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Abstract. In many practical applications, correlation matrices might be affected by the “curse of dimen-
sionality” and by an excessive sensitiveness to outliers and remote observations. These shortcomings can
cause problems of statistical robustness especially accentuated when a system of dynamic correlations over
a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of
weights to observational events. In this paper, we discuss Pearson’s ρ and Kendall’s τ correlation matrices,
weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns
for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly
determining optimal weights together with the optimal length of the running window are proposed. We
find that the exponential smoothing can provide more robust and reliable dynamic measures and we dis-
cuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst
keeping significance and robustness of the measure. Weighted correlations are found to be smoother and
recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate
more effectively genuine from spurious correlations.

1 Introduction

Many different measures of dependency between variables
may be used in order to describe the interplay of differ-
ent elements in a complex system, and the strength of
their relationship. In this paper we focus on two of the
most broadly used measures, namely the Pearson product-
moment correlation � and the Kendall rank correlation τ .
When dynamic correlations of time series are calculated
over a running window Δt, then a single anomalous data-
point today will cause a bias for the entire length of Δt
and the effect will abruptly cease thereafter, causing a
false perception of the chronological or logical order of
events. By introducing a structure of weights the above-
mentioned shortcomings can be partially mitigated, if not
fully healed, and the sensitiveness of correlations to out-
liers greatly reduced [1–8].

In general, individual correlation coefficients between
two variables are statistically significant if calculated on
a sufficiently large number of observations – in fact, the
variance of their distribution is in inverse relation with the
sample size, Δt. But this general principle is not sufficient
to ensure a well-conditioned N -by-N correlation matrix
when N variables are considered and N is large. If the
system of correlations, rather than individual correlations,
is the focus of the analysis, then the sample size needs to
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be at least of the same order of N , usually Δt � N is
required [9]. In fact, even a full-rank matrix may be af-
fected by the curse of dimensionality1 and may provide
misleading insights [10,11]. Therefore, the choices of Δt
and N are mutually constrained. The main novelty of this
paper, with respect to the existing literature on financial
correlations [12–16], concerns the study of τ as alternative
to or concurrent with ρ coefficients, and the introduction
of exponential weighting with the aim to obtain reliable
full-rank dependency matrices where present observations
weight more than past measurements, thus better charac-
terizing the dynamics of the evolving dependency struc-
ture within the market.

Jointly determining optimal running window Δt and
weight structure is critical for a fully informative corre-
lation matrix. A set of optimal criteria is then needed
in order to improve robustness to outliers and correctly
measure the system of relations between coefficients. In
fact, the choice of an appropriate Δt is crucial and can
be often influenced by issues not strictly related to the

1 The curse of dimensionality was first introduced by
Bellman [18,19] in problems of optimization where finding the
minimum of a function gets virtually intractable as the num-
ber of its dimensions increase. The concept has been extended
to distance functions and nearest neighbor search: in high di-
mensional spaces the distances between different pairs become
indiscernible [20–22].
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analyst’s purpose, such as data availability or the need of
ensuring a matrix full rank. Although the idea of weighted
correlations is not new [1–8,17], the study of optimal tun-
ing of the weights, aimed at avoiding unwelcome side ef-
fects while maximizing significance and robustness, has
been mostly overlooked in the literature. In this paper,
we show that incautious weights can destabilize the sys-
tem of correlations, raising the condition number of the
matrix, deteriorating the structure of matrices’s eigenval-
ues and distorting the distribution of coefficients. Instead,
a wise choice of weights can reduce the autocorrelation
of dynamic correlations, dampening undue effects of re-
mote events on the present and contributing to discrimi-
nate spurious from genuine correlations.

This paper is organized as follows: in Section 2, ma-
trix notations for Pearson and Kendall correlations are
introduced and some of their properties are discussed and
compared. In Section 3, weighted correlation matrices are
introduced with particular emphasis on the exponential
smoothing criterion. In Section 4, empirical results are
shown for a system of 300 NYSE highly capitalized com-
panies between 2001 and 2003. In Section 5, some criteria
for determining optimal weights and running window are
then discussed. In Section 6, conclusions are drawn and
some ideas for future works outlined.

2 Dynamic measures of dependency

In this section we introduce Pearson and Kendall cor-
relations and we discuss their advantages and disadvan-
tages. In the following, individual observations of variable
i = {1, 2, . . . , N} at time t = {1, 2, . . . , T} are denoted
as yi

t. We study moving windows containing Δt ≤ T con-
secutive observations. The time series is denoted as yi,
column vectors of matrix Y, such that [ysi ] = yi

s with
s = {t − Δt + 1, t − Δt + 2, . . . , t} and i = {1, 2, . . . , N}.

2.1 Pearson product-moment correlation coefficient

In 1895, Karl Pearson introduced his product-moment
correlation coefficient between two variables, defined
as [23–31]:
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Δt

∑Δt
t=1 yi

t and ȳj = 1
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sample means. The Pearson correlation matrix is positive
semi-definite (see Appendix A).

Pearson correlation coefficients are simple to calcu-
late and formally elegant. However, ρ has some important
shortcomings, in particular:

– since it is devised to capture linear relations it might be
misleading when used for nonlinear relations [32,33];

– as a consequence, it depends on the unit of measure of
variables and it does change for nonlinear transforma-
tions2;

– since the correlation matrix rank is rank (ρ) ≤
min (Δt − 1, N), the inverse of ρ does not exist when
Δt < N + 1 3;

– it is equally sensitive to each observation without any
regard for their order: if the two variables are time se-
ries then their correlation is equally affected by events
in the present and in the remote past;

– it is not robust to outliers;
– it might be spurious if the two variables are depen-

dent on a confounding factor, a lurking variable that
governs both;

– it is only defined when the variances of the correspond-
ing variables are finite;

– it can get unreliable in presence of fat-tailed
distributions.

2.2 Capturing nonlinear relations: Kendall’s τ

Among all measures of concordance (or association or sta-
tistical dependence), Kendall’s τ rank correlation [34–36]
is probably the most important [7]: it can catch nonlinear
qualitative monotonic relationships (without the need to
calculate ranks); it does not depend on the scale of vari-
ables; the rank of a Kendall correlation matrix can be full,
even if Δt ≤ N ; it is robust to outliers; it is defined even
if the variables’s variances are infinite; it is a distribution-
free measure, i.e. not dependent on the statistical distri-
butions of the variables.
Kendall’s τ rank correlation measures the degree of sim-
ilarity between two variables by counting the concordant
and discordant pairs. Its 1938 first formulation, not count-
ing for tied pairs (so called τ

A
) can be written as [34,35]:
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, k = i, j. Then, in 1948,

Kendall [35] proposed a correction for tied pairs (i.e. cases
where duv = 0). The corrected measure is commonly
known as τ

B
4:
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where nk is the total number of tied pairs for variable k.
Since we only consider τ

B
, in the following it is simply

denoted as τ .
2 For instance, in finance, it is well known that correlations

are not invariant under transformations of the risk [1].
3 Note that, since each column vector has been subtracted

by its sample mean, one degree of freedom is lost.
4 See chapter 3, p. 26, equation (3.3) in [35].
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In Appendix B we prove that Kendall’s correlation
matrix can be seen as a particular kind of Pearson’s ρ,
generally characterized by greater rank and maintaining
positive semi-definiteness.

Despite its desirable theoretical qualities, τ ’s computa-
tional complexity, O (Δt log Δt) at best [37,38], is a limit
to its use on large samples. Furthermore, τ is still equally
sensitive to events in the present and in the past and it
might be spurious if the two variables are dependent on
latent variables.

3 Assigning weights to observations

In financial studies, assigning the same value to each ob-
servation in time is equivalent to considering recent and
remote past as indifferent from an informational point of
view. Such hypothesis is hardly sensible since most oper-
ators would judge the information from recent events as
more valuable than from remote ones for both descriptive
and forecasting purposes. In fact, finance is a discipline
projected towards the future. In order to take into ac-
count and incorporate the operators’ preference for fresh
information, we assign a structure of weights5, w ≥ 0,
such that wu > wv , ∀u > v.

3.1 Pearson weighted correlation matrix

In order to compute weighted Pearson correlation coeffi-
cients we introduce a weight structure, wt ≥ 0, such that
Δt∑

t=1
wt = 1, which operates on sample means, variances

and covariances as follows:
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k

)2

σw
ij

=
Δt∑

t=1
w

t

(
yi

t − ȳw
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Pearson weighted correlation coefficients are very similar
and enjoy the same properties as the corresponding un-
weighted coefficients. In particular they are positive semi-
definite matrices (see Appendix C).

