣
x

]

(c)

≤ ∑
x∈X(I)

ν(x) ln
1

wν(x)

(d)
=
∑

x∈X(I)

ν(x)

(
ln

1

wν
+ ln

ξ(x)

ν(x)

)
.

(a) follows by by the definition of expectation. (b) by increasing the size of the
interval. (c) follows from Theorem 1 by noting that ξ(·|x) is a mixture over
{ν(·|x) : ν ∈ M} with prior w(·|x). (d) because wν(x) = wνν(x)/ξ(x) and by
expanding the logarithm. �

Proof of Theorem 6. First, the quantity to be bounded can be rewritten as
an average of ν-expectations of a certain random variable.

Δ := Eμ

∞∑

t=1
ct

(a)
=
∞∑

t=1
Eμct

(b)
=
∞∑

t=1

∑

x∈Xt−1

μ(x)
∑

ν∈M

1

K
· ν(x)
ξ(x)

dx(ν‖ξ)

(c)
=

1

K

∑

ν∈M

∞∑

t=1

∑

x∈Xt−1

ν(x)
μ(x)

ξ(x)
dx(ν‖ξ) (d)

=
1

K

∑

ν∈M

∞∑

t=1
Eν

μ<t

ξ<t
dt(ν‖ξ)

(e)
=

1

K

∑

ν∈M
Eν

∞∑

t=1

μ<t

ξ<t
dt(ν‖ξ)

︸ ︷︷ ︸
Δ(ν)

.
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(a) follows by the linearity of expectation and positivity of ct. (b) by writing
out the definition of the expectation. (c), (d) and (e) exchanging sums and the
definition of expectation. Define at, bt : X

∞ → N by

at(ω) := sup
t′≤t

�ln ξ(ω<t′)/ν(ω<t′)� bt(ω) := sup
t′≤t

�lnμ(ω<t′)/ξ(ω<t′)� ,
which are monotone non-decreasing. By the definition of ξ as a uniform mixture
over M, μ(x)/ξ(x) ≤ K, so bt(ω) ≤ lnK =: L. Furthermore, μ(ε) = ν(ε) =
ξ(ε) = 1 implies that at(ω), bt(ω) ≥ 0. Define intervals of the following form

Iβ(ω) := {t : bt = β ∧ at ≤ β} Iα,β(ω) := {t : at = α ∧ bt = β} .
Then N can be divided into disjoint intervals of the form Iβ and Iα,β where
α > β.

∀(ω ∈ X∞), N =

L⋃

β=0

⎛

⎝Iβ(ω) ∪
⋃

α>β∈N
Iα,β(ω)

⎞

⎠ (3)

Then Δ(ν) can be decomposed as follows

Δ(ν) ≡ Eν

∞∑

t=1

μ<t

ξ<t
dt(ν‖ξ)

=
L∑

β=0

Eν

∑

t∈Iβ

μ<t

ξ<t
dt(ν‖ξ)

︸ ︷︷ ︸
Δ1(ν)

+
L∑

β=0

∞∑

α=β+1

Eν

∑

t∈Iα,β

μ<t

ξ<t
dt(ν‖ξ)

︸ ︷︷ ︸
Δ2(ν)

where the second equality follows from Equation (3) and by linearity of the
expectation. We now bound Δ1(ν) and Δ2(ν).

Δ1(ν) ≡
L∑

β=0

Eν

∑

t∈Iβ

μ<t

ξ<t
dt(ν‖ξ)

(a)

≤
L∑

β=0

eβ+1
Eν

∑

t∈Iβ
dt(ν‖ξ)

(b)

≤
L∑

β=0

eβ+1∑

x∈X(Iβ)

ν(x)

(
L+ ln

ξ(x)

ν(x)

)
(c)

≤
L∑

β=0

eβ+1ν(Iβ) (L+ β + 1) .

(a) follows since on the interval Iβ the quantity μ<t/ξ<t < eβ+1. (b) follows from
Lemma 16 and by noting that ln 1

wμ
= lnK = L. (c) by the definition of ν(Iβ)

and because ξ<t/ν<t < eβ+1 on the interval Iβ . Δ2(ν) is bounded in a similar
fashion.

Δ2(ν) ≡
L∑

β=0

∞∑

α=β+1

Eν

∑

t∈Iα,β

μ<t

ξ<t
dt(ν‖ξ)

(a)

≤
L∑

β=0

eβ+1
∞∑

α=β+1

Eν

∑

t∈Iα,β

dt(ν‖ξ)

(b)

≤
L∑

β=0

eβ+1
∞∑

α=β+1

∑

x∈X(Iα,β)

ν(x)

(
L+ ln

ξ(x)

ν(x)

)

(c)

≤
L∑

β=0

eβ+1
∞∑

α=β+1

ν(Iα,β) (L+ α+ 1)
(d)

≤
L∑

β=0

eβ+1
∞∑

α=β+1

e−α (L+ α+ 1)

