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Abstract

A decomposition analysis of the interaction energy of molecular complexes using both semiempirical (PM3) and ab

initio methods shows major differences. Whereas electrostatic stabilization accounted for a significant part of the in-

teraction by ab initio theory, the electrostatic energy in semiempirical theory was mainly repulsive. This difference has

major implications for intuitive models of intermolecular interactions, particularly in light of recent AM1 and PM3

energy decomposition calculations suggesting that charge transfer and polarization provides the binding energy of

molecular clusters, including protein-solvent systems. � 2002 Published by Elsevier Science B.V.

1. Introduction

The idea of decomposing the QM energy of
intermolecular systems into physically meaningful
quantities has its origins in chemical intuition [1].
Terms such as electrostatic, repulsion, delocaliza-
tion, charge transfer, polarization and dispersion
are used to describe movements of electronic
charge density that may occur when molecules

interact and the nature of forces that are binding
the molecules together. However, there is no un-
ique way to divide the total energy of interaction
of molecular complexes into these various com-
ponents. The methods pioneered by Morokuma
[2,3] have assigned Hartree–Fock wavefunctions
to most of these terms (except for dispersion which
is a correlation effect). However, later methods
[4,5] gave rise to different definitions for many of
these terms. The differences between these methods
decrease as the molecules are moved further apart,
and are apparent mainly for strong intermolecular
interactions such as H bonds or donor–acceptor
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complexes [6]. Recently, van der Vaart and Merz
[7] defined a scheme whereby the total interaction
energy ðEintÞ is the sum of only three terms, elec-
trostatic, polarization and charge transfer:

Eint ¼ Eele þ Epol þ Ect: ð1Þ
A unique feature of this approach is that, unlike
the former wavefunction-based decomposition
schemes, it can be applied to the semiempirical
MNDO, AM1 and PM3 methods [8–10] in addi-
tion to density functional and ab initio methods. It
is also linear scaling so it can be applied to large
systems such as proteins. Within the semiempirical
AM1 and PM3 approximations the scheme has
been applied to small H-bonded bimolecular
complexes and large water clusters [7]. It was also
used to analyse the interactions between solvent
water and a protein [11]. In each case the electro-
static component ðEeleÞ was predicted to be posi-
tive, i.e. this scheme suggests that electrostatic
models cannot provide any binding energy for the
intermolecular interactions being considered. This
result is surprising, as it appears to be at variance
with the general conclusion obtained from mod-
elling studies and energy decomposition analysis
based on ab initio calculations [12–20], and with
recent experience in the development of hybrid
semiempirical QM and molecular mechanics
methods [21,22].

There have been a number of detailed studies
[23–25] comparing the semiempirical and ab initio
methods, and attempts have been made to specif-
ically correct the semiempirical methods for vari-
ous H-bonding scenarios [26–29]. The main
conclusion from these studies is that for many H-
bonded systems a semiempirical approach can be
found that compares well with accurate ab initio
calculations. However, the underlying semiempir-
ical approximation itself remains prone to unsys-
tematic errors and is, therefore, not always
reliable. To our knowledge, there appears to have
been no direct comparison of electrostatic inter-
actions between molecules in the semiempirical
and ab initio methods based on energy decompo-
sition schemes. In order to determine whether the
results obtained by van der Vaart and Merz [7,11]
were likely an artefact of the semiempirical meth-
ods used, we have conducted a comparative

semiempirical (PM3) and ab initio study on a
number of H-bonded and donor–acceptor sys-
tems. We also briefly discuss the possible origins of
any such differences.

2. Methods

Consider two discrete molecules A and B with
VAB as the Hamiltonian for the coulomb interac-
tion of the electrons and nuclei on molecule A with
those of molecule B. As a starting point, energy
decomposition schemes usually consider the in-
teraction of the two molecules with monomeric
wavefunctions [6] to obtain the electrostatic com-
ponent ðEeleÞ of the interaction energy. Note that
as the monomeric wavefunctions are assumed to
be unchanged on interaction there is no intermix-
ing of the molecular orbitals on A and B. The
expectation value of VAB in terms of the mono-
meric wavefunctions W0

A and W0
B is then given by

Eele ¼ hW0
AW0

BjVABjW0
AW0

Bi: ð2Þ
This expression is of course equivalent to the
coulomb interaction between two classical charge
densities qA ¼ W0

AW0
A and qB ¼ W0

BW
0
B. In semi-

empirical methods where an explicit form of the
wavefunction is not defined for the purposes of
computing matrix elements of the various terms in
the Hamiltonian, a different approach has to be
taken. One approach is that developed by van der
Vaart and Merz [7] specifically designed for,
though not limited to, large systems such as pro-
teins. In the present work we are only concerned
with small bimolecular complexes and so have
opted for using a rather more simplified scheme.