3.1.1 Exponential smoothing for pearson’s correlations

When time series are concerned, since the recent past is
often more indicative of the near future than the remote
past, the structure of weights should be an increasing func-
tion with small values for the past and large value for the
present. A common functional form for these weights is

5 In the trivial case when the weight of each observation,[
yi

s, y
j
s

]
, reflects its empirical frequency in the series, the same

formulae introduced here apply, as a simplified method of com-
puting traditional measures by aggregating common elements.

the exponential function often referred to as “exponential
smoothing”. This is the kind of weighting we use in this
paper, however other types of expressions can be consid-
ered as well. We therefore define weights as

wt = w0 exp
(

t − Δt

θ

)

, ∀ t ∈ {1, 2, . . . , Δt} (5)

where θ is the weights’ characteristic time, θ > 0. By
varying this parameter the exponential smoothing can be
made very flexible. Note that the same function can be
written as wt = w0e

α(t−Δt), ∀ t ∈ {1, 2, . . . , Δt}, where
α = 1

θ is the exponential decay factor, with α ∈ R and
α ≥ 0.

Let us note that J.P. Morgan/Reuters [8] as well as
Litterman and Winkelmann [1,2] use a different specifica-
tion of weights:

w
t
= w0 (1 − ξ)(Δt−t) , ∀ t ∈ {1, 2, . . . , Δt} (6)

which is equivalent to equation (5) once we write ξ =
1 − e−α and ξ ∈ [0, 1].

The constant w0 in equation (5) can be obtained by
observing that w is subject to the constraint defined in
equation (C.1), i.e.

Δt∑

t=1

w0e
α(t−Δt) = 1. (7)

As proved in Appendix E, by solving for w0 , we find

w0 (α) =
1 − e−α

1 − e−αΔt
. (8)

A MATLAB code that computes Pearson’s correlation
matrices, weighted with exponential smoothing, is given
in Appendix F.

Note that lim
α→0+

1−e−α

1−e−αΔt = 1
Δt and lim

α→+∞
1−e−α

1−e−αΔt =1.

When α is 0 (or, equivalently, when θ → ∞) then weights
are uniform; on the contrary, when α is large then remote
events become increasingly irrelevant and recent events
become ever more important. Given a finite number of
observations, extremely large values for α (low values for
θ) make the correlation matrix statistically non significant
and numerically unstable. In fact, θ is a characteristic time
providing the distance of the latest significant events. See
Appendix G for some counterintuitive limits.

An elegant approach to determine a theoretically
sound value for the decay factor is described in [1]: if the
joint distribution of variables is known, then the maxi-
mum likelihood principle can be applied. For example, if
returns are found to be jointly distributed as a multinor-
mal, then the following function can be maximized as a
function of the parameter ξ in equation (6):
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0≤ξ<1
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2
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− 1
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Σ (ξ) is the weighted covariance matrix and is defined in
equation (C.2). This is only feasible, though, if the corre-
lation matrix has full rank and if, together with variances,
it is statistically significant - which is often the main diffi-
culty when covariance/correlation matrices are concerned.

3.2 Kendall weighted correlation matrix

In analogy with the Pearson weighted correlations dis-
cussed in Section 3.1, a weighted Kendall Correlation may
be defined as follows [3–7]:
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In Appendix H we show that τw matrix is positive semi-
definite.

3.2.1 Exponential smoothing for Kendall correlations

In analogy with Section 3.1.1, we use the exponential
smoothing:

w
uv

= w0 exp
(

u − Δt

θ

)

exp
(

v − Δt

θ

)

(12)

where u > v. Alternatively, by posing α = 1
θ ,

w
uv

= w0e
α(u−Δt)eα(v−Δt)

= w0e
α(u+v−2Δt). (13)

Then, the constraint can be written as

Δt−1∑

u=1

Δt∑

v=u+1

w0e
α(u+v−2Δt) = 1 (14)

so that, as proved in Appendix J,
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which tends to a uniform weight when α tends to zero,

lim
α→0+

w0 (α) =
2
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and instead it diverges when α → ∞.
The MATLAB codes that compute Pearson and

Kendall weighted correlation matrices are given in
Appendix F.

4 Empirical findings: systems of correlations
in finance

In equity markets, correlations of returns, measured over
a running window of given length, vary over time; typi-
cally, they tend to increase during highly volatile periods
with larger increases during bear periods than during bull
periods. Thus, among other uses, they are also an indica-
tor of the herd effect affecting investors who collectively
tend to overreact (overshoot) during financial crisis, when
panic spreads through the market, as well as during opti-
mistic periods, when investors collectively underestimate
risks [39–49].

4.1 Spurious correlations and false perceptions
of events

Let us first apply the dynamic study of dependency with
exponentially smoothed correlation to a practical case
where we aim to distinguish between ‘genuine’ correla-
tions which are a consequence of common trends of two
stocks and ‘spurious’ correlations that are caused by large
fluctuations within the entire market. We have considered
N = 300 NYSE highly capitalized companies over a pe-
riod of three years, 2001−2003, corresponding to a total
T = 748 market days. From returns obtained as logarith-
mic differences of daily quotations, we have calculated all
N(N−1)

2 = 44850 dynamic Pearson correlation coefficients
using a running window of six months (Δt = 126 market
days) and, for all times t = {Δt, Δt + 1, . . . , T}, we have
considered the overall average, �̄

t
. On the left side of Fig-

ure 1, we illustrate the trend over time of �̄
t
(curve denoted

by downward-pointing triangles) together with the NYSE
Composite Index (curve denoted by upward-pointing tri-
angles). On the lower subplot, as a proxy variable of mar-
ket turbulence, the number of companies recording high
returns or severe losses (positive or negative axis) is plot-
ted; high returns and severe losses are defined as returns
more than 2σ over or below the general daily average.

We observe that the average market correlation is sta-
tionarily low in the subperiod from July 2001 to May
2002, in spite of intense market turbulence, included the
9/11 shock. Then it begins to rise very steeply until July
23rd when it suddenly shoots up and remains up for
Δt = 126 days after which it suddenly falls without any
apparent cause; hence it slowly rises back a bit until July
2003 when it starts falling rapidly and steadily, while the
market is finally recovering from the shocks of the latest
years. We have therefore a clear indication that, during
the shocks, �̄

t
increased significantly to fall back again

once normality was re-established. However, the length of
the running window (Δt = 126 days) generates the optical
illusion of a sharp variation in January 2003, six months
after the shock occurred in July 23rd of the previous year.

Not only correlation measures are not stable over time,
but they exhibit strong co-movement with market events
and a large time-variability [47,48,50–52]. From Figure 1
we see that the average correlation reacts to market shocks

http://www.epj.org
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Fig. 1. (Color online) On the left, the downward-pointing triangles represent the average correlation (�̄t) for 300 stocks
computed over a period of three years with a running window of six months (Δt = 126 days); the upward-pointing triangles
represent the NYSE Composite Index. On the right, for Δt = 84 days, an example showing: the spurious correlation between
Walt Disney Corporation and Walgreen Company, represented by the unstable curve at the bottom, DIS vs. WAG; the reliable
strong correlation between International Paper Company and Weyerhaeuser Company represented by the stable curve at the
top, IP vs. WY. The subplots report, as a proxy variable of market turbulence, the number of companies whose standardized
returns are more than 2σ (positive axis) or less than −2σ (negative axis). Tick labels for the x axis are quarters of the year:
“J” for “January”, “M” for “May”, “S” for “September”.

Fig. 2. (Color online) On the left, the spurious correlation between Masco Corporation and AOC Corporation (unstable curve
at the bottom, MAS vs. AOC) and the reliable strong correlation between International Paper Company and Temple-Inland
Incorporated (the stable curve at the top, IP vs. TIN). On the right, the spurious correlation between Phelps Dodge Corporation
and Fidelity National Financial Incorporated, represented by the unstable curve at the bottom, PD vs. FNF; the reliable strong
correlation between Centex Corporation and Pulte Homes Incorporated represented by the stable curve at the top, CTX vs.
PHM. Δt = 84 days in both plots.

and is extremely volatile – revealing that most correla-
tions might be just spurious. When market uncertainty in-
creases, which is when an efficient diversification is needed
more, equities become particularly correlated and make
the task of diversification itself particularly difficult (herd
effect) [1].

In Figure 1 (right panel) we report an example of what
is likely to be a ‘spurious’ correlation between Walt Dis-
ney Corporation (Services, Broadcasting & Cable TV) and
Walgreen Company (Services, Retail Drugs)6: this is a
highly volatile curve where, at the beginning, the corre-
lation is very low, then following the 9/11 financial cri-
sis it increases sharply and it remains high for a period
of Δt = 84 days, after which it goes back to its initial
low values; then, again, during the financial instability
of mid 2002 the correlation shoots up very significantly
and finally moves back to a relatively low value, when

6 In this and the next two examples, correlations have been
calculated for Δt = 84 market days corresponding to four
months.

the turbulence is over. Let us stress that there is no ap-
parent connection between the two companies which are
operative in very different sectors of activity: this, together
with its large variations and its prolonged sensitiveness
to anomalous data-points, suggests that the correlation is
spurious. On the contrary, the very stable curve on top
shows the strong correlation between International Pa-
per Company (Basic Materials, Paper & Paper Product)
and Weyerhaeuser Company (Basic Materials, Forestry
& Wood Products). In this case, the curve remains per-
sistently well above the market average, no matter what
shocks shake the market; of course the two companies op-
erate in sectors which are strongly connected (paper is
produced out of wood), so their correlation can be reason-
ably assumed to be genuine, accurate, reliable and stable
over time.

