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a b s t r a c t

Gossiping is a distributed process whose purpose is to enable the members of a group of n > 1 au-
tonomous agents to asymptotically determine in a decentralizedmanner, the average of the initial values
of their scalar gossip variables. This paper analyzes the accelerated gossip algorithms, first proposed in
Cao, Spielman, and Yeh (2006), in which local memory is exploited by installing shift-registers at each
agent. For the two-register case, the existence of the desired convergence is established under a symme-
try assumption by separately studying the convergence in expectation and in mean square. In particular,
the optimal rate of convergence in expectation is derived which is faster than that of the standard gossip
algorithm, and a sufficient condition on the adjustable parameter for the convergence in mean square is
provided. These theoretical results are validated for some classes of networks by comparisonwith existing
empirical data. More general multi-register cases are also discussed.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

While sensor networks have been utilized in a wide range of
applications, a central theme of research that has remained the
focus over the past decade is the design of efficient distributed
computation algorithms among themembers of a group of sensors
or mobile autonomous agents, especially for the scenarios where
sensors or agents are constrained by limited sensing, computation,
and communication capabilities. One particular type of distributed
information processing which has received much attention lately
is called distributed averaging (Xiao & Boyd, 2004). In its simplest
form, distributed averaging deals with a network of n > 1 agents
and the constraint that each agent i is able to communicate only
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with certain other agents called agent i’s neighbors. Neighbor re-
lations are described by a simple, connected graph A in which
vertices correspond to agents and edges indicate neighbor rela-
tions. Thus the neighbors of an agent i have the same labels as the
vertices in A which are adjacent to vertex i. Initially, each agent
has or acquires a real number yi which might be a measured tem-
perature or something similar. The distributed averaging problem is
to devise a protocol which will enable each agent to compute the
average yavg =

1
n

n
i=1 yi using only information acquired from its

neighbors.
The distributed averaging problem can be solved inmanyways.

A well studied approach to the problem is for each agent to use a
linear iterative update rule of the general form

xi(t + 1) = wiixi(t) +


j∈Ni

wijxj(t), xi(0) = yi (1)

where t is a discrete time index, xi(t) is agent i’s current estimate
of yavg, the wij are real-valued weights, and Ni is the set of labels
of the neighbors of agent i. By introducing an n-vector x whose ith
entry is xi, such a system of equations admits a state space model
of the form

x(t + 1) = Wx(t), t ≥ 0 (2)

where W is a real-valued n × n matrix whose row and column
sums all equal one. In Xiao and Boyd (2004) several methods are
proposed for choosing thewij with the goal of obtaining algorithms
with improved convergence rates. Algorithms of this type, which
require each agent to communicatewith all of its neighbors on each
iteration, are sometimes called broadcast algorithms.

An alternative approach to distributed averaging, which typi-
cally does not involve broadcasting, exploits a form of ‘‘gossiping’’
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(Boyd, Ghosh, Prabhakar, & Shah, 2006). In a standard gossiping
process, a pair of agents with labels i and j are said to gossip at time
t if both xi(t + 1) and xj(t + 1) are set equal to the average of xi(t)
and xj(t). Each agent is allowed to gossip with at most one neigh-
bor at one time. Under appropriate assumptions, algorithmswhich
possess this simple property can be shown to solve the distributed
averaging problem. Generally not every pair of agents is allowed to
gossip. The edges ofA specifywhich gossip pairs are allowable. The
actual sequence of gossip pairs which occurs during a specific gos-
sip sequence might be determined either probabilistically (Boyd
et al., 2006; Kempe, Dobra, & Gehrke, 2003) or deterministically
(Liu, Mou, Morse, Anderson, & Yu, 2011; Mehyar, Spanos, Pongsa-
japan, Low, &Murray, 2007), depending on the problem of interest.
It is the former type of problem to which this paper is addressed.

