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We inverted the PROSPECT and GEOSAIL Radiative Transfer Models (RTM) using Moderate Resolution Imaging
Spectrometer (MODIS) data to retrieve Live Fuel Moisture Content (LFMC) inwoodlands located in the peninsu-
lar territory of Spain. Ecological rules were used to parameterize the RTM. This approach reduces the probability
of an ill-posed problem in the inversion of the selected RTMs, by rejecting unrealistic combinations of input pa-
rameters. Three species representatives of each region were used to derive the ecological rules: Quercus ilex L.,
Quercus faginea L., and Pinus halepensis Mill. for the Mediterranean region, and Fagus sylvatica L., Quercus robur
L. and Eucalyptus globulus Labill for the Eurosiberian region. EquivalentWater Thickness, DryMatter and Chloro-
phyll content were taken from several data sources to separately parameterize both the Mediterranean
(water-limited) and Eurosiberian (energy-limited) ecoregions of Spain. GEOSAIL was parameterized using a re-
stricted range of Leaf Area Index (LAI) and specific canopy cover values, keeping other parameters fixed. The in-
version was based on the Look Up Table technique using the minimum spectral angle as merit function. Several
modelswere tested by using different inputs from standardMODIS products, aswell as the fractional cover prod-
uct developed by Guerschman et al. (2009). The model based on the reflectance bands and the Normalized Dif-
ference Infrared Index computed from the Nadir Bidirectional Reflectance Distribution Function-Adjusted
Reflectance product (MCD43A4) provided the most accurate results, with a LFMC's Root Mean Square Error
(RMSE) of 27.7% (RMSE=27.3% for the Mediterranean and 28.7% for the Eurosiberian woodland). The estima-
tion of LFMC was performed within the framework of a fire risk assessment system.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Wildland fires have a wide range of global and regional impacts.
Fire is a natural agent of many ecosystems, which are well adapted
to periodical burning or even dependent on it, as fire impacts nutrient
cycles, vegetation succession patterns, and resistance to insect
plagues (Kilgore, 1973). However, fires have also negative impacts
on soil erosion (Boerner et al., 2009), on emissions of atmospheric
aerosols and greenhouse gases (van der Werf et al., 2006), on the ex-
tent of deforestation (van der Werf et al., 2009), while they can be
harmful to human health and welfare (Sandberg et al., 2002). During
the last decades, the repeated occurrence of severe wildfires affecting
various parts of the world and the consequent increment of their neg-
ative impacts has highlighted the need to develop effective tools to
assess and eventually mitigate these phenomena (Ceccato, 2001;
Chuvieco et al., 2010). Since fire regimes (frequency, size, seasonality
and severity of fires) are a function of weather conditions and terrain
features, as well as the structure and moisture content of the fuel

(Conard and Solomon, 2008; Ward et al., 1996), estimating the latter
is critical for assessing fire risk.

Most fires burn during low Fuel Moisture Content (FMC) condi-
tions (Chuvieco et al., 2009a; Dennison et al., 2008) as FMC is highly
related to fire ignition and propagation (Viegas et al., 1992; Zylstra,
2011). FMC is frequently defined as the amount of water per dry
mass of the fuel and formulated as follows:

FMC ¼ Ww−Wd

Wd

� �
� 100 ð1Þ

where Ww is the wet weight and Wd is the dry weight obtained after
oven drying the same sample at 60 °C–100 °C for 24–48 h (Viegas et
al., 1992).

FMC can be estimated from ground measurements, weather indices
and satellite imagery. The former are simple, but time consuming, costly,
difficult to generalize, andmay be subject to large sampling errors when
a standard protocol is not followed (Danson andBowyer, 2004). Howev-
er, they are useful for calibration or validation purposes (Chuvieco et al.,
2004b). FMC estimation based onmeteorological indices has been com-
monly used by forest services, particularly to estimate moisture condi-
tions of dead fuels (de Groot et al., 2005; Pellizaro et al., 2007). For live
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fuels, weather indices perform poorer, as they do not take into account
the physiological mechanisms of plants to resist drought. Satellite data
is the only feasible means of spatially estimating Live FMC (LFMC),
assuming that variations in moisture content have a strong impact on
reflectance (Bowyer and Danson, 2004) and/or surface temperature
trends (Chuvieco et al., 2004b).

Estimations of LFMC from satellite data have been most commonly
based on empirical methods, which aim to find statistical relations
between field-measured LFMC and reflectance data. Several studies
have shown strong agreements between LFMCand information provided
by different sensors, such asNOAA/AVHRR (Burgan et al., 1996; Chuvieco
et al., 2004a, 2004b; Garcia et al., 2008), Landsat-TM/ETM (Chuvieco et
al., 2002), VEGETATION (Chuvieco et al., 2004b), AVIRIS (Roberts et al.,
2006), and MODIS images (Dennison et al., 2005; Yebra et al., 2008b).
However, empirical models require a long time series of field measured
LFMC to calibrate the models (Chuvieco et al., 2009b). Furthermore,
empirical relationships are site and sensor dependent, and therefore
difficult to extrapolate to regional or global scale studies (Riaño et al.,
2005b; Yebra et al., 2008a).

Simulation studies based on Radiative Transfer Models (RTM) have
been used more recently to overcome these limitations (Ceccato et al.,
2002; Yebra and Chuvieco, 2009b; Yebra et al., 2008b; Zarco-Tejada et
al., 2003). LFMC is not a parameter used in any of the existing simulation
models, but can be obtained by the ratio between two of the input
parameters commonly found in RTM (2).

LFMC ¼ EWT
DMC

ð2Þ

where EWT is the Equivalent Water Thickness (3) and DMC is the Dry
Matter Content (4).