Two more cases are reported in Figure 2. On the left,
the unstable curve at the bottom is the ‘spurious’ cor-
relation between Masco Corporation (Consumer Cyclical,
Furniture & Fixtures) and AON Corporation (Financial,

http://www.epj.org
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Fig. 3. (Color online) On the upper plot, on the left, the downward-pointing triangles represent the dynamic average correlation
for a system of 300 stocks computed over a period of three years with a running window of twelve months (Δt = 251 days);
the upward-pointing triangles represent the dynamic average correlation with a running window of one month (Δt = 21 days).
On the lower plot, at each time t, the number of companies whose standardized returns is more than 2σ (positive axis) or less
than −2σ (negative axis). On the right, the autocorrelation function for dynamic average correlations (�̄t) with Δt = 21 days
and with Δt = 251 days vs. time lags from 1 to 126 days. The horizontal slashed lines are the upper and lower bounds for the
null hypothesis.

Insurance Miscellaneous). Conversely, the stable curve at
the top is the reliable strong correlation between Inter-
national Paper Company and Temple-Inland Incorporated
(Conglomerates). On the right, we report another ‘spuri-
ous’ correlation between Phelps Dodge Corporation (Ba-
sic Materials, Metal Mining) and Fidelity National Fi-
nancial Incorporated (Financial, Insurance Property &
Casualty) – the unstable curve at the bottom. A reliable
strong correlation between Centex Corporation (Capital
Good, Construction Services) and Pulte Homes Incorpo-
rated (Capital Good, Construction Services) is instead the
stable curve at the top. Typically, we observe that out-
standing market shocks greatly affect spurious correlations
for a time lapse of Δt, while the same effect on reliable
correlations is much weaker.

In general, correlations of return time series are charac-
terized by high persistence and memory [41–43,53], which
are also positively dependent on the number of observa-
tions. Figure 3, on the left, shows dynamic average correla-
tions obtained for running windows Δt = 21 days, 1 month
(highly volatile), and with Δt = 251 days, 12 months
(more stable). Although the average has been calculated
over all 44 850 coefficients of the correlation matrix, and
for this reason its confidence bounds are very narrow, the
effect due to the length of the running window is very
evident from the figure in both cases.

Note that the shock recorded on the 23rd July 2002
is entirely reabsorbed in one month by the first curve,
which reacts markedly on the day itself and after a period
of Δt = 21 days; instead, in order to reabsorb the same
shock, the second curve needs a period of Δt = 251 days.
Note also the poor statistical significance of the correlation
measured on the day when the data-point corresponding
to the market shock exits from the running window. Each
remarkable market shock, in fact, generates the illusion
of a second similar shock after a period of Δt days: this
shortcoming is particularly treacherous because it is addi-
tive and it makes it unpractical to interpret the real trend.

On the right of Figure 3 we plotted the autocorrelation
functions for the linearly detrended time series of average

correlations7. We see that the persistence of �̄t increases
when the length of the running window is expanded. Note
that for Δt = 21 days the autocorrelation has an homoge-
neous concave pattern between 1 and 21 lags and then a
different pattern afterwards. For Δt = 251 days the auto-
correlation is larger and the two functions cross each other
after four months. Intriguingly they cross at a value that
corresponds to the upper bound of the null hypothesis
(dotted horizontal line).

4.2 Comparison between ρ and τ correlation matrices

As already argued in Section 2.2, Kendall τ correlation
is a useful alternative to Pearson �. In the following, in
order to better understand the advantages and disadvan-
tages of these measures, we compare Pearson and Kendall
correlations.

Pearson and Kendall measures usually provide quite
different numerical outputs. We have calculated all dy-
namic correlation matrices for both ρ and τ , considering
a running window of Δt = 21 market days and for all
times t = {Δt, Δt + 1, . . . , T}. For each method, a total of
T −Δt+1 = 728 correlation matrices have been obtained,
each matrix possessing N(N−1)

2 = 44850 coefficients. On
the left side of Figure 4 a low resolution scatter plot is re-
ported, where the horizontal axis represents ρ coefficients
and the vertical axis represents τ ’s: individual correlations
vary considerably. Indeed, some very large and very small
Pearson coefficients are associated to zero Kendall coeffi-
cients, and viceversa. Kendall correlations appear to per-
sistently overestimate negative and underestimate positive
Pearson correlations and the region has the shape of a par-
allelogram. In this figure we also plot for comparison the
exact relation of τ = (2/π)arcsin(ρ) (Greiner’s relation)

7 The autocorrelation function is defined as ACF (h) =
E[(Xt−μ)(Xt+h−μ)]

σ2
X

where here Xt is a correlation at time t

minus the value of its linear best fit trend; h is the time lag
and σX is the standard deviation of X.
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Fig. 4. (Color online) On the left, Kendall vs. Pearson correlations are represented for N = 300 NYSE stocks, with Δt = 21 days:
Kendall correlations appear to persistently overestimate negative and underestimate positive Pearson correlations. The region
has the unwonted shape of a parallelogram. On the right, the lower curves represent in logarithmic scale the eigenvalues of
Pearson correlations (λ�) computed with Δt = 251 days; the upper curves represent the eigenvalues of Kendall correlations
(λτ ), in logarithmic scale. Null eigenvalues for Pearson matrices have been discarded. Eigenvalues of the two measures have
dissimilar structures. In the circle the largest eigenvalues of Pearson and Kendall matrices have been highlighted sharing the
same values.

which holds for a large class of dependent signals with
elliptical distributions [35,54,55].

The analysis of eigenvalues can provide a useful in-
sight into the correlation matrices’s structure. In fact,
a large number of eigenvalues not significantly different
from zero is indicative of a high noise level in the data.
On the right of Figure 4, in logarithmic scale, eigenvalues
are reported for Pearson and Kendall correlation matrices
calculated with running windows of Δt = 251 days and
for all times t = {Δt, Δt + 1, . . . , T}. For each method,
a total of T − Δt + 1 = 498 correlation matrices have
been obtained, each matrix associated to N eigenvalues.
Eigenvalues are sorted in ascending order. Null eigenval-
ues, due to the singularity of Pearson matrices, have been
discarded. In the figure, two distinct structures are eas-
ily recognizable: the set of 498 lower curves represents
Pearson’s eigenvalues, the set of 498 upper curves rep-
resents Kendall’s eigenvalues, and the differences between
the two structures are remarkable. Kendall lower eigen-
values, in fact, are generally much larger than the cor-
responding Pearson eigenvalues: about 49.4% of Pearson
eigenvalues are smaller than the lowest of Kendall eigen-
values. In this example, none of the Kendall eigenvalues
is null against N − Δt + 1 = 300 − 250 = 50 Pearson
eigenvalues. Inside the circle on top, we have highlighted
the largest eigenvalues – which retain most of the infor-
mation – for both Pearson and Kendall matrices, and they
are pretty similar. Pearson largest eigenvalue is never less
than 0.210N ; Kendall’s is never less than 0.146N ; the sec-
ond largest eigenvalue is, respectively, never more than
about 0.069N and 0.037N . Let us recall that here we have
N = 300. Similar results have been retrieved also using
larger or smaller data sets. About 79.9% and 78.4% eigen-
values, respectively, are smaller than 1, showing in both
cases a considerable amount of noise. Kendall eigenval-
ues are always convex in logarithmic scale while Pearson
eigenvalues are initially concave and then convex8.

8 This result seems to be valid for more general cases, inde-
pendently from the number of observations. In fact we have

Note that the Kendall correlation matrix has more
structure than Pearson’s and is also more robust from
a statistical point of view: for this reason, τ

w
might be

suitable as shrinkage target for ρ
w
, in a matrix shrink-

age approach [56–61], so that the convex combination
δρ

w
+(1 − δ) τ

w
might be more informational than τ

w
from

a quantitative point of view and at the same time more
robust and with a superior structural endowment than
ρw . The eigenvalues of the resulting blend matrix would
be all positive. This is an intriguing approach that we are
currently investigating.

In order to check the statistical significance of both
ρ and τ correlations we have reported in Appendix I the
distributions of the matrices’s coefficients.

4.3 Effect of weights on empirical correlations

Weights have a very important smoothing effect on indi-
vidual correlations, impacting also on the structure of cor-
relation matrices, on the distribution of their coefficients
and on the autocorrelations. In the following we assume
weights with exponential smoothing according to equa-
tions (5) and (12), respectively for Pearson and Kendall
methods.

4.3.1 Effects of weights on individual correlations

Figure 5 shows scatter plots of weighted vs. unweighted
correlations for both Pearson (left) and Kendall (right)
cases, calculated with a running window of Δt =
{21, 251} days and θ = Δt

3 . Individual correlations vary
considerably but they are virtually symmetric with re-
spect to the bisector line. In both cases the scatter plot
assumes the shape of an “eye” with two cuspidal points
at the extremities. Kendall weighted correlations slightly

verified it for many data-sets, both real and random, reaching
systematically the same result.

http://www.epj.org
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Fig. 5. (Color online) Weighted vs. unweighted correlations calculated with Δt = {21, 251} days and θ = Δt
3

: the two mea-
sures are virtually symmetric with respect to the bisector line. On the left, Pearson’s case has the shape of an eye with two
cuspidal points at the extremities. On the right, Kendall’s case, with the weighted measure slightly overestimating positive and
underestimating negative values.

overestimate positive and underestimate negative values of
the corresponding unweighted measure. The weights affect
Pearson correlations more markedly than Kendall corre-
lations - and this is due to the higher rank of Kendall
matrix. When Δt is wider, the differences are reduced but
still sizable.