As mentioned previously, the goal of gossiping is to compute
the average of the initial values of the xi, henceforth called gossip
variables. Of particular interest is the rate at which a sequence of
gossip variables converge to the same value at yavg. Recent results
concerning convergence rates appear in Anderson, Yu, and Morse
(2010), He, Morse, Liu, and Mou (2011), Mou, Yu, Anderson, and
Morse (2010) and Yu et al. (to be submitted) for deterministic
periodic gossiping and in Liu, Morse, Anderson, and Yu (2010);
Liu et al. (2011), Nedić, Olshevsky, Ozdaglar, and Tsitsiklis (2009)
and Olshevsky and Tsitsiklis (2009) for deterministic aperiodic
gossiping. In Boyd et al. (2006), the convergence rate question is
addressed for gossip algorithms in which the sequence of gossip
pairs is determined probabilistically. A modified probabilistic
gossip algorithm intended to speed up convergence is proposed in
Cao et al. (2006) without proof of correctness, but with convincing
experimental results. The algorithm has recently been analyzed in
Liu, Anderson, Cao, and Morse (2009). This paper presents a more
comprehensive treatment of the work in Liu et al. (2009).

In Boyd et al. (2006), Boyd et al. propose a standard gossip
algorithm where at each clock time a single randomly chosen pair
of agents in the network update their values of gossip variables
together to the average of their current values. Such an algorithm is
easy to implement and only requires simple computations at each
agent. However, the convergence rate of the algorithm is relatively
slow, which is a critical drawback and it is clearly desirable that
it should be improved. A number of papers have studied this
issue of slow convergence of the standard gossip algorithm and
various strategies have been proposed to improve the convergence
rate (Bénézit, Dimakis, Thiran, & Vetterli, 2010; Cao et al., 2006;
Dimakis, Sarwate, & Wainwright, 2006). For a survey on the most
recent works on this issue see Dimakis, Kar, Moura, Rabbat, and
Scaglione (2010).

Among all the proposed acceleration strategies, there is one
particular approach that has motivated the research in this paper.
In Cao et al. (2006), Cao et al. have demonstrated through
simulations that by installing shift-registers at each agent to
enable utilization of computational results in each agent’s finite
memory, substantial acceleration (up to 10-fold) can be achieved
for probabilistic gossip algorithms.However, there is no theoretical
explanation in Cao et al. (2006) for this observed improvement.
In fact, except for the preliminary version of this paper (Liu
et al., 2009), no one has yet been able to describe the accelerated
convergence of the gossip algorithms using shift-registers, first
proposed in Cao et al. (2006), in a rigorous and precise fashion.
The main contribution of this paper is to thoroughly analyze the
two-register case of the accelerated gossip algorithms in Cao et al.
(2006) under a symmetry assumption by separately studying the
convergence in expectation and in mean square. The fastest rate
of convergence in expectation is derived in closed form which
depends on the given probabilistic strategy according to which
agent pairs are activated. A sufficient condition on the adjustable
parameter for the convergence in mean square is also provided.
These theoretical results are validated for some classes of networks
by comparison with the empirical data in Cao et al. (2006).

Also related to this paper is the work of Aysal, Oreshkin, and
Coates (2009), Johansson and Johansson (2008), Muthukrishnan,
Ghosh, and Schultz (1998) andOreshkin, Coates, and Rabbat (2010)
in which several clever ideas have emerged for speeding up the
convergence of broadcast algorithms by augmenting (1) with
delayed values of xi(t). In a pioneering paper (Muthukrishnan et al.,
1998), Muthukrishnan et al. propose augmented update equations
of the form
xi(t + 1) = g


j∈Ni

wijxj(t) + (1 − g)xi(t − 1)

xi(1) = xi(0) = yi where g is a real, constant design parameter not
depending on i. In matrix terms one thus has
x(t + 1) = gWx(t) + (1 − g)x(t − 1), t ≥ 1. (3)
It has been shown in Muthukrishnan et al. (1998) that there exists
a value of g ∈ (1, 2) dependent on W with which a faster rate at
which x(t) converges is obtained compared with (2). This result
is inspired by the work of Golub and Varga (1961) and derived
using matrix iterative analysis (Varga, 1962). Recently the more
sophisticated iteration
x(t + 1) = gWx(t) + (1 − g)(θ3Wx(t) + θ2x(t)

+ θ1x(t − 1)), t ≥ 1 (4)
has been proposed by Aysal et al. (2009) to further speed up
convergence where θ1, θ2, and θ3 are prespecified real-valued
constants, but without proof of correctness. The system (4) has
been analyzed lately by Oreshkin et al. (2010) under special
spectrum assumptions.