EWT ¼ Ww−Wd

leafArea
ð3Þ

DMC ¼ Wd

leafArea
: ð4Þ

Despite the high potential of RTM to retrieve LFMC, their accuracy is
affected bynon-singular inversions, as similar spectramay be generated
from different combinations of input parameters. This is called the
“ill-posed” problem (Combal et al., 2002), which may dramatically
decrease the accuracy of LFMC estimates (Yebra and Chuvieco,
2009b). Previous studies have proved that including ecological criteria
in the parameterization of the RTM can consistently improve the esti-
mates of LFMC, since it avoids simulating unrealistic spectra which
might produce indetermination problems when inverting the model
(Yebra and Chuvieco, 2008; 2009a, 2009b). There are mainly three dif-
ferent ways of introducing the ecological information of biophysical
parameters: (i) restricting the range of parameter variation, (ii) using
empirical relationships to filter out the unrealistic combinations of
parameters within that range, and (iii) using a complete set of realistic
measurements. Ecologically driven parameters may be obtained from
two different sources: (i) experimental data (either field conditions or
controlled laboratory experiments) and (ii) remotely measured data
provided by airborne or satellite sensors.

This paper proposed an innovativemethod to retrieve LFMCvalues of
woodlands using optical remote sensing and RTM. The final aim of this
project was to incorporate the estimation of LFMC values into a fire dan-
ger assessment system (Chuvieco et al., 2012). Five inversion scenarios
have been tested, based on different combinations of input bands and
external parameters, as well as on comparing the performance of stan-
dard MOD09 and MCD43 products to retrieve LFMC. In all cases, the
parameterization of RTM is based on ecological criteria to reduce inde-
termination problems in the inversion process. This approach builds
upon our previous experience on estimating LFMC of grasslands and
shrublands (Yebra and Chuvieco, 2009b; Yebra et al., 2008b), by

extending the simulation to woodlands of two different climatic regions
of Spain.

2. Data and methods

2.1. Study areas and species selection

Two climate regions determine the biogeography of Spain: (i) the
Eurosiberian (northern Spain), and (ii) the Mediterranean (Rivas
Martínez, 1983, Fig. 1). The Mediterranean region is a water-limited
biome which covers 4/5 of the Iberian Peninsular territory of Spain
(~390,000 km2). It presents dry summers, high thermal amplitude,
and low precipitation (between 400 and 500 mm). Therefore, the
woody vegetation in this region is mainly evergreen sclerophyll
with hard and small leaves well adapted to drought. In contrast, the
Eurosiberian region is an energy-limited environment which covers
the remaining 1/5 of the Iberian Peninsular territory of Spain
(~100,000 km2). It presents abundant rainfall (up to 2000 mm)
even in the summer season, and its landscape is characterized by its
greenness and the dominance of deciduous species.

In light of these climatic and ecological differences between the two
regions, we decided to consider different ecological criteria in the pa-
rameterization of the RTM for each region. Three representative species
of the common land cover types of each biogeographical region were
selected. Quercus ilex L., Quercus faginea L. and Pinus halepensis Mill.
were the species selected as representatives of the evergreen broadleaf
(EBF), deciduous broadleaf (DBF) and evergreen needleaf forest (ENF),
respectively in the Mediterranean-water-limited environment while
Fagus sylvatica L., Quercus robur L. (both DBF) and Eucalyptus globulus
Labill. (EBF) were selected as representatives of the main land cover
types in the Eurosiberian-energy-limited environment (Fig. 1).

These species were selected because the Spanish landscape is a
continuous mosaic of coexisting physiologically distinct plants which
have evolved different drought strategies so itwould have been not fea-
sible to consider ecological criteria of all species concurring in each
region.

2.2. Radiative transfer modeling

2.2.1. Model selection
Previous studies have estimated moisture of woodlands linking the

leaf-level PROSPECT RTM to the canopy-level SAILH RTM (Colombo et
al., 2008; Trombetti et al., 2008; Yebra and Chuvieco, 2009a). PROSPECT
(Jacquemoud, 1990) simulates leaf reflectance and transmittance by de-
scribing the leaf as a set of N homogeneous layers with some scattering
and absorption components: Chlorophyll content (Ca+b, μg/cm2), EWT
(g/cm2), andDMC (g/cm2). SAILH (Verhoef, 1984) is a 1D turbidmedium
plane-parallel simulation model specifically designed for continuous
cover structure such as grassland.However, Trombetti et al. (2008) point-
ed out that part of the inaccuracies in the estimations in woodlands can
be explained by the fact that SAILH was specifically designed for contin-
uous cover structure, such as grasslands, and not for discontinuous and
heterogeneous vegetation types. Therefore, a canopy level RTM specifi-
cally designed for discontinuous canopies may lead to more accurate es-
timations. In this study we linked PROSPECT to GEOSAIL (Huemmrich,
2001). GEOSAIL combines a geometric model that calculates the amount
of shadowed and illuminated components in the scene (sunlit canopy,
shaded canopy, sunlit background, and shaded background) with the
SAILH turbid medium RTM. Hence, GEOSAIL shares with SAILH the fol-
lowing inputs: leaf reflectance and transmittance (in this case taken
from PROSPECT outputs); two parameters describing the canopy struc-
ture (LAI and Leaf Inclination Distribution Function (LIDF)), soil substrate
reflectance and four parameters which characterize the viewing and illu-
mination conditions (solar zenith angle or θs, viewing zenith angle or θv,
relative azimuth angle or φsr and atmospheric transmissivity). However,
GEOSAIL includes three new parameters: canopy cover of vegetation
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(ccov), the ratio Canopy of Height to Width (CHW) and crown shape
(cylinders or cones). Finally, GEOSAIL assumes that trees are identical,
they do not overlap and are relatively small in size compared to the size
of the pixel (Huemmrich, 2001).