4.3.2 Effects of weights on the matrix structure

The choice of parameter θ is crucial: if θ is too little
all the weight is cast on recent events, individual corre-
lations loose statistical significance, correlation matrices
become numerically unstable and the distribution of their
coefficients becomes distorted. On the other hand, if θ is
too large, weights become uniform and, consequently, the
weighting is ineffective.

In order to verify the impact of θ on the numerical sta-
bility of Pearson weighted correlation matrices, we check
how the condition number9 reacts to decreasing values

9 The condition number of matrix A is defined as κ (A) =
‖A‖ · ‖A−1‖ and is a measure of the loss in precision due to
roundoff errors in Gaussian elimination. The higher the condi-
tion number is, the higher the matrix numerical instability be-
comes. If the condition number is much greater than 6.7×108,
caution is advised for subsequent computations. If κ ∝ 1016 the
numerical instability is total and the matrix is ill-conditioned;
if κ is small the matrix is well-conditioned. Given κ ∝ 10k,
k is the expected number of digits of accuracy which would
be presumably lost by solving the associated system of linear
equations [62].

of the parameter. Let us recall that the condition num-
ber is defined for non-singular matrices and large values
are indicative of numerical instability. However, since our
Pearson correlation matrices are always singular, being
N > Δt for all lengths of the running windows consid-
ered, their condition number cannot be computed. There-
fore, for Δt = 251 and for θ ∈ [

Δt
50 ,∞)

, we have reduced
the singular matrices in row echelon form, detecting and
keeping the linearly independent columns; then we have
considered the largest full-rank sub-matrices and calcu-
lated their condition number. The results are reported on
the left of Figure 6 where the vertical axis represents con-
dition numbers in logarithmic scale, and the horizontal
axis the ratio Δt

θ : decreasing values of θ (higher values
of Δt

θ ) are associated with an increasing deterioration of
the matrix numerical stability. When θ is large enough,
the slope is virtually flat. This suggests to refrain from
excessively lowering the value of θ.

Since Kendall correlation matrix can be seen as a
special case of Pearson correlation matrix the same con-
siderations apply to it as well. However, Kendall matri-
ces are usually endowed with a much higher rank and a
much lower condition number than Pearson matrices10:
therefore, the effect of θ on the condition numbers of
the weighted Kendall correlation matrices for the cases

10 The superior numerical stability of Kendall correlation
matrices can be explained by the fact that, usually, unless
N � Δt, the following inequality holds:
max(K,N)
min(K,N)

= max(Δt(Δt−1),2N)
min(Δt(Δt−1),2N)

� max(Δt−1,N)
min(Δt−1,N)

.
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Fig. 6. (Color online) On the left, condition number of largest full-rank Pearson correlation sub-matrices as a function of
parameter θ when Δt = 251. On the right, estimated ranks as a function of θ.

Fig. 7. (Color online) Changes of the Pearson (λ�) and Kendall (λτ ) average eigenvalues – respectively on the left and on the
right – as a function of parameter θ with Δt = 251 days. The x axis reports the ordered index of eigenvalues sorted from the
minimum to the maximum. The y axis reports the average (ordered) eigenvalues (in logarithm scale). Each curve is obtained
as average of 498 vectors each representing 300 ordered eigenvalues of a correlation matrix calculated at given time and with
fixed θ. The figure represents 501 of such curves, with different values of θ.

studied here, are negligible to all practical effects and, as
such, they are not reported.

From a mere mathematical point of view, it is very
unlikely that a loss of rank might ever occur as a conse-
quence of an increase in parameter θ; nonetheless, com-
putationally, the estimated rank [62] can be lower than it
should as a consequence of nearly null eigenvalues. On the
right of Figure 6, the effect of θ on the estimated rank
of Pearson correlation matrices is reported. Small values
of θ cause a loss of the estimated rank for the matrices.
There appears to be a linear relation between the full rank
and the minimum θ that ensures it, with approximately
rank ≈ min (2 + 30θ, Δt − 1, N). Computations have been
performed in MATLAB using function “rank” with de-
fault tolerance.

We have also evaluated the eigenvalues of the correla-
tion matrices with Δt = 251 and several values of θ in the
range

[
Δt
50 ,∞)

. For all θ, we have computed the average
eigenvalue over T − Δt + 1 dynamic correlation matrices.
The results are illustrated in Figure 7 for Pearson (left)
and Kendall (right) correlations. For Pearson correlations
we observe that the original curve rotates downwards anti-
clockwise so that, for large values of θ, only few eigenvalues
are significant while all others are null or negligible. Con-
versely for Kendall eigenvalues (on the right) the associ-
ated eigenvalues do not suffer from the same sensitiveness
to decreasing values of θ. This is a consequence of the fact
that this correlation is computed over a very large number

of differences, namely Δt(Δt−1)
2 = 31375, therefore it has

full rank with all positive eigenvalues.

4.3.3 Effects of weights on the distribution of coefficients

The choice of the values of Δt and θ has a strong effect on
the statistical distribution of the correlation coefficients.
In particular the distribution tends to a Gaussian when
both θ and Δt are large. Conversely it deviates from the
normal behavior becoming increasingly irregular when θ
decreases. The distributions for various θ and Δt are re-
ported in Appendix I. Let us here focus on the standard
deviations as a function of parameter θ.

On top of Figure 8 are reported the standard devi-
ations for Pearson (left) and Kendall (right) correlation
coefficients when Δt = 251, computed for various θ, for
T − Δt + 1 = 498 dynamic matrices. The thick curve in
the middle corresponds to the average value of the stan-
dard deviations over the 498 dynamic matrices. We find
that in the interval

[
Δt
3 ,∞)

the general standard devia-
tion has an almost stationary or a slightly decaying con-
vex trend; in the

[
Δt
7 , Δt

3

]
interval, the curve is almost

stationary or slightly increasing; after that, the curve is
generally increasing and concave. A minimum is present
in the

[
Δt
3 ,∞)

interval and an inflection point can be in-
dividuated at about θ ≈ Δt

7 .
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Fig. 8. (Color online) Standard deviation of weighted correlation coefficients as a function of parameter θ when Δt = 251
(Pearson on the left, Kendall on the right). On the top are reported T −Δt + 1 = 498 curves corresponding to all the dynamic
matrices that can be computed over the period T . The thick line is the average standard deviation per each θ over these 498
curves. At the bottom the average standard deviations for Δt = {21, 42, 63, 84, 126, 251} are reported.

Similar behaviors are observed for the average stan-
dard deviations computed for Δt = {21, 42, 63, 84, 126,
251}, which are reported on the bottom of Figure 8. We see
that for all Δt the standard deviations persistently exhibit
similar trends; the curves for the Kendall method (right)
are characterized by lower levels at Δt and, viceversa,
higher levels at smaller Δt. As observed before, the effect
of weights is generally magnified by narrowing running
windows: in fact, the curves shift fast upwards as Δt gets
narrower.

The median’s range for minimum points is in Δt
θ ∈

[
0, 1

2

]
. The 95% confidence interval is about Δt

θ ∈ [
0, 7

2

]
,

with its upper bound increasing as Δt increases.
The median’s range for inflection points is in Δt

θ ∈[
9
2 , 7

]
. The upper bound of the 95% confidence interval

reaches as far as Δt
θ ≈ 15 and increases as Δt increases.

Confidence intervals of individual coefficients

In order to further assess the effect of Δt and θ on the sta-
tistical properties of the weighted correlation coefficients,
we measure the uncertainty associated to these coefficients
by estimating the width of their 100 (1 − η)% confidence
intervals by using bootstrap resampling. In particular we
have applied the following procedure11:

1. draw each sample by extracting time units with uni-
form probability, with replacement;

11 Note that, in the special case when weights are the empir-
ical frequency of the data, the correct resampling would be:

2. assign to each selected time unit its corresponding
weight, e.g. according to equation (5) or (12);

3. re-normalize weights to one.

For all times t = {Δt, Δt + 1, . . . , T}, for both Δt = 21
and Δt = 251, we have randomly extracted 1000 sam-
ples of size Δt. For each sample, we have calculated the
coefficients of weighted correlations. Then, for all coeffi-
cients, we have measured the width of the 95% confidence
intervals (CIW95%). Figure 9 shows that the confidence
intervals get increasingly wide for decreasing values of θ.
When Δt = 21 the curves shift rapidly upwards, towards
the maximum limit of 2. In Appendix K we verify this pro-
cedure by applying it to a multivariate Gaussian signal.