(e)
=

L∑

β=0

eβ+1e−β (L+ β + 3)
(f)
= 3(L+ 1)(L+ 2).
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(a) follows because μ<t/ξ<t < eβ+1 on the interval Iα,β and by expanding the
interval. (b) by Lemma 16. (c) because ν(Iα,β) =

∑
x∈X(Iα,β)

ν(x). By definition,

if x ∈ X(Iα,β), then a ξ(x)/ν(x) ≥ eα. By Lemma 14 the ν-probability of this
ever occurring is at most e−α, which implies ν(Iα,β) ≤ e−α and so gives (d). (e)
and (f) follow from simple algebra. Combining the bounds of Δ1(ν) and Δ2(ν)
leads to

∑

ν∈M
wνΔ(ν) ≡ ∑

ν∈M
wν (Δ1(ν) +Δ2(ν))

(a)

≤ 3(L+ 1)(L+ 2) +
∑

ν∈M
wν

L∑

β=0

eβ+1ν(Iβ)(L + β + 1)

(b)
= 3(L+ 1)(L+ 2) +

L∑

β=0

eβ+1ξ(Iβ)(L+ β + 1)

(c)

≤ 3(L+ 1)(L+ 2) +
L∑

β=0

2(L+ β + 1)
(d)
= 6L2 + 14L+ 8

(a) by substituting the bounds for Δ1(ν) and Δ2(ν). (b) by exchanging sums
and recalling that

∑
ν∈M wνν(A) = ξ(A) for all measurable A. (c) from Lemma

14 applied to bound ξ(Iβ) ≤ e−β in the same way as ν(Iα,β) was bounded. (d)
by simple algebra. The theorem is completed by substituting L := lnK. �

D Proof of Proposition 7

Let X = {0, 1} and define measure νk to be the deterministic measure producing
k ones followed by zeros νk(1|x) := ��(x) < k�. Let M :=

{
νk : 0 ≤ k ≤ K − 1

}

and the true measure be μ := νK−1. The Bayes mixture over M under the

uniform prior becomes ξ(x) := 1
K

∑K−1
k=0 νk(x). If t < K, then by substituting

definitions one obtains ξ(1t) = (K − t)/K and ξ(0|1t) = 1/(K − t). Therefore

Eμ

∞∑

t=1
ct

(a)

≥ Eμ

K∑

t=1
ct

(b)
=

K−1∑

t=0

K−1∑

k=0

1

K

νk(1t)

ξ(1t)
d1t
(
νk‖ξ)

(c)

≥
K−1∑

t=0

νt(1t)

Kξ(1t)
d1t
(
νt‖ξ) (d)

=
K∑

t=1

ln t

t

(e)

≥ 1

2
lnK − 1.

(a) follows by truncating the sum and positivity of ct. (b) by the definition of
ct, the expectation and because μ(1t) = 1 for all t ≤ K − 1. (c) by dropping all
terms in the sum over k except for k = t and positivity of all quantities. (d) and
(e) follow by substituting definitions and simple calculus/algebra.
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E Experiments
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We set δ = 1/10 and M = {ν0, · · · , ν40}
where νk is the Bernoulli measure with pa-
rameter θk := k/40. We then sampled 20,000
sequences of length 100 from the Lebesgue
measure μ = ν20 and computed the average
value of ĥt. For each t we computed the es-
timated quantile q̂t as the value such that
ht(μ, ξ) < q̂t for 90% of the samples. We com-
pare to

ft :=

√
1

2t
ln

2

δ
gt :=

√
1

2t
ln

2t(t+ 1)

δ

which are obtained from the Hoeffding and union bounds and satisfy

μ

(∣∣
∣
∣θ̂t −

1

2

∣∣
∣
∣ ≤ ft

)
≥ 1− δ μ

(
∀t :

∣∣
∣
∣θ̂t −

1

2

∣∣
∣
∣ ≤ gt

)
≥ 1− δ

where θ̂t is the empiric estimator of parameter θ. Some remarks:

– The frequentist estimator θ̂t(ω<t) ≈ ξ(1|ω<t) is very tight with high prob-

ability. Therefore comparing error between θ̂t and the true parameter 1
2 is

essentially the same as comparing ξ(·|ω<t) and μ(·|ω<t).

– The comparison to ft is not entirely fair to ĥt for two reasons. First because
ĥt upper bounds ht with high probability for all t while ft does so only for
each t and secondly because ft was based on the total variation distance,
which is smaller than the Hellinger distance.

– The comparison between ĥt and gt is not fair to gt because the application
of the union bound was rather weak.

– The comparison to the quantile is not entirely fair to ĥt, since q̂t is computed
for a single θ and individually for each t, while ĥt must work for all models
in M and all t.

– We also ran the experiment with 21 uniformly distributed environments with
almost identical results showing that ĥt is an excellent bound and strength-
ening our belief that at least in this simple setting the bound of Theorem 10
can be substantially improved in the i.i.d. case.

– The results indicate that ĥt tracks close to ft and q̂t, which essentially lower-
bounds the optimum. We expect the definition of gt can be improved to follow
close to ĥt and ft without weakening the bound (holding for all t), but doubt

that anything does much better than ĥt.
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