GEOSAIL has proven to provide satisfactory results in several for-
estry applications on coniferous canopies such as burn severity
(De Santis et al., 2009) and structure and foliage water content
assessment (Kötz et al., 2004) but, to our knowledge, has not been
applied to date for estimating LFMC.

2.2.2. Model ecological parameterization

2.2.2.1. PROSPECT parameters. PROSPECT parameters were introduced
as a complete set of observed co-occurring measurements taken for
each representative species from several sources that included laboratory

and field data (Table 1). For the sake of simplicity Table 1 shows themin-
imum,maximum and average values as an overview of the ranges of var-
iation of each parameter among the observations.

Leaf-level information of F. sylvatica's parameters was not found in
the literature so a field campaign was organized to get information for
this specie. The field campaign was carried out from the 24th of May
to the 28th of September of 2010 in two plots (plots 1 and 2, Fig. 2)
placed in the north of Spain.

DMC and EWT were computed from the collected samples as
Eqs. (3) and (4). Ww was calculated weighing a fresh sample with a
precision balance (±0.01 g) and Wd oven drying the same sample
at 60 °C for 48 h. Leaf area was measured with an image analysis
Delta system (Delta Devices LTD, Cambridge, England). The Ca+b

values were obtained by means of destructive sampling andmeasure-
ment in the laboratory with the dimethyl sulfoxide method and

Fig. 1. Representativeness of the species selected for the RTM calibration. Information taken from the Spanish Forest Map, (1:200,000) (http://www.magrama.gob.es/es/
biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe200.aspx, last accessed September, 2012).

Table 1
PROSPECT input parameters and sources. Shown are the Minimum (Min.); Maximum (Max.); Average (Avg.); Chlorophyll content (Ca+b), μg/cm2; Equivalent Water Thickness
(EWT), g/cm2; Dry Mater Content (DMC), g/cm2; Number of co-occurring measurements included in the forward modeling (# obs).

PROSPECT Ca+b EWT DMC # obs Source

Q. ilex Min. 71.68 0.004 0.013 32 De Santis et al. (2006) Laboratory data
Max. 95.68 0.023 0.024
Avg. 82.95 0.014 0.018

Q. faginea Min. 35 0.009 0.011 14 Chuvieco et al. (2011) Spain
Max. 45 0.022 0.016
Avg. 41.92 0.012 0.013 Silla et al. (2010)

P. halepensis Min. 33.32 0.006 0.011 54 Jurdao et al. (2012) Laboratory data
Max. 66.15 0.054 0.046
Avg. 47.26 0.036 0.029 Gond et al. (1999) Belgium

F. sylvatica Min. 30 0.005 0.003 29 This study Spain
Max. 30 0.018 0.011
Avg. 30 0.010 0.007 14 Gond et al. (1999) Belgium

Q. robur Min. 9.21 0.009 0.004
Max. 49.18 0.016 0.011
Avg. 33.87 0.013 0.008

E. globulus Min. 45.47 0.008 0.013 19 Karen Barry, unpublished Australia
Max. 98.74 0.027 0.028
Avg. 75.68 0.022 0.022
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spectrophotometric readings, according to Wellburn (1994). Ca+b of
F. sylvatica was fixed to 30 μg/cm2 since simultaneous measurements
with EWT and DMC were not performed. This representative value
was obtained averaging the Ca+b of 32 samples of F. sylvatica leaves
taken during the field campaign described above.

The PROSPECT parameter N is not measurable so indirect estima-
tions using RTM inversion are normally used. This way, Gond et al.
(1999) obtained minimum, maximum and average N values of 2.13,
3.44 and 2.48 for P. sylvestris and 1.22, 1.55 and 1.45 for Q. robur.
The values obtained by the authors for P. sylvestris were assigned to
our needle-leaved species since we assumed similar internal struc-
tures while the values for Q. robur were used only for this specie.
For the rest of the species N was fixed to 2 as it is a common value
found in literature for woodlands (Barry et al., 2009; De Santis et al.,
2006; Yebra and Chuvieco, 2009a).

2.2.2.2. GEOSAIL parameters. GEOSAIL input parameters were also
taken from diverse sources (Table 2). The range of LAI was restricted
to minimum and maximum values obtained from different sources.
The distribution within each range was generated based on a
transformed variable (LAIt) established by Weiss et al. (2000)
(Eq. (5)). The aim was to better sample domains where the reflec-
tance is more sensitive to LAI. This way lower values of LAI are
more sampled.

LAIt ¼ −2ð Þ � log LAIð Þ: ð5Þ

CHW was fixed to the average value measured in 30 individuals
studied in the field (Table 2). It was calculated as the ratio between
the crown height (total tree height subtracting the trunk height)
and the crown width (taken the highest diameter).

LIDF was fixed as plagiophile for all species with the exception of
E. globulus and P. halepensis for which it was fixed to erectophile
and spherical, respectively. The crown shape was considered cylindri-
cal for all species except for P. halepensis which was observed to bet-
ter resemble a cone. A reference soil spectrum was measured using

the GER2600 spectroradiometer in a national park located in the
center of Spain and was used in both studied regions. This ground
spectrum was multiplied by a dry brightness parameter (1.4) to sim-
ulate a reference dry soil in the Mediterranean region following Yebra
and Chuvieco (2009b). The ccov was distributed from 0.4 to 1 and 0.6
to 1 for the Mediterranean and Eurosiberian forest respectively, since
the former generally presents less canopy cover than the latter. In
both cases, the step for the simulations was 0.2. Finally, all viewing
angles were fixed to 0 assuming a vertical observation.