Given the effect of parameters θ and Δt over the
distribution of correlation coefficients and the individ-
ual distributions of coefficients, calibrating the desired ef-
fect depends strongly on the purpose of specific analyses.
In fact, a high standard deviation caused by a mighty
smoothing can at the same time spoil the informative
content of the measure or help differentiate individual
coefficients. While excessively high values of θ are vir-
tually useless, indiscernible from unweighted quantities
to all practical effects, certainly very low values make

1. draw each sample by extracting time units with probabil-
ity proportional to the assigned weights, e.g. according to
equation (5) or (12), with replacement;

2. assign to each selected time unit a weight proportional to
its frequency in the corresponding sample;

3. re-normalize weights to one.

http://www.epj.org
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Fig. 9. (Color online) Width of 95% confidence intervals for all coefficients of Pearson weighted correlation matrices (based
on a bootstrap sample of 1000 drawing from each time unit). General averages are displayed for Δt = 21 (left) and Δt = 251
(right). Weights vary from θ → ∞ to θ = Δt

20
. For each θ the intervals have been sorted in ascending order with respect to their

width.

Fig. 10. (Color online) Autocorrelation functions for average weighted correlations computed for a running window of Δt =
251 days and different values of θ in the interval

[
Δt
50

,∞)
. Pearson’s case is on the left, ACF�̄ , Kendall’s on the right, ACFτ̄ . In

the color, online version, the colors vary from black to red, magenta, blue, cyan and green accompanying the downwards shift of
the curves as θ decreases. Horizontal dotted lines delimit approximate upper and lower confidence bounds for the null hypothesis,
assuming that the series is a MA (0) process. As θ gets shorter, the autocorrelation becomes statistically non-significant at a
faster rate; negative values associated with extended lags are statistically significant but weak and possibly negligible.

the correlation matrix meaningless and consequently risky
(see Appendix G for an extreme example). Generally, a
cautious approach would suggest to favour the former
rather than the latter of the two hazards.

4.3.4 Effect of weights on autocorrelations

We observe that weights have a strong effect on the au-
tocorrelations contributing effectively to make a regular
and convex autocorrelation function of correlation coeffi-
cients. Figure 10 reports the autocorrelation function of
the average weighted dynamic correlations (�̄

t
and τ̄

t
)

calculated with linear detrending for different values of
θ and Δt = 251 (Pearson’s case on the left, Kendall’s
on the right). When θ → ∞ (uniform weights), the au-
tocorrelation function is at its highest level; then, as θ
decreases, the autocorrelation function shifts increasingly
downwards. Horizontal dotted lines delimit approximate
upper and lower confidence bounds for the null hypothe-
sis, assuming that the series is a MA (0) process: it takes
at least 63 lags for the lowest curve to fall below the up-
per bound while the highest curve crosses the same bound
after about 84 lags. So, one of the beneficial effects of
lowering θ, in agreement with results reported above, is

to reduce the improper trail of the remote past over the
present.

4.3.5 Effect of weights on spurious correlations

The increase in temporal resolution associated with the
exponential weights can be used to differentiate be-
tween ‘genuine’ and ‘spurious’ correlations. For instance,
Figure 11 (top) shows how weighted Pearson average cor-
relations, calculated with Δt = 21 days and θ = Δt

3 =
7 days, are scarcely sensitive to shocks occurred in the re-
mote past and how, on the contrary, they record much
higher peaks at present shocks. While normal – un-
weighted – Pearson average correlation (top left) is very
sensitive to the shock of the 23rd of July 2002 on the day
itself and after Δt = 21 days, remaining persistently on an
unusual large value during the time interval, the weighted
average correlation (top right) is very sensitive only on the
day of the shock itself, recovering fast in the subsequent
days.

At the bottom of Figure 11 differences between
weighted and unweighted correlations for a selection of
cases are reported for a running window of four months,
Δt = 84 days, and θ = Δt

3 = 28 days. Highly volatile
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Fig. 11. (Color online) On the left, on top, the curve represents the dynamic average of Pearson correlations for 300 NYSE stocks
computed with a running window of Δt = 21 days; on the right the curve represents the dynamic average of weighted correlations
with Exponential Smoothing and θ = 7. Patterns of the two measures are similar but weighted correlations are more sensitive
with respect to the present and do not react significantly to shocks occurred in the past. Below, the difference between weighted
and unweighted correlations: on the left, the spurious correlations between Walt Disney Corporation and Walgreen Company
(volatile curve with diamond markers, DIS vs. WAG) and the strong correlation between International Paper Company and
Weyerhaeuser Company (stable curve with “plus” markers, IP vs. WY); on the right the spurious correlation between Phelps
Dodge Corporation and Fidelity National Financial Incorporated (volatile curve with diamond markers, PD vs. FNF) and the
strong correlation between Centex Corporation and Pulte Homes Incorporated (stable curve with “plus” markers, CTX vs.
PHM). When correlations are spurious, the difference between weighted and unweighted coefficients is very unstable over time.
Correlations, for these examples, have been computed with Δt = 84 days and θ = Δt

3
= 28 days.

curves correspond to ‘spurious’ correlations between Walt
Disney Corporation and Walgreen Company (left) and be-
tween Phelps Dodge Corporation and Fidelity National
Financial Incorporated (right). Stable curves fluctuating
between the zero line represent instead ‘genuine’ correla-
tions between International Paper Company and Weyer-
haeuser Company (left) and between Centex Corporation
and Pulte Homes Incorporated (right). We see that when
correlations are spurious, the introduction of exponen-
tial smoothing weights produces large differences, whereas
when correlations are genuine the oscillations are less pro-
nounced.

Analogous examples with Kendall correlations are re-
ported in Figure 12: on top on the left, average Kendall
correlations, on the right weighted Kendall average cor-
relations, calculated with Δt = 21 days and θ = Δt

3 =
7 days. At the bottom of Figure 12, we report two
examples of correlations, represented by volatile curves
with “diamond” markers: (left), News Corporation Lim-
ited (Services – Printing & Publishing) and Federated
department stores (Services – Retail Department & Dis-
count); (right) Omnicom Group (Services – Advertising)
vs. Federated Department Stores (Services – Retail De-
partment & Discount). These couples of firms have no
evident economic connections and they are presumably

connected by ‘spurious’ correlations and the differences
between weighted and unweighted correlations are large.
Conversely, the stable curves at the bottom of Figure 12,
identified by “plus” markers, are two examples of ‘genuine’
correlations: (left) International Paper Company (Basic
Materials – Paper & Paper Products) vs. Weyerhaeuser
Company (Basic Materials – Forestry & Wood Products);
(right) Occidental Petroleum Corporation (Energy – Oil &
Gas Operations) vs. Unocal Corporation (Energy – Oil &
Gas Operations). In both cases the companies are strongly
connected from an economic point of view and the differ-
ences between weighted and unweighted correlations are
small.

5 Some criteria for choosing θ

Let us recall that θ is the weights’ characteristic time and
it represents the horizon in the past relevantly contribut-
ing to the correlation’s measure. The choice of its size
depends on the aim of the investigation. We can generally
affirm that small values of θ cause some adverse effects
such as: an increase in the condition number of the corre-
lation matrix; a fall of most eigenvalues to negligible fig-
ures; a fall in the estimated rank of the correlation matrix;

http://www.epj.org


Eur. Phys. J. B (2012) 85: 175 Page 13 of 21

Fig. 12. (Color online) On top, on the left, dynamic average of Kendall correlations calculated with Δt = 21; on the right the
dynamic average of weighted Kendall correlations with exponential smoothing, θ = Δt

3
= 7 days. At the bottom, with Δt =

84 days and θ = Δt
3

= 28 days, the differences between weighted and unweighted Kendall correlations. Spurious correlations:
(left) News Corporation Limited (NWS) and Federated Department Stores (FD); (right) Omnicom Group (OMC ) and Federated
Department Stores (FD). Genuine correlations: (left) International Paper Company (IP) and Weyerhaeuser Company (WY );
(right) Occidental Petroleum Corporation (OXY ) and Unocal Corporation (UCL).

a distortion of the coefficients’ distribution and in particu-
lar an increase in their standard deviations. Nevertheless,
at the same time, small values of θ also cause desirable
effects such as: a less persistent autocorrelation function
and a far less undue influence of remote events over the
understanding of current events. Consequently, a trade-
off exists between avoiding adverse effects and achieving
desirable effects. Therefore the choice of θ should be the
result of a multi-objective optimization process.

In the following we discuss some criteria that can be
taken into consideration when choosing the values of θ for
a given Δt.

From the analysis of the condition number, reported
in Figures 6, we see that, when Δt = 251 days, it is rather
stationary for large values of θ, but it suddenly grows fast
when θ is shortened. So a first criterion that may help
determine θ is to set a threshold to the condition number.
For instance a threshold at 108 in the example in Figures 6
will yield to Δt/θ ≈ 10 (i.e. θ ≈ 25 days, about a month).

From Figures 7, we see that, by increasing θ, the lowest
non-null eigenvalues fall steeply to negligible values. Then
a second concurrent criterion might be to set a thresh-
old on the minimum non-null eigenvalue so to obtain a
structure that is not excessively noisy. For instance in the
example reported in the figure, λmin ≥ 10−4 corresponds
to a value of Δt/θ ≈ 8 and instead λmin ≥ 10−8 corre-
sponds to a value of Δt/θ ≈ 19 (i.e. respectively θ ≈ 31
and 13 days).