If in the semiempirical methodW is the array of
two-center two-electron repulsion integrals and S

is the overlap matrix of atomic orbitals (assumed
orthogonal), then setting WAB ¼ 0 and SAB ¼ 0

(i.e. zero matrix elements between atomic orbitals
of A and B) ensures that the Fock matrix con-
necting A and B, FAB, is zero and hence we obtain
PAB ¼ 0 for the corresponding density matrix be-
tween A and B. Note that as the two-center core-
electron attractions and core–core repulsions are
also expressed in terms of elements of the electron
repulsions, WAB ¼ 0 ensures that there are no
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coulomb interactions between molecules A and B.
We can then compute the SCF density matrix for
the non-interacting monomers at any intermolec-
ular separation, i.e. the monomers will have the
same density matrix as if they were infinitely sep-
arated. If we obtain such a density ðP0Þ at the
equilibrium separation of the two molecules in the
complex, we can compute the electrostatic contri-
bution to the binding energy simply as

Eele ¼ EðWAB;P
0Þ � EðWAB ¼ 0;P0Þ; ð3Þ

where EðWAB;P
0Þ is the total energy calculated

using P0, and EðWAB ¼ 0;P0Þ gives the total en-
ergy of the non-interacting molecules. Using P0,
only the coulomb integrals contribute to the in-
teraction between monomer charge densities, and
Eq. (3) can be expressed in terms of the electron–
core and electron–electron (Eelec) and core–core
(Ecore) interaction terms

Eele ¼ Eelec þ Ecore; ð4Þ

Eelec ¼
X

l2A

X

m2A
P 0

lm

X

i2B
�ZiðlmjsisiÞ

þ
X

l2B

X

m2B
P 0

lm

X

i2A
�ZiðlmjsisiÞ

þ
X

l2A

X

m2A
P 0

lm

X

k2B

X

r2B
P 0

krðlmjkrÞ; ð5Þ

Ecore ¼
X

i2A

X

j2B
ZiZjðsisijsjsjÞgðRijÞ; ð6Þ

where Z are the core charges (nuclei plus inner
shell electrons), ðlmjkrÞ are the usual two-center
two-electron integral approximations, and gðRijÞ is
a function of the interatomic distance [8,9].

In the present study we need not be concerned
with the individual definitions of polarization,
charge transfer or exchange repulsion, as these are
known to depend strongly on the decomposition
scheme [6]. Indeed, due to the lack of an explicit
wavefunction, it is doubtful whether all of these
terms can be adequately defined within semiem-
pirical theory. However, given the definition of the
electrostatic term in Eqs. (2) and (3), these re-
maining terms can be combined into a single en-
ergy which may be called the deformation term.
This deformation term is due to rearrangement of
electrons when molecules A and B interact and

includes all exchange effects, polarization of the
monomers, and charge transfer between A and B.
Also, for the purposes of this comparison between
semiempirical and ab initio methods, it is not
necessary to consider the effect of changes in the
monomer geometries or electron correlation on
complex formation. The complex geometries were
first fully optimized to obtain the total energy
Ecomplex and a total interaction energy computed as

Eint ¼ Ecomplex � Emonomers; ð7Þ
where the monomers’ energy Emonomers was calcu-
lated at the optimized geometries in the complex.
Thus, we do not need to consider the optimized
geometries for the non-interacting monomers. By
definition, the change in energy due to deforma-
tion of the electronic charge density in the complex
is then given by

Edef ¼ Eint � Eele: ð8Þ
Although our focus will be primarily on the

analysis of the electrostatic interaction, there is
another factor which affects the ab initio results for
the total energy difference ðEintÞ and, hence, Edef ,
namely the BSSE [30]. This factor needs to be
considered whenever atomic orbital basis sets are
used to calculate the energies of molecular com-
plexes. This correction does not apply to the
semiempirical methods, and, therefore, should be
taken into account when comparing the two ap-
proaches. We have estimated the BSSE in the ab
initio calculations using a standard counterpoise
(ghost-orbital) correction [30].