2.2.3. Forward modeling
Once the RTM were ecologically parameterized, PROSPECT and

GEOSAIL were jointly run to obtain a total of 6336 and 1146 simulated
spectra for the Mediterranean and the Eurosiberian region, respec-
tively (Fig. 3). Some of the resulting spectra were considered unreal-
istic since they were simulated using random combinations of the leaf
parameters with LAI (only restricted to a range of values). For
instance, under drought conditions (i.e., with low LFMC values),
plants tend to reduce the leaf area (Valladares, 2004) so the LAI is
also reduced and high LAI values do not normally concur with LFMC
below 30%. In order to avoid this spectra that were not likely to
occur we used two empirical relationship between LFMC and LAI
(one for each region) as a filter criterion to remove all spectra
whose LFMC vs. LAI values were placed out of the range derived
from the minimum and maximum residuals of the model equations
(Yebra and Chuvieco, 2009b; Yebra et al., 2008b). The empirical rela-
tion for the Mediterranean region (Fig. 3) was fitted using LFMC field
observations of Q. ilex vs. LAI derived from the MOD15A2v4 product
(Myneni et al., 2000). The Mediterranean model was constrained to
3336 spectra after using this filtering criterion. In the Eurosiberian
region the relationship between LFMC vs. LAI was weak (R2=0.18)
so we decided not to used this relation to filter the spectra for this
region.

Finally, to allow the simulated spectra to resemble MODIS data,
the spectra were convolved to the 7 MODIS reflectance bands.

Fig. 2. Location of the validation sites among the Eurosiberian (energy-limited environment) and the Mediterranean (water-limited environment) region.
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2.2.4. Model inversion: RTM backward mode
The inversion of RTM can be achieved following two main alterna-

tive approaches (Kimes et al., 2000;Weiss et al., 2000): (i) building sta-
tistical relationships developed over simulated reflectance and their
corresponding LFMC by using linear regression (Yebra et al., 2008b) or
neural networks (Riaño et al., 2005a); (ii) adjusting the set of values
of the RTM inputs in such a way that the simulated spectrum matches
the best reflectance measured by a sensor in a range of wavelengths
using a merit function of spectra similarity. This adjustment can be
made by iterative optimization techniques (Zarco-Tejada et al., 2003)
or simulated look up tables (LUT) (Knyazikhin et al., 1999). In this
study, the LUT inversion technique was chosen since it requires less
computation time than other methodologies and allows the creation
of realistic simulations by including ecological criteria (Combal et al.,
2002; Liang, 2004; Yebra and Chuvieco, 2009b; Yebra et al., 2008b).

The spectral angle (SA, Eq. (6), Kruse et al., 1993) was used as the
merit function. SA is insensitive to illumination or albedo effects and
can be applied to a whole image (De Santis and Chuvieco, 2007). The
parameters used to model the selected particular spectrum (w) were
assigned to the target pixel and then LFMC was estimated as the ratio
between EWT and DMC (Eq. (2)). The estimated LFMC was then com-
pared to the observed LFMC (Section 2.3, validation).

SA v
→

;w
→

� �
¼ cos−1 v

→ � w
→

‖ v
→

‖� ‖ w
→

‖

 !
ð6Þ

where v andware the observed (satellite image) and the reference (LUT)
spectra respectively, both of them considered as an m-dimensional fea-
ture vector, with m being the number of spectral channels.

LAI: species specific ranges
LIDF: plagiophile (F.sylvatica and Q. robur)

Eurosiberian region

Parameter combinations

N C EWT DMC

erectophile (E. globulus)
CHW: species specific fixed values
canopy shape:

cylindrical

Eurosiberian model
1146 spectra

a+b
F. sylvatica
Q.robur
E.globulus

soil: normal
ccov: 0.6 1, step 0.2

s: 0

Leaf reflectance and Leaf transmitance

PROSPECT GEOSAIL
Mediterranean region

Parameter combinations

Leaf reflectance and Leaf transmitance Mediterranean model
6336 spectra

N C EWT DMC

LAI: species specific ranges
LIDF: plagiophile (Q. ilex and Q. faginea)

spherical (P. halepensis)
CHW: species specific fixed values

LAI= 0.006LFMC +0.887
(R2= 0.46)

a+b
Q.ilex
Q.faginea
P.halepensis

canopy shape:
cylindrical (Q. ilex and Q. faginea)
cone (P. halepensis)

soil: normal and dry

Mediterranean model
3336 spectra

ccov:0.4 1, step 0.2
s: 0

Fig. 3. Workflow followed to create the set of simulations.

Table 2
GEOSAIL input parameters and sources. Shown are the minimum (min) and maximum (max) values of Leaf Area Index (LAI) and Canopy Height to Width (CHW).

GEOSAIL LAI CHW

Source Source

Q. ilex Min. 0.6 De Santis et al. (2006) Spain 1.89 Mariano García, unpublished Spain
Max. 2.1 Mariano García, unpublished 1.89

Q. faginea Min. 0.6 Chuvieco et al. (2011) Spain 2.43 Chuvieco et al. (2011) Spain
Max. 2.1 2.43

P. halepensis Min. 0.9 Riaño et al. (2004) Spain 3.35 Mariano García, unpublished Spain
Max. 2.1 López et al. (2000) 3.35

F. sylvatica Min. 2.4 Dufrêne and Bréda (1995) France 1.8 Field data⁎ Spain
Max. 6 Le Dantec et al. (2000) 1.8

Q. robur Min. 2.5 Gond et al. (1999) Belgium 1.5 Field data⁎ Spain
Max. 5 Hytteborn (1975) Sweden 1.5

E. globulus Min. 3 Karen Barry, unpublished Australia 1.62 Field data⁎ Australia
Max. 4.5 1.62

⁎ Data from field work carried out by the authors for the present paper.