While high condition numbers and null eigenvalues are
clearly not advisable, whether a high or low standard de-
viation of correlation coefficients is desirable or not is less
evident. Two contrasting aspects can be outlined: on one
hand, it is wise to be cautious and reduce θ only the
strictly necessary to avoid an excessive influence of re-
cent events in the computation and an excessive distor-
tion of the distribution of coefficients; on the other hand
the more diverse the coefficients are (i.e. the higher their
standard deviations), the easier the task of differentiating
them, which is an element in favor of strongly reducing
θ. Therefore two alternative criteria might be helpful, de-
pending on research goals, and integrating the previous
criteria:

1. Choose the highest value of θ with θ ≤ Δt such that
the least increase of coefficients’ standard deviation (or
the greatest decrease of it) is caused. Applied to the
examples discussed in this paper, this corresponds to
Δt/θ ≈ 3 (i.e. θ ≈ 84 days).

2. Choose θ in the proximity of the inflection point (as in
Fig. 8) so as to maximize the increase rate of the coeffi-
cients’ standard deviation, and restrain from reducing
θ further. Applied to the examples discussed in this
paper this corresponds to Δt/θ ≈ 7 (i.e. θ ≈ 36 days).

Let us note that, in the previous examples (Δt =
251 days), the increase in the standard deviation is rela-
tively small, with average standard deviation ranging be-
tween 0.14 to 0.29 for Pearson coefficients and between
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0.10 to 0.23 for Kendall coefficients, with Δt
θ = [3, 50] (see

Fig. 9).
It should be also reminded that low values of θ and Δt

cause an increase in the variance of individual coefficients
so that the accuracy of the measures might be compro-
mised, however, in the examples studied here, this effect
appears to be relatively small.

6 Conclusion

Weighted correlations can fix some of the typical short-
comings affecting unweighted correlations – especially in
the field of time series analysis. In particular, a structure of
weights can make correlations more robust with respect to
outliers, anomalous or remote data-points. The exponen-
tial smoothing criterion has the added advantage of signif-
icantly reducing the persistence/memory of dynamic av-
erage correlations which, by construction, is usually high.
Furthermore, extending Δt, while at the same time re-
ducing θ, might improve the correlation matrix numeri-
cal stability (rank and/or condition number of the largest
full-rank sub-matrix). This strategy can thus help miti-
gate the curse of dimensionality by allowing the use of
more data-points, when these are available, without the
inconvenience of conferring remote events more impor-
tance than they are worth of for the research specific goals.
Finally, comparing weighted vs unweighted measures can
also help diagnosing spuriousness in the correlations.

However, assigning weights to observations is a del-
icate procedure potentially originating side effects which
might offset other benefits. For this reason, several criteria
for determining the best weights have been discussed. In
particular, weights should be chosen having regard for the
numerical stability and statistical robustness of the result-
ing correlation matrices: they should not cause excessive
distortions in the distribution of coefficients, nor cause a
collapse in that of eigenvalues, nor decrease the estimated
rank (i.e. the number of estimated non-null eigenvalues)
or increase excessively the condition number of the largest
full-rank sub-matrices.

In general, unless N � Δt, due to its higher numerical
stability, Kendall’s correlation matrix is much less affected
by these side effects than Pearson’s.

In our analysis, we have found that θ = Δt
3 is a rea-

sonable choice for our data-set when Δt is sufficiently
large, e.g. Δt ∈ [84, 251]: in this interval θ = Δt

3 does
not appear to overly affect the distribution of coefficients
and the distribution of eigenvalues for neither Pearson nor
Kendall correlations; although not enough to make con-
vex the autocorrelation function of average correlations,
it contributes to lower the curve; furthermore, it does not
affect the numerical stability of the resulting correlation
matrices: the condition number of the largest full rank
sub-matrices does not increase significantly; finally, the
estimated ranks of correlation matrices are not affected.

Future works will be dedicated to investigate how dif-
ferent weights, including an hyperbolic specification for
the weights, affect properties and structure of graphs
used for filtering correlation matrices, such as Minimum

Spanning Trees and Planar Maximally Filtered Graphs,
on the same research line of previous works [63–67].

This work was partially supported by COST MP0801 project.
Many thanks to the referees of this paper for their very useful
comments.

Appendix A: Positive semi-definiteness of ρ

A useful notation allows us to write Pearson correlations
in matrix form. Indeed, for a given matrix Y, Pearson
correlations can be written as:

ρ = D
− 1

2 Σ D
− 1

2 (A.1)

with

Σ = Y
T

(I
Δt

− U
Δt

)
T

(I
Δt

− U
Δt

)Y (A.2)

and
D = Σ ◦ I

N
(A.3)

where [. . .]
T

denotes the transpose, U
Δt

denotes a square
matrix of 1s of order Δt, I

N
the identity matrix of order N ,

I
Δt

the identity matrix of order Δt, the symbol “◦” is the
Hadamard product [68–77]12. Σ is the covariance matrix.
D is a matrix containing sample variances on the diagonal
and zero elsewhere, such that [d

ii
] = σ2

i
and [d

ij
]
i�=j

= 0;

D
− 1

2 is a matrix containing reciprocals of sample standard
deviations on the diagonal and zero elsewhere.

We see that, since Σ is a quadratic form of the type
X

T

X, it must be a positive semi-definite matrix; D is an
element-wise product of positive semi-definite matrices (it
is a diagonal matrix of variances, which are always non-
negative), so D also must be a positive semi-definite ma-
trix13. Given that ρ is a product of positive semi-definite
matrices, it is also positive semi-definite.

Note that, considering standardized variables, zi
t

=
yi

t
− ȳi

σi
, Pearson’s correlations can be written as �

ij
=

zi
T
zj

Δt and the Euclidean distance between the two stan-
dardized variables is related to the correlation coefficient
as:
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which is defined in the interval [0, 2] [78].
12 The Hadamard product (or Schur product) of A =

[
aij

]

and B =
[
bij

]
, denoted as C = A ◦ B, is the element-wise

product such that
[
cij

]
=

[
aij bij

]
. The Hadamard product

allows us to prove the positive semi-definiteness of Pearson and
Kendall correlation matrices, both weighted and unweighted.
13 Schur [69] proved that if A and B are positive semi-definite
then also C = A ◦B is positive semi-definite.

http://www.epj.org


Eur. Phys. J. B (2012) 85: 175 Page 15 of 21

Appendix B: Kendall’s τ matrix notation
and its rank

Let us first show that Kendall’s τ coefficients can be
written in matrix notation.

Posed K =
(
Δt
2

)
= Δt(Δt−1)

2 , let S be a K-by-N ma-
trix such that s

kl
= sgn

(
yl

t − yl
t−h

)
and each index k ∈

{1, 2, . . . , K} is associated to time t ∈ {2, 3, . . . , Δt} and
interval h ∈ {1, . . . , t − 1} through the relation k (t, h) =
1
2 t (t − 1)−h+1, so that t (k) =

⌊
1
2 + 1

2

√
1 + 8 (k − 1)

⌋
+

1, where �• denotes the floor function, and h [k, t (k)] =
1
2 t (k) (t (k) − 1) − k + 1. Then τ can be expressed as

τ = D
− 1

2 Σ D
− 1

2 (B.1)

with
Σ = S

T

S (B.2)

and
D = Σ ◦ I

K
. (B.3)

Therefore, τ can be seen as a Pearson’s ρ correlation ap-
plied to S 14. The rank of the Kendall Correlation Matrix
is no more than the minimum between K and N :

rank (τ) ≤ min
{

Δt (Δt − 1)
2

, N

}

(B.4)

so that, given N variables, in order to obtain a full rank
matrix, the number of required observations should be
such that:

Δt ≥
⌈

1
2

+

√

2N +
1
4

⌉

=
⌈

1
2

+
√

2N

⌉

=
⌊

1
2

+
√

2N + 1
⌋

= round
(√

2N + 1
)

(B.5)

where �•� denotes the ceiling function and round (•) de-
notes the rounding to the nearest integer15. It follows that:

Δt > round
(√

2N
)

. (B.6)

The proof for equalities in equation (B.5) are reported
afterwards in Appendix D.

Appendix C: Positive semi-definiteness of ρw

Pearson weighted correlation matrices enjoy the same
properties as their corresponding unweighted matrices:
they are positive semi-definite matrices and this can be
easily proved by representing them in matrix notation.
14 Note, though, that S has not been subtracted by its sample
mean, so no degree of freedom has been lost. This is the reason
why the rank of τ can be Δt(Δt−1)

2
when N is larger.

15 Properties and some proofs of similar diophantine equa-
tions involving floor and ceiling functions can be found
in [79–81].