The semiempirical calculations were carried out
using MOPS [31]. In the present work we report
only results using the PM3 method, as the AM1
method is expected to behave similarly. The GA-

MESSMESS program [32] was used for the ab initio cal-
culations at the Hartree–Fock level using the
6-31+G

 basis set.

3. Results and discussion

The results of the energy decomposition analy-
sis for the H-bonded systems are given in Table 1.
As expected in the case of H-bonded systems,
electrostatic interactions at the ab initio (HF/
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6-31+G

) level provide a large contribution to the
binding energy. The remainder term Edef tends to
be much smaller and is always positive, due to the
inclusion of the Pauli repulsions. This is in stark
contrast to the semiempirical (PM3) results, which
are qualitatively similar to the results obtained by
van der Vaart and Merz [7,11] in that the cou-
lombic energy of interaction is usually a repulsive
term. The binding in the semiempirical approxi-

mation then comes mainly from the deformation
terms. The electrostatic component is significantly
negative only for the interaction between ion pairs
½CH3COO� � � �CðNH2Þþ3 , although it is only half
the magnitude of the corresponding ab initio term.
In the donor–acceptor systems also (Table 2), the
electrostatic interactions calculated at the ab initio
level provide an important contribution to the
binding energy. However, the remainder term is

Table 1

PM3 and ab initio HF/6-31+G

 energy decomposition analysis (kcal/mol) for the H-bonded complexes

H-bonded A � � �B Eele Edef Eint

PM3a 6-31+G

 PM3 6-31+G

 PM3 6-31+G



N2 � � �HF 3.3 (0.0) )2.0 )3.4 0.6 )0.1 )1.4
N2 � � �HCN 0.2 (0.0) )1.0 )0.8 0.2 )0.6 )0.8
N2 � � �HNC 0.2 (0.0) )1.6 )1.0 0.4 )0.8 )1.2
HCN � � �HF 8.4 ()5.2) )9.1 )12.8 2.7 )4.4 )6.4
HCN � � �HCN 8.6 ()4.0) )5.8 )13.0 1.4 )4.4 )4.4
HCN � � �HNC 8.8 ()4.3) )7.9 )13.9 2.0 )5.1 )5.9
H2O � � �H2O 7.5 ()4.4) )8.9 )10.3 3.8 )2.8 )5.1
CH3NH2 � � �H2O 10.7 ()5.0) )11.5 )13.5 5.4 )2.8 )6.1
CN� � � �HF 3.8 ()14.7) )35.7 )22.1 9.7 )18.3 )26.0
CN� � � �HCN 4.1 ()15.2) )28.0 )29.8 6.0 )25.7 )22.0
HO� � � �HF )2.5 ()24.9) )49.3 )21.5 9.8 )24.0 )39.5
HO� � � �HCN )2.6 ()22.9) )49.9 )29.2 11.4 )31.8 )38.5
HS� � � �HCN 4.7 ()20.9) )16.5 )27.1 0.9 )22.4 )15.6
Cl� � � �H2O 10.2 ()16.3) )16.8 )28.3 4.0 )18.1 )12.8
CH3NH

þ
3 � � �H2O 0.5 ()14.0) )22.9 )13.3 5.1 )12.9 )17.8

CH3COO
� � � �H2O 2.0 ()16.7) )27.0 )17.9 7.5 )15.9 )19.5

CH3COO
� � � �CðNH2Þþ3 )67.1 ()114.3) )143.1 )54.7 20.9 )121.8 )122.2

aResults in parentheses are coulomb interaction energies calculated from an atomic-charge model for the monomers in the PM3

approximation.