63S. Jurdao et al. / Remote Sensing of Environment 132 (2013) 59–70



Yebra and Chuvieco (2009a) explored several inversion options
obtaining the most accurate LFMC estimates when the MODIS reflec-
tance bands were considered in the inversion (RMSE≈30%), or when
it was performed just using the “Normalized Difference Infrared
Index” (NDII6, Eq. (7)), (Hardisky et al., 1983), (RMSE=26.28%)

NDII6 ¼ ρband2−ρband6
ρband2 þ ρband6

: ð7Þ

Following these findings, we decided to include in the inversion,
the seven reflectance bands from MODIS and also the NDII6.

Two alternative sources of reflectance data fromMODIS were test-
ed: 500 meter surface reflectance data product (MOD09A1) and the
500-meter Nadir BRDF-Adjusted reflectance product (MCD43A4)
(Table 3, approaches 1 and 2 respectively). Previous LFMC studies
have mainly used the MOD09A1 reflectance product (Peterson et al.,
2008; Yebra and Chuvieco, 2009b; Yebra et al., 2008b). This product
(Vermote and Vermeulen, 1999) is an 8-day composite of atmospher-
ically corrected reflectance for the first seven spectral bands of the
MODIS Terra sensor. However, we also explored MCD43A4 as it pro-
vides land surface reflectances as if they were taken from the nadir
which is more consistent with our simulations. Additionally, the cor-
rections of this product significantly reduces noise due to anisotropic
scattering effects of surfaces under different illumination and obser-
vation conditions (Schaaf et al., 2002), and being a 16-day composite
(also computed every 8-days as the MOD09A1) which contains data
from both Terra and Aqua MODIS sensors, it provides the highest
probability for quality input data. For both reasons, we expected to
achieve better results with MCD43A4 thanMOD09A1MODIS product.

Finally following several authors who obtained improvements in
water content estimation when some of the input parameters were
fixed to a known value in the inversion, we tested three additional in-
version approaches using the best performing MODIS reflectance
input (previously assessed), and fixing different RTM parameters
with the help of ancillary remote sensing information. Approach 3
fixed LAI obtained from the MOD15A2 product (Myneni et al.,
2000). This product is an 8-day composite of LAI and fractional photo-
synthetically active radiation at 1 km spatial resolution. According to
previous studies that fixed LAI in the inversion (Yebra et al., 2008b;
Zarco-Tejada et al., 2003),this approach lead to better results since
LFMC and LAI compensated creating indetermination problems
when high LFMC with low LAI are observed in the field, but low
LFMC with high LAI are simulated, and vice versa. Those two alterna-
tive combinations of LFMC and LAI yield similar spectra.

Approaches 4 and 5 fixed canopy coverage (ccov parameter in
GEOSAIL) using two different data sources (Table 3): (i) the vegeta-
tion continuous field product (MOD44B, Hansen et al., 2001) and
(ii) the fractional cover product developed by Guerschman et al.
(2009). The former contains percent estimates of tree cover using a
supervised regression tree algorithm at 500 m spatial resolution
(Hansen et al., 2003). The latter separates the fractions of photosyn-
thetic vegetation, non-photosynthetic vegetation and bare soil by a
linear unmixing procedure using the normalized difference vegeta-
tion index and the ratio of MODIS bands 7 and 6 (Guerschman et
al., 2009). The fractional cover of the non-photosynthetic vegetation

and the photosynthetic vegetation were summarized to get the cano-
py cover.

All MODIS data (MOD09A1, MCD43A4, MOD15A2 and MOD44B)
were downloaded from (http://reverb.echo.nasa.gov/reverb/, last
accessed February, 2012) and reprojected from the sinusoidal system
to the UTM coordinate system (Datum European 1950), using nearest
neighbor interpolation resampling. Additionally, MOD15A2 imagery
was oversampled to a spatial resolution of 500 m. Then, the data
were extracted selecting homogeneous pixels from the vicinity of
the plots inside a 3×3 window avoiding mixed pixels, in order to
reduce the potential noise derived from georeferencing errors. For
this, higher spatial resolution images from Landsat (http://glovis.
usgs.gov/, last accessed May, 2012) were used. Following Yebra et
al. (2008b), the final estimate LFMC value for each validation site
was computed as the median value of the pixels assigned to each plot.

2.3. Validation

A total of 154 field measurements of LFMC were taken from the
database compiled by our research group at the University of Alcalá
(http://www.geogra.uah.es/emilio/FMC_UAH.html, last accessed May,
2012) (Table 4). This database includes data collected by several field
campaigns carried out in the framework of different projects and with
contributions from other organizations. The sampling areas were dis-
tributed among 19 plots within the Iberian Peninsula (Fig. 2) and con-
stitute homogeneous patches of 500×500 m to be representative of a
MODIS pixel. Most of the siteswere located in theMediterranean region
of the country, which also has a longer time series (some of the plots
from 1996 to 2010). Sites in the Eurosiberian region were sampled for
the present study and only two years of data were available (2009
and 2010).