Let w be a Δt-by-1 vector with non-negative elements
such that w ≥ 0; let u

Δt
be a Δt-by-1 vector of 1s; then

condition
w

T

u
Δt

= 1 (C.1)

must be satisfied. Let Ȳ = w
T

Y be the 1-by-N vector
of weighted sample means. Let us introduce a vector w�

whose elements are the square roots of w’s elements, such
that w�

t
= √

wt , ∀ t; since w ≥ 0, this is also true for
w�. Let u

N
be an N -by-1 vector of 1s. Then the weighted

covariance matrix can be written as:

Σ
w

=
[(

Y − u
Δt

Ȳ
) ◦

(
w�u

N

T
)]T

×
[(

Y − u
Δt

Ȳ
) ◦

(
w�u

N

T
)]

(C.2)

Σw is a quadratic form so it must be a positive semi-
definite symmetric matrix. Let I

N
be an N -by-N identity

matrix. By using the Hadamard product again, let D
w

=
Σw ◦ IN be a square diagonal positive semi-definite matrix
whose elements along the diagonal are weighted sample
variances; then, finally the weighted correlation matrix is:

ρw = D
− 1

2

w
Σw D

− 1
2

w
(C.3)

where D
− 1

2

w
is a matrix containing reciprocals of weighted

sample standard deviations on the diagonal and zero else-
where. Since it can be written as a product of positive
semi-definite matrices and it can be written as a quadratic
form, the weighted correlation matrix must be symmetric
and positive semi-definite.

Note that ρw , as Pearson correlation matrix, is invari-
ant to arbitrary affine transformations so that, if the unit
system of each column of Y changes as zi = aiy+bi where
parameters ai, bi ∈ R and ai > 0, ∀ i, then the weighted
correlation remains unchanged. In fact, as equation (C.3)
makes it clear, ρ

w
is still a linear operator.

Appendix D: Equalities of equations in (B.5)

In order to obtain a full rank Kendall Correlation Matrix,
the following necessary – but not sufficient – condition
needs to be satisfied:

rank (τ) ≤ min
{

Δt (Δt − 1)
2

, N

}

. (D.1)

The minimum number of observations that is necessary
for a full rank matrix is obtained when Δt(Δt−1)

2 = N
so that Δt (Δt − 1) − 2N = 0 which is solved for Δt =
1
2 +

√
2N + 1

4 . Since Δt ∈ N, the ceiling of the right-hand
side of the equation must be considered instead, therefore
Δt ≥

⌈
1
2 +

√
2N + 1

4

⌉
. Now, we prove that

⌈
1
2

+

√

2N +
1
4

⌉

=
⌈

1
2

+
√

2N

⌉

= m (D.2)
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where m ∈ N. When N = 1 the equality certainly holds
and m = 2. So we are after solutions for m ≥ 2. From left-
hand side of equation (D.2), after removing the ceiling
operator, follows that

⎧
⎨

⎩

1
2 +

√
2N + 1

4 ≤ m

1
2 +

√
2N + 1

4 + 1 > m
⇒

{
2N + 1

4 ≤ (
m − 1

2

)2
, m ≥ 1

2

2N + 1
4 >

(
m − 3

2

)2
, m ≥ 3

2

⇒
{

N ≤ m(m−1)
2

N > m2−3m+2
2

⇒
{

N ≤ m(m−1)
2

N ≥ m2−3m+4
2 ·

In order to verify that N > m2−3m+2
2 implies N ≥

m2−3m+4
2 it suffices to note that

– m2 − 3m is even, so that, since m is a positive integer,
m2−3m+2

2 is a non-negative integer, so N cannot be
less than m2−3m+2

2 + 1;
– when N = 4, then m = 4 and m2−3m+4

2 = 4, so the
“>” sign must change into “≥” at least in this case.

So, from left-hand side of equation (D.2) we obtain:

m2 − 3m + 4
2

≤ N ≤ m (m − 1)
2

. (D.3)

Analogously, from right-hand side of equation (D.2), after
removing the ceiling operator, follows that

{
1
2 +

√
2N ≤ m

1
2 +

√
2N + 1 > m

⇒
{

2N ≤ (
m − 1

2

)2
, m ≥ 1

2

2N >
(
m − 3

2

)2
, m ≥ 3

2

⇒

{
N ≤ m(m−1)

2 + 1
8

N > m2−3m+2
2 + 1

8

⇒
{

N ≤ m(m−1)
2

N ≥ m2−3m+4
2 .

The last pair of implications are straightforward and are
due to the fact that m (m − 1) and m2 − 3m+2 are even.
So the interval in equation (D.3) is found solving both
sides of equation (D.2) and this completes the proof. In
order to verify that the solution is exact it is straightfor-
ward to note that, by substituting the bounds found in
equation (D.3), one at a time, back in each side of equa-
tion (D.2), the relation still holds in all of the four resulting
cases.

Appendix E: Proof of equation (8)

By solving for w0 , we find w0 (α) = 1
Δt∑

t=1
eα(t−Δt)

. Note

that
Δt∑

t=1
eα(t−Δt) = eα

eα−1

[
1 − e−αΔt

]
, hence equation (8)

follows. In fact:
Δt∑

t=1

eα(t−Δt) = e−αΔt
Δt∑

t=1

(eα)t =e−αΔt

[
1 − (eα)Δt+1

1−(eα)
−1

]

=
e−αΔt

1−eα

[
eα−eαΔt+α

]
=

eα

eα − 1
[
1 − e−αΔt

]
.

Appendix F: MATLAB code for weighted
correlations

In this paper computations have been made in MATLAB
using the following codes, respectively for Pearson and
Kendall correlation matrices.

Pearson Weighted Correlation Matrix

function R = weightedcorrs(Y, w)
% dt: number of observations in window;
N: number of variables
[dt, N] = size(Y);
% Remove weighted mean
temp = Y - repmat(w’ * Y, dt, 1);
% Weighted Covariance Matrix
temp = temp’ * (temp .* repmat(w, 1, N));
% Must be exactly symmetric
temp = 0.5 * (temp + temp’);
% Variances
R = diag(temp);
% Matrix of Weighted Correlation Coefficients
R = temp ./ sqrt(R * R’);

where Y is a dt-by-N array and w is a dt-by-1 array such
that sum(w) = 1.

Kendall Weighted Correlation Matrix

function tau = kendalltau(Y, w)
% dt: number of observations in window;
N: number of variables
[dt, N] = size(Y);
% Indexes for all dt * (dt - 1) / 2 combinations
without repetition:
% {1, 2}, {1, 3}, ..., {1, dt}, {2, 3}, {2, 4}, ...,
{2, dt}, ..., {dt - 1, dt}
[i2, i1] = find(tril(ones(dt, ‘uint8’), -1));
% Signs of differences between variables
at time i2 and at time i1
tau = sign(Y(i2, :) - Y(i1, :));
% Number of concordant/discordant pairs (weighted)
tau = tau’ * (tau .* repmat(w, 1, N));
% Must be exactly symmetric
tau = 0.5 * (tau + tau’);
% Number of pairs minus number of ties (weighted)
temp = diag(tau);
% Matrix of Weighted Correlation Coefficients
tau = tau ./ sqrt(temp * temp’);
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where Y is a dt-by-N array and w is a dt(dt−1)
2 -by-1 array

such that sum(w) = 1. To be compatible with the function,
indices for w must be the same as in [i2, i1].

Note that the code for Kendall correlations, unless dt is
extremely large, is generally faster than MATLAB native
corr function; nevertheless, since it stores a dt(dt−1)

2 -by-N
matrix, it will generate an “Out of Memory” error message
if the product N dt(dt−1)

2 is very large.
The following codes generate the exponential weights

for Pearson and Kendall correlations, compatible with
their relative functions above.

Exponential Weights (Pearson)

function w = expweights(dt, theta)
% Calculate constant w0
w0 = (1 - exp(-1 / theta)) / (1 - exp(-dt / theta));
% Calculate exponential weights w, for Pearson
w(:, 1) = w0 * exp(((1:dt) - dt) / theta);
% Ensure sum of weights is 1
w = w / sum(w);

where theta is parameter θ in the text.

Exponential Weights (Kendall)

function w = kendallexpweights(dt, theta)
% Calculate constant w0
w0 = (exp(1/theta) + 1) * ((exp(1/theta) - 1)ˆ2) /

exp(2/theta) / (1 - exp(-dt/theta)) /
(1 - exp((1 - dt)/theta));

% Indexes for all dt * (dt - 1) / 2 combinations
without repetition:
% {1, 2}, {1, 3}, ..., {1, dt}, {2, 3}, {2, 4}, ...,
{2, dt}, ..., {dt - 1, dt}
[i2, i1] = find(tril(ones(dt, ‘uint8’), -1));
% Calculate exponential weights w, for Kendall
w(:, 1) = w0 * exp((i1 + i2 - 2 * dt) / theta);
% Ensure sum of weights is 1
w = w / sum(w);

Appendix G: Sign of weighted correlation
when θ → 0

Note that, when θ → 0, only the last event remains
significant and lim

α→+∞w (α) = (0, 0, . . . , 0, 1)
T

while

lim
α→+∞ �w

ij
[w (α)] = ±1, where the sign of the correspond-

ing unweighted correlation is not necessarily preserved. In
order to prove that signs are not preserved at their lim-
its, a single counter-example suffices: let y1 = [0, 1, 2] and
y2 = [0, 2, 1]; then it is straightforward to verify that the
unweighted correlation is equal to 1

2 while the limit of the
weighted correlation, when we allow α → +∞, is equal
to −1. In fact, it is easy to prove that, in our counter-
example, after some factorizations and simplifications,

such limit can be written as:

lim
α→+∞ �w

12
[w (α)] = lim

α→+∞
σw

12
[w (α)]

σw
1

[w (α)] σw
2

[w (α)]

= lim
α→+∞

e−α(2e−2α+2e−α−1)
(e−2α+e−α+1)2

√
e−α(e−2α+4e−α+1)

(e−2α+e−α+1)2

√
e−α(4e−2α+e−α+1)

(e−2α+e−α+1)2

= lim
α→+∞

2e−2α + 2e−α − 1√
e−2α + 4e−α + 1

√
4e−2α + e−α + 1

= −1.