Table 2

PM3 and ab initio HF/6-31+G

 energy decomposition analysis (kcal/mol) for the donor–acceptor complex

Donor–acceptor A � � �B Eele Edef Eint

PM3a 6-31+G

 PM3 6-31+G

b PM3 6-31+G

c

BH3 � � �NH3 121.8 ()15.4) )89.9 )191.3 57.4 (55.1) )57.0 )32.5
BH3 � � �PH3 97.4 ()9.3) )64.1 )182.9 42.3 (41.1) )85.5 )21.8
BH3 � � �AsH3 80.8 ()4.4) )53.3 )121.6 37.0 (31.9) )40.8 )16.3
AlH3 � � �NH3 41.0 ()13.6) )67.8 )106.7 38.1 (36.7) )65.7 )29.7
AlH3 � � �PH3 55.2 ()14.2) )35.0 )126.2 20.4 (20.1) )71.0 )14.6
AlH3 � � �AsH3 17.3 ()2.3) )31.4 )51.3 22.2 (17.4) )34.0 )12.2
GaH3 � � �NH3 25.9 (3.0) )71.1 )148.9 48.9 (43.8) )123.0 )22.2
GaH3 � � �PH3 49.5 (18.1) )41.1 )348.0 29.8 (25.8) )298.5 )11.3
GaH3 � � �AsH3 61.7 (3.4) )40.3 )224.6 31.1 (21.4) )162.9 )9.2
aResults in parentheses are coulomb interaction energies calculated from an atomic-charge model for the monomers in the PM3

approximation.
b Corrected for BSSE. The uncorrected results are given in parentheses.
c Corrected for BSSE.
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much larger than in the H-bonded complexes, re-
flecting stronger Pauli repulsions. This does not
mean that the polarization and charge transfer
types of effects are negligible. It is well known that
polarization and charge transfer also contribute to
the binding energy of molecular complexes [6].
Note, however, that the BSSEs, which only affect
Eint and hence Edef , lead to an over estimation of
the charge transfer effect. In the present calcula-
tions using the 6-31+G

 basis, BSSE corrections
of < 0:5 kcal/mol for non-ionic complexes and up
to 1 kcal/mol for H-bonded complexes involving
ionic species were obtained. In relative terms,
corrections of these magnitudes are not very sig-
nificant for the H-bonded systems. However, the
BSSEs for the donor–acceptor complexes ranged
from as little as 0.3 kcal/mol for AlH3 � � �PH3 up
to as high as 10 kcal/mol for GaH3 � � �AsH3. The
BSSE-corrected Eint and Edef values are given in
Table 2. Thus, although the counterpoise method
[30] gives only a rough estimate of the BSSE cor-
rection, for many of the donor–acceptor com-
plexes the effects of charge transfer on the
interaction energy are predicted to be significantly
less than the uncorrected results for Edef in Table 2,
further emphasising the relative importance of
electrostatic stabilization.

As a further test of the semiempirical method,
we computed Eele from a simple atomic-charge
representation of the monomers. The results are
given in parentheses under Eele in Tables 1 and 2.
The atomic charges were obtained using a method
[33] based on a least-squares fit to the semiempir-
ical (PM3) approximation of the molecular elec-
trostatic potential (MEP). Clearly, if the MEP
reflects a realistic molecular-charge distribution we
would expect a degree of stabilization from the
coulomb energy of interaction between the MEP-
derived atomic charges. The charge model results
in Tables 1 and 2 show such stabilization except
for complexes involving GaH3. At the PM3 level,
the Ga atom is incorrectly predicted to have a
negative partial charge, and, hence, we obtain a
repulsive coulomb interaction from the atomic-
charge model for the GaH3 complexes. Note also
the energy for the N2 complexes (Table 1) for this
model is formally zero due to zero atomic charges
for the N2 molecule.

It is clear from the results presented in Tables 1
and 2 that there are large discrepancies between
semiempirical and ab initio electrostatic interac-
tion terms. The question then is what are the likely
origins of these differences? To the extent that both
represent interactions between molecules with
frozen charge densities, i.e. the molecules’ charge
distributions at infinite separation, Eqs. (2) and (3)
are analogous. However, whether the coulomb
integrals, Eq. (5), bear direct comparison with the
ab initio ones is questionable [34]. Note that in the
semiempirical approximation the two-center cou-
lomb integrals themselves assume simple para-
metric forms and contain contributions due to
parameterization of the semiempirical Hamilto-
nian, i.e. their values may be modified to com-
pensate for other approximations. For example,
the semiempirical Fock matrix implicitly assumes
an orthonormal atomic orbital (OAO) basis. Al-
though orthogonalization affects atomic orbitals,
and, hence, integrals and Fock matrix elements, it
is largely neglected in the MNDO, AM1 and PM3
methods. As these effects appear to be important
and cannot be fully corrected in the parameter-
ization of these methods, additional terms need to
be included in the Fock matrix elements to be
properly described in a OAO basis. These or-
thogonalization corrections are particularly im-
portant for obtaining a correct description of the
one-electron two-center resonance terms and va-
lence–core interactions [35]. The parameters in
these empirically-based QM methods are thus
highly interrelated, depending on the underlying
approximations, and consequently individual
terms may bear little relationship to corresponding
ab initio quantities.