Three samples per plot were collected between 12 and 16 h GMT
(at the time of maximum fire danger, Castro et al., 2006). Each sample
was composed of between 80 and 100 g of leaves randomly selected
from different trees. The sample was taken from the lower as well as
the upper parts of the crown, whenever they were reachable with a
4 m long pole with scissors. The sample was weighed in the field with
a field balance (precision ±0.01 g). All samples were then carried to
the laboratory where they were dried in an oven for 48 h at 60 °C
(Viegas et al., 1992). Afterwards, the samples were weighed again on
the same balance to obtain the dry weight. LFMCwas computed follow-
ing Eq. (1). Average values of the three samples per plot were assigned
to each plot for each sampling date. The standard sampling protocol is
described in more detail in Chuvieco et al. (2011).

The accuracy of the models was assessed with data pooled across
sites using the determination coefficient (R2), the slope of the relation-
ship between estimated and observed LFMC values and the Root Mean
Square Error (RMSE) (Eq. (8)). The RMSEwas decomposed into system-
atic (RMSEs) and unsystematic (RMSEu) portions (Willmott, 1982) in
order to provide a quantitative measurement of the error caused by
themodel performance and its predictors (RMSEs) and the error caused
by uncontrolled factors (RMSEu). An adequate model is considered to
have an RMSEu higher than the RMSEs as the model estimates errors
should be random.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

LFMCi;obs−LFMCi;est

� �2
n

vuuut
ð8Þ

where LFMCi,obs and LFMCi,est are the observed and the estimated LFMC
respectively, and n is the number of observations. RMSE are expressed
in percentage of fuel dry weight, the same unit as the LFMC.

Finally, the best performing approach was tested for each region
in order to take into account their influence on the final errors. The
ideal model would accurately predict LFMC for any site.

Table 3
Inversion approaches checked. Crosses mark the MODIS bands, indexes or canopy pa-
rameters used for the computation of the similarity function.

Inversion
approach

B1–B7 NDII6 LAI Ccov Source

1 X X MOD09A1
2 X X MCD43A4
3 X X X MCD43A4.MOD15A2
4 X X X X MCD43A4.MOD44B
5 X X X X MCD43A4.Guerschman et al. (2009)
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3. Results

3.1. Ecological simulation scenarios

In both regions under study, the observed and parameterized LFMC
values presented similar ranges (Table 5), which implies that the input
parameters for the RTM were realistic. Although the lowest observed
LFMC values (15.6%) are not commonly found in Mediterranean wood-
land, they may occur in exceptionally dry summers (De Santis et al.,
2006). This was considered in the parameterization of the RTM in the
Mediterranean region, which presented a minimum parameterized
LFMC value of 20.8%. The woodlands in the Eurosiberian region have
higher LFMC values, as this climate is more humid. This was reflected
by higher minimum and maximum parameterized values than in the
Mediterranean region.

The resulting spectra obtained by the ecological simulation sce-
narios showed the expected effects in reflectance produced by differ-
ent LFMC conditions (Fig. 4). On one hand reflectance on bands 3, 4
and 1 increase as LFMC decreases due to the impacts in chlorophyll
content and LAI (Hardy and Burgan, 1999). On the other hand, reflec-
tance in bands 5, 6 and 7 increases since these bands are the most
sensitive bands to water absorption in the solar spectrum (Danson
et al., 1992).

3.2. Validation

Fig. 5 shows total, systematic and unsystematic errors (RMSE,
RMSEs and RMSEu, respectively) for the whole study area and the dif-
ferent inversion approaches tested in this paper. In terms of error distri-
bution, the best performing models are those with the lowest RMSE,
with similar values of RMSE and RMSEu, and with RMSEs close to 0.
Following these criteria, the best inversion method was approach 2,
based on the 500-meter MCD43A4 product. This inversion yielded an
RMSEb30%, similar to RMSEu and 10% of RMSEs. Approach 1 (based
on the MOD09A1 product) presented higher errors (RMSE=49.8%).
Although the slope of the regression between observed and estimated
LFMC was closer to 1 (Fig. 6a) than approach 2 (Fig. 6b), the later
presented higher R2 (=0.5). Approach 3 (using MOD15A1 to fix LAI
in the inversion) did not improve the results, as R2 decreased to 0.3,
the slope of the observed-estimated regression decreased to 0.71
(Fig. 7a), and the RMSE increased to values >35% (Fig. 5). The worst

results were obtained from approach 4 (fixing canopy cover using
MOD44B estimates), which resulted in close to 60% RMSE (Fig. 5). The
slope was close to 1 but the R2 decreased while increasing the errors
(R2=0.3, Fig. 7b). Finally, approach 5, fixing ccov using the product of
Guerschman et al. (2009), provided better results than approach 4
(R2=0.5 and RMSE≈RMSEu≈30% and RMSEsb10%, Figs. 7c and 5)
with the exception of the slope that was lower, though still close to 1
(slope=0.88).

Fig. 8 shows the same models split into the two ecoregions. The
inversion of the ecological oriented RMT with MCD43A4 (approach 2)
performed practically the same in both regions without a clear bias to-
wards one of them (RMSE≈30%). Additionally, as we observed when
pooling the data across sites, the errors caused by the model perfor-
mance and the predictors included (RMSEs) were nearly half the errors
produced by uncontrolled factors (RMSEu) in both regions, although
RMSEs was slightly lower for the Eurosiberian region. Approach 1
showed better results than when considering both regions together
(RMSEb40% in both regions). With approach 3, the results worsen
especially in the Eurosiberian region where the RMSEs smoothly
decreases but the RMSE significantly increased to values >50%
(Fig. 8). In the case of approach 4, the decrease in the accuracy affected
both regions but again the Eurosiberian region was stronger affected
(RMSE>50% and>70%, for theMediterranean and Eurosiberian region,
respectively). The ccov product used with approach 5 demonstrated its
usefulness in both regions considered (RMSE≈30%, Fig. 8) although it
did not significantly improve the results in relation to the approach 2
in which only the MCD43 was employed in the inversion.