Appendix H: Positive semi-definiteness of τw

By using the matrix notation for the weighted Kendall
correlations and defining K =

(
Δt
2

)
= Δt(Δt−1)

2 , and w a
K-by-1 vector with non-negative elements: w ≥ 0; let u

K

be a K-by-1 vector of 1s; then condition

w
T

u
K

= 1 (H.1)

must be satisfied. Let us introduce a vector w� whose
elements are the square roots of w’s elements and, since
w ≥ 0, this is also true for w�. Let u

N
be an N -by-1

vector of 1s. Then, recalling matrix S, from Appendix B,
we can write the Weighted Kendall Correlation Matrix as

τ
w

= D
− 1

2

w
Σ

w
D

− 1
2

w
(H.2)

where

Σ
w

=
[
S ◦

(
w�u

N

T
)]T [

S ◦
(
w�u

N

T
)]

(H.3)

and
D

w
= Σ

w
◦ I

N
(H.4)

τ
w

can be seen as a special kind of Weighted Pearson cor-
relation applied to matrix S 16 and it has the same prop-
erties as in equation (B.1) – it is symmetric, positive semi-
definite, with rank no more than the minimum between
K and N .

Appendix I: Coefficients’ distribution for ρ
and τ

The statistical significance of both Pearson and Kendall
correlations is greatly affected by the choice of the length
of the running window, Δt, as are the distributions of the
matrix coefficients. We have calculated dynamic correla-
tions for Δt = {21, 42, 63, 84, 126, 251} market days, cor-
responding to about 1, 2, 3, 4, 6, 12 months. For each run-
ning window and for all times t = {Δt, Δt + 1, . . . , T} and
for both methods, a total of T − Δt + 1 = {728, 707, 686,
665, 623, 498}matrices have been computed. Then the dis-
tributions of all coefficients associated to a given Δt have
16 It has to be reminded, though, that S is not centered, as it
has not been subtracted by its sample mean.
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Pearson

Kendall

Fig. I.1. (Color online) Empirical logarithmic distributions of
Pearson � and Kendall τ correlations computed for different
values of the length of the running window Δt. For each case,
T −Δt+1 dynamic correlation matrices have been considered.
The smooth curves represent the Gaussian distribution and the
thick curves the empirical distributions. Pearson distributions
associated to small running windows are greatly irregular with
respect to the Gaussian distribution.

been produced. The results are illustrated in Figure I.1
where the logarithm of densities have been reported on
vertical axes and coefficients on horizontal axes. The thick
curves represent the empirical distributions while the thin
curves represent the Gaussian distributions with empir-
ical mean-variance. For both methods, as Δt increases,
the distributions get increasingly closer to a Gaussian, the
sample means become larger and the standard deviations
smaller. Pearson correlation coefficients appear far more
irregular, though.

The distribution of Pearson weighted correlation co-
efficients has been calculated with Δt = 251 days and
different values of θ: on top of Figure I.2 it is shown that,
as θ decreases, the distribution gets increasingly irregu-
lar and the variance increases. The analogous plots for

Pearson

Kendall

Fig. I.2. (Color online) At the top, empirical logarithmic dis-
tribution of Pearson weighted correlations computed for a run-
ning window of Δt = 251 days and for different values of θ.
For each case, T − Δt + 1 = 498 dynamic correlation matri-
ces have been considered. At the bottom, the analogous for
Kendall weighted coefficients is shown.

Kendall weighted coefficients are reported at the bottom
of the same Figure.

Appendix J: Proof of equations (15) and (16)

Since w
uv

= w
vu

and w
uu

= 0 ∀u ∈ {1, 2, . . . , Δt}, note
that the constraint can be equivalently written as

Δt∑

u=1

Δt∑

v=1

w0e
α(u+v−2Δt) −

Δt∑

u=1

w0e
2α(u−Δt) = 2. (J.1)

Equation (J.1) can be written as

w0 =
2

Δt∑

u=1

Δt∑

v=1
eα(u+v−2Δt) −

Δt∑

u=1
e2α(u−Δt)

. (J.2)
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Fig. K.1. (Color online) 95% confidence intervals for all coefficients of Pearson Weighted Correlation Matrices (based on 1000
artificial series whose ith row is distributed as N (0,Σ)). The case with Δt = 21 is on the left; the case with Δt = 251 is on the
right. The smooth line, a, represents the theoretical (known) correlations; the curves denoted as b represent the 95% confidence
interval with θ → ∞; c is obtained for θ = Δt

5
and d for θ = Δt

10
. The order of the curves is the same in the two plots.

lim
α→0

+
w0 (α) = lim

u→1
+

Du

[
(u − 1)2 (u + 1)

]

Du [u2 (1 − u−Δt) (1 − u1−Δt)]
= lim

u→1
+

3u2 − 2u − 1

2u + (Δt − 3) u2−Δt + (Δt − 2) u1−Δt + (3 − 2Δt) u2(1−Δt)

= lim
u→1

+

Du

[
3u2 − 2u − 1

]

Du [2u + (Δt − 3) u2−Δt + (Δt − 2) u1−Δt + (3 − 2Δt)u2(1−Δt)]

=
6 − 2

2 + (Δt − 3) (2 − Δt) + (Δt − 2) (1 − Δt) + (3 − 2Δt) (2 − 2Δt)
=

2

Δt (Δt − 1)
(J.3)

The term at the denominator, H , can be expanded and
simplified:

H = e−2αΔt
Δt∑

u=1

(eα)u
Δt∑

v=1

(eα)v − e−2αΔt
Δt∑

u=1

(
e2α

)u

= e−2αΔt

{[
1 − (eα)Δt+1

1 − (eα)
− 1

][
1 − (eα)Δt+1

1 − (eα)
− 1

]

−
[

1 − (
e2α

)Δt+1

1 − (e2α)
− 1

]}

= e−αΔt

[
eα − (eα)Δt+1

1 − (eα)

]

e−αΔt

[
eα − (eα)Δt+1

1 − (eα)

]

− e−2αΔt

[(
e2α

)− (
e2α

)Δt+1

1 − (e2α)

]

= e2α

(
1 − e−αΔt

eα − 1

)2

− e2α

(
1 − e−2αΔt

e2α − 1

)

= e2α

[(
1 − e−αΔt

)2

(eα − 1)2
−

(
1 + e−αΔt

) (
1 − e−αΔt

)

(eα + 1) (eα − 1)

]

= e2α

(
1 − e−αΔt

eα − 1

)

×
[(

1 − e−αΔt
)
(eα + 1) − (

1 + e−αΔt
)
(eα − 1)

(eα + 1) (eα − 1)

]

= e2α

(
1 − e−αΔt

eα − 1

){
2
[
1 − e−α(Δt−1)

]

(eα + 1) (eα − 1)

}

=
2e2α

(
1 − e−αΔt

) [
1 − e−α(Δt−1)

]

(eα − 1)2 (eα + 1)
.

Substituting the expression of H back at the denomina-
tor of equation (J.2), and simplifying, equation (15) is
obtained.

Note also that, when α tends to zero, the limit of
weights tends to

see equation (J.3) above

where Du [. . .] denotes the derivative with respect to u;
then the l’Hôpital rule has been applied. By substituting
equation (J.3) in equation (13) uniform weights are ob-
tained, as in equation (16).

Appendix K: Bootstrapping procedure
over a multivariate gaussian process

We have generated random variables distributed as a
multivariate Gaussian, N (0,Σ), with zero mean, unitary
standard deviation and a given correlation matrix. Specif-
ically, for Δt = {21, 251}, we have generated 1000 Δt-by-
300 matrices and for each we have calculated the weighted
correlations with Δt

θ = {0, 5, 10}. Then for each coeffi-
cient we have calculated the percentiles {2.5, 97.5}. The
results are illustrated in Figure K.1 where the case with
Δt = 21 is on the left and the case with Δt = 251 is on
the right: the smooth line (denoted as a) represents the
theoretical coefficients which, in the example, are known;
the narrower confidence interval (denoted as b) is obtained
with θ → ∞; c is obtained for θ = Δt

5 and d is obtained
for θ = Δt

10 . The order of the curves is the same in the
two plots. It is evident from the two plots that lowering
θ causes an increase in the uncertainty associated to the
estimate of individual correlation coefficients.
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