To investigate the origin of the large deforma-
tion term Edef in the semiempirical method (Table
1), we have partitioned the total energy into in-
tramolecular ðEA þ EBÞ and intermolecular ðEABÞ
contributions for molecules A and B in the H-
bonded complexes. This partition is exact in
semiempirical methods as the energy can be ex-
pressed rigorously in terms of one- and two-center
atomic contributions. Thus EAB can be interpreted
as an interaction energy, analogous to Eint, Eq. (7).
The interaction energy EAB can be further parti-
tioned into resonance ðJÞ, exchange ðKÞ and cou-
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lomb ðCÞ terms. These components are given in
Table 3 for the relaxed charge density (P) in the H-
bonded complexes. Note that if the monomer
(unrelaxed) charge densities ðP0Þ are used, J and K
are zero and the coulomb term ðCÞ corresponds
exactly to Eele defined by Eq. (3). Indeed, the
coulomb terms in Table 3 are found to be quali-
tatively similar to Eele in Table 1, i.e. mostly pos-
itive. Thus, polarization of the monomer charge
densities does not appear to account for the large
deformation contribution. Also, comparing Eint in
Table 1 with DEbind in Table 3 it can be seen that
relaxing the monomer geometries in the complex
has a relatively small effect on the interaction en-
ergy. It is clear from the results in Table 3, how-
ever, that the resonance ðRÞ terms contribute most
to the deformation energy, with the exchange ðKÞ
terms also making a significant contribution.

4. Conclusions

The present study of the electrostatic interac-
tion between molecules has revealed critical dif-
ferences between the semiempirical and ab initio
QM results. It would appear that recent energy

decomposition calculations [7,11] based on semi-
empircal methods place too much emphasis on the
importance of reorganization of electronic charge
(polarization and charge transfer) at the expense of
electrostatic stabilization that arises from the in-
teraction between monomeric charge densities. In
the present work we found that the semiempirical
QM coulomb terms are very often repulsive,
whereas, we stress, it is known from accurate ab
initio calculations that electrostatics should pro-
vide a significant binding energy contribution. We
also found that the large electronic reorganization
energy that provides the H-bonding energy in the
semiempirical method arises predominantly from
the resonances terms. Consequently, we conclude
that the semiempirical methods are not generally
suitable for the decomposition analysis of inter-
molecular interactions into physically meaningful
terms.
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Table 3

PM3 resonance ðJÞ, exchange ðKÞ and coulomb ðCÞ components of the intermolecular energy EAB (kcal/mol), and the total binding

energy DEbind (kcal/mol), for H-bonded A � � �B complexes

H-bonded A � � �B J K C EAB
a DEbind

b

N2 � � �HF )6.5 )1.4 3.3 )4.6 )0.06
N2 � � �HCN )1.5 )0.3 0.1 )1.7 )0.63
N2 � � �HNC )1.7 )0.3 0.1 )2.0 )0.74
HCN � � �HF )24.6 )6.8 9.1 )22.3 )4.2
HCN � � �HCN )24.9 )7.8 9.2 )23.5 )4.1
HCN � � �HNC )26.2 )8.1 9.4 )24.9 )4.8
H2O � � �H2O )20.2 )3.9 7.5 )16.6 )2.8
CH3NH2 � � �H2O )26.1 )7.3 11.2 )22.2 )2.6
CN� � � �HF )38.9 )13.6 10.8 )41.7 )17.4
CN� � � �HCN )49.0 )20.2 11.4 )57.8 )23.1
HO� � � �HF )36.3 )9.8 0.4 )45.8 )23.4
HO� � � �HCN )43.9 )13.8 )3.9 )61.5 )29.8
HS� � � �HCN )46.4 )13.7 4.2 )55.9 )20.6
Cl� � � �H2O )50.7 )15.0 16.5 )49.1 )16.8
CH3NH3

þ � � �H2O )24.5 )6.2 2.2 )28.4 )12.7
CH3COO

� � � �H2O )32.2 )8.7 6.2 )34.7 )15.4
CH3COO

� � � �CðNH2Þþ3 )87.3 )33.4 )38.6 )159.4 )118.5
aEAB ¼ J þ K þ C (at optimized complex geometry).
bDEbind ¼ Ecomplex � Emonomers ðEcomplex at optimized complex geometry and Emonomers at optimized monomer geometry);

ðDEbind � EABÞ ¼ change in monomer energies on complex formation.
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