4. Discussion

Our results showed that LFMC values can be estimated with an
uncertainty of 30%. Considering that tree species have most common-
ly LFMC values of 70 to 180%, this level of uncertainty is quite relevant
in terms of fire risk assessment, particularly for the Summer season,

Table 5
Statistics of the observed LFMC (Obs.) and parameterized LFMC (Param.) per Region;
Min., minimum; Max., maximum. All results are shown in % of LFMC.

LFMCMin LFMCMax

Obs. Param. Obs. Param.

Mediterranean region 15.6 20.8 160.5 169.2
Eurosiberian region 73.1 63.5 251.6 310
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Fig. 4. Simulated MODIS reflectances randomly selected from the LUT and their corre-
sponding LFMC parameterized values.

Table 4
Description of the validation sites. #obs: number of observations; LFMCmin, max: minimum and maximum LFMC. For plots with one observation the only LFMC measurement is shown.

Eurosiberian region Mediterranean region

Id Dominant species #obs LFMCmin, max (%) Id Dominant species #obs LFMCmin, max (%)

1 Fagus sylvatica 10 105.47, 173.62 10 Pinus pinaster 16 58.90, 125.46
2 Castanea sativa 15 126.58, 173.04 11 Quercus ilex 20 49.51, 132.26
3 Eucaliptus globulus 2 92.30, 103.73 12 Pinus pinaster 1 118.89
4 Quercus ilex 2 73.14, 103.71 13 Pinus halepensis 1 87.42
5 Quercus pirenaica 11 107.42, 178.62 14 Pinus nigra 3 104.96, 111.23
6 Fagus sylvatica 2 93.67, 214.81 15 Quercus ilex 3 112.77, 160.52
7 Fagus sylvatica 2 150.78, 251.63 16 Quercus faginea 54 72.95, 151.23
8 Quercus robur 1 128.04 17 Quercus ilex 6 15.65, 53.80
9 Fagus sylvatica 1 129.31 18 Olea europea 2 88.67, 116.83

19 Quercus ilex 2 90.94, 110.23
Total 46 Total 108
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although our study found the highest errors at the Spring time
(RMSE=31.13 and 25.72% for the Mediterranean region in the Spring
and in the Summer season respectively, and RMSE=34.88 and
26.58% for the Eurosiberian region in the Spring and in the Summer
season respectively). Therefore, additional efforts need to be put in
this challenging research area, taking into account the fact that
there are many sources of uncertainty, such as the diversity of species
coexisting in a pixel, the standard deviations between ground sam-
ples, the degree of mixtures within a MODIS pixel, etc. A similar
level of errors were found by Yebra and Chuvieco (2009a) in an oak
forests (RMSE=26.28%), but in this case the authors targeted a single
species (Q. ilex) which is very common in Mediterranean areas. Our
study is more promising in this regard, as similar accuracy was
obtained for a much wider species range, including not only the Med-
iterranean, but the Eurosiberian region as well.

The determination coefficient derived from our best model which
make used of MCD43 reflectance data (R2=0.5, Fig. 6b), was similar
to the values obtained by Trombetti et al. (2008) (R2=0.6) in the
estimation of canopy water content (CWC) for the whole USA. The
slope between observed and estimated values was closer to 1 in our
case (slope=0.74, versus the Trombetti et al., 2008 values of 1.67).
Therefore, the performance of our model is similar to theirs. However,
Trombetti et al. (2008) used AVIRIS estimations of CWC as the valida-
tion dataset, and therefore it should expected higher accuracies, as
AVIRIS outputs may be more comparable to MODIS than field data.

The estimations based on the MCD43A4 product (approach 2)
were found more accurate than those based on the MOD09A1
(approach 1). This could be explained by two factors: on one hand,
the second product is based on a shorter period (8 days versus
16 days), which implies noisier time series caused by clouds or
other atmospheric effects (Yebra et al., 2013). On the other hand, re-
flectances from MCD43A4 are nadir corrected (Schaaf et al., 2002), so
the observed reflectance is closer to our simulations that were based
on zero zenith angles. For this reason, we recommend to use the
MCD43A4 product for LFMC estimation, particularly when dealing
with shrubs and trees, as they have a much higher temporal stability
than grasslands in terms of moisture content. For the same reason,
even though Terra and Aqua acquisitions are differed a few hours,
the combination of these two sensors should not be problematic for
LFMC retrieval, as the daily changes of moisture conditions for trees
are minor with respect to the seasonal trends (Blackmarr and
Flanner, 1968).

With regard to the introduction of auxiliary data, fixing LAI for the
inversion did not improve our results (RMSE of 32.58% and 52.58% for
the Mediterranean and the Eurosiberian regions, respectively). This
was unexpected, since other studies focused on Mediterranean grass-
land and shrubland obtained more accurate results by fixing the LAI
(RMSE of 24.6% and 19.8% for grassland and shrubland respectively:
Yebra and Chuvieco, 2009b; Yebra et al., 2008b). Several authors con-
cluded that the LAI product collection 4 derived fromMODIS presented
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Fig. 5. Evaluation of the inversion of PROSPECT+GEOSAIL to estimate LFMC against observed LFMC across sites. The inversion was based on the reflectance bands and the NDII6
using different input datasets (see Table 3).
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uncertainties especially concerning dense forests (Garrigues et al.,
2008; Shabanov et al., 2005) so it may explain the worse results
obtained especially in the Eurosiberian regionwhere the canopy is char-
acterized by higher LAI. As the mentioned authors explained, on one
hand, a mismatch between simulated and measured MODIS surface
reflectances (due to non-optimal selection of radiative transfer param-
eters, especially spectral leaf albedo) was found. On the other hand, it
may be due to the high sensitivity of MODIS retrievals to surface reflec-
tance uncertainties for large LAI. Collection 5 (which was used in the
present study) tried to overcome these limitations. Even though a
more extended validation of this product is required, it has been
shown to include relevant errors (De Kauwe et al., 2011; Yebra et al.,
2013).

Fixing ccov did not significantly improve the results neither. Using
the MOD44B product in the models inversion tended to overestimate
LFMC, possibly due to the underestimations of ccov parameter, especially
in theMediterranean region. Theminimum,maximumand average ccov
estimated by this product were 0.12, 0.55 and 0.36 in this region and
0.50, 0.80 and 0.70 for the Eurosiberian region. According to our experi-
ence and field observations, ccov values are higher in both regions. For
example Yebra and Chuvieco (2009b) considered values of 0.4 in the
Mediterranean region. The product developed by Guerschman et al.
(2009) derivedmore similar values to those observed infield (minimum,
maximum and average ccov of 0.48, 0.85 and 0.68, respectively in the

Mediterranean region and 0.83, 1 and 0.92 in the Eurosiberian region).
Even when using more accurate ccov estimations, the LFMC retrieval
did not significantly improved (RMSE=59.1% with the former ccov
values, 31.1%with the latter ones and 27.7% without fixing ccov).
Hence, fixing ccov did not solve any indetermination problem.

Several factors of uncertainty should be considered for future
improvements of the model:

a) Ourmodelwas parameterized based on three representative species
of each of the two ecoregions and they were inverted for pixels that
may include other species. Whether the parameters are well adjust-
ed to those additional species needs to be further tested.

b) Each MODIS pixel includes an area that is very difficult to sample on
the ground. Any field measurement implies a certain level of error,
particularly when target pixels include a wide field of view. The
observed LFMC was computed with the average of three samples
per plot. The standard deviations between ground samples were
up to 20% in some cases (similar to what it was found by Yebra et
al. (2008a) for grasslands≈22%), and even reached 50% at the
beginning and middle of the Spring season.

c) Another factor of uncertainty is the degree of mixtures within a
MODIS pixel, as different species may include different LAI or fcov
values. This is difficult to quantify considering the size of the study
area (>480,000 km2).
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d) Models were based on ecoregions, but they did not consider potential
variations in seasonal trends. We observed that errors were in fact re-
lated to seasons, particularly in the Spring time, whenmore variability
inmoisture conditionswas observed. In fact, when the Spring samples
were discarded from the analysis, the RMSE decreased from 29 to
25.72% and from 30% to 26.58% for the Mediterranean and the
Eurosiberian regions, respectively. The Summer season commonly
presents the highest fire risk in Spain. However, a large number of
fires occur in Spring too, particularly in the Eurosiberian region.With-
in the 1998 to 2007 period, 46% of all fires in this region occur during
the Spring season (late March to late May) (http://www.magrama.
gob.es/es/biodiversidad/temas/defensa-contra-incendios-forestales/
estadisticas-de-incendios-forestales/default.aspx, last accessed Janu-
ary, 2012), so special attention should be paid to these periods in
future works.

e) Model parameterization for this study was based on field and labora-
tory data. Yebra et al. (2008b, 2009a, 2009b) showed that species
adapted parameters tend to provide more accurate estimations than
random variations. However, parameters are always an approxima-
tion to reality, and the degree of similarity to real conditions is anoth-
er factor of uncertainty. Site specific parameters could also be derived
from ground or airborne lidar measurements, which have proven
very accurate for estimating LAI, fcover and ccov (Drake et al., 2002;
Means et al., 1999).

In spite of the relevance of these various factors of uncertainty, the
estimation of LFMC from satellite images is very relevant for fire risk
assessment, as this variable is difficult to obtain from meteorological
variables or field campaigns. Even though, the moisture content of
dead fuels is more relevant than live's in terms of fire ignition, several
studies have shown that fire propagation and the detection of severe
fire conditions are well associated with moisture conditions of live
fuels, particularly for extended periods of droughts (Pierce et al.,
2004; Ray et al., 2005; Siegert et al., 2001).

Our study was based on RTM models so, as they are not based on
empirical relations, they can be applicable to other regions, particu-
larly those with similar climate conditions to Spain, such as temper-
ate forest in the Mediterranean Basin, in Western United States,
Chile, Australia or South Africa.

5. Conclusions

The present work studied the performance of RTM to retrieve
LFMC for woodlands by the use of the Look Up Table (LUT) inversion
technique. The primary effort was put into the inclusion of ecological
criteria in the RTM parameterization by an exhaustive exploration of
data sources.

The novelty of our approach was the linked use of PROSPECT with
GEOSAIL to estimate LFMC of needleaf and broadleaf woodlands. Two
reflectance MODIS products were employed in the inversion from
which theMCD43A4 showed the best results.Weobtained resultswithin
the expected accuracy taking into account the large degree of uncertainty
in the fieldmeasurements of LFMC used in the validation. The RMSEwas
27.7% (27.3% and 28.7% for the SpanishMediterranean-water limited and
Eurosiberian-energy limited woodlands, respectively). In an attempt to
find the maximum accuracy, LAI and ccov were fixed in the inversion
using different remote sensing products. However, they did not improve
the results.

The calibrated models were based on a priori knowledge of plant
biophysical parameters in order to represent realistic situations. Con-
sequently, the models presented in this study can be applied to other
woodland areas without highly affecting the accuracy of the estima-
tions. Future research should aim to test further enhancements in
generalization with the aim of providing continental to global fuel
moisture content estimations.
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