Although exploiting the same over-relaxation technique as
the preceding augmented broadcast algorithms, the accelerated
gossip algorithms discussed in this paper admit probabilistic time-
varying systems in which the update matrix depends on time,
and consequently we prove convergence both in expectation and
in mean square; by way of contrast the systems (3) and (4) are
deterministic and time-invariant. Therefore there is a fundamental
difference between this paper and the work of Aysal et al. (2009),
Johansson and Johansson (2008), Muthukrishnan et al. (1998) and
Oreshkin et al. (2010). Although both our work and the work of
Aysal et al. (2009) and Oreshkin et al. (2010) are aiming at the
same goal of providing theoretical explanations about why shift-
registers can help accelerate convergence, different systemmodels
have been set up and the results obtained in one cannot be applied
directly to the other.

The remainder of this paper is structured as follows. In Sec-
tion 2, we review the standard gossip algorithm studied in Boyd
et al. (2006) and the accelerated gossip algorithms introduced in
Cao et al. (2006). In Section 3, we first establish a complete anal-
ysis of the convergence in expectation for the two-register case
under a symmetry assumption (Section 3.1). Then we study the
convergence inmean square and provide a sufficient condition un-
der the same assumption (Section 3.2).Moreover, we also establish
a necessary condition for speeding up convergence in more gen-
eral multi-register cases (Section 3.3). Finally, we validate the the-
oretical results in Section 4 by exploring some classes of network
graphs and comparing them with the experimental results in Cao
et al. (2006).

2. Gossiping

As mentioned in the introduction, gossiping is a form of
distributed computationwhose purpose is to calculate the average
value of a set of numbers or measurements. The type of gossiping
we want to consider involves a group of n > 1 agents labeled 1
to n. Each agent i has control over a real-valued scalar quantity
xi called a gossip variable which the agent is able to update from
time to time. We say that a gossip occurs at time t ∈ {0, 1, 2, . . .}
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between agents i and j if both agents communicatewith each other
and update their gossip variables at time t; the values of both
agents’ gossip variables at time t + 1 are determined by a pre-
specified gossip algorithm. If agent i does not gossip at time t , its
gossip variable does not change. Generally not every pair of agents
is allowed to gossip. We use a simple, undirected n-vertex graph
A, called an allowable gossip graph, to specify which gossip pairs
are allowable. In other words, a gossip between agents i and j is
allowable if and only if (i, j) is an edge in A. We use the symbol E to
denote the edge set of A. Agent j is a neighbor of agent i if (i, j) ∈ E .
Each agent is allowed to gossip with at most one of its neighbors
at one time. Let xi(0) be the initial value of agent i’s gossip variable
and let xave =

1
n

n
i=1 xi(0) denote the average of the initial values

of all n gossip variables. The goal of gossiping is for the n agents to
reach a consensus in the sense that all n gossip variables ultimately
reach the same value at xave in the limit as t → ∞. For this
to be possible, no matter what the initial values of the gossiping
variables are, it is clearly necessary that A is a connected graph.
We assume that this is so.

2.1. Gossip algorithms

At each time t ∈ {0, 1, 2, . . .}, we assume that exactly one
agent in the group is activated and that each agent has an equal
probability 1

n of being activated. If agent i is activated, then with
probability pij, agent i chooses agent j to gossip,where pij > 0 if and
only if (i, j) ∈ E . Let P be an n×nmatrix whose ijth entry is pij. We
call such P a probability matrix which characterizes a probabilistic
gossip algorithm. It is clear that P is a ‘‘stochastic matrix’’ where,
by a stochasticmatrix, wemean a nonnegative squarematrixwhose
row sums all equal one. Since P is stochastic, it has an eigenvalue 1
and its spectral radius is 1 (Horn & Johnson, 1985). Following Boyd
et al. (2006), we assume that P has eigenvalue 1 with multiplicity
1 and all the remaining n− 1 eigenvalues are strictly less than 1 in
magnitude. Such a matrix can always be found if the underlying
graph A is connected and nonbipartite (Boyd et al., 2006). It is
worth emphasizing that this assumption imposed on P also implies
that A is a connected graph.2 Let us agree to call a probabilistic
gossip algorithm symmetric if P is a symmetric matrix (i.e., pij = pji
for all i, j ∈ {1, 2, . . . , n}). For most of this paper, a symmetry
assumption will be made.

Consider a probabilistic gossip algorithm characterized by a
probability matrix P . Suppose that the set of agents’ update
rules consists of distributed linear iterations. Then the gossiping
process can be modeled by a discrete time linear system in a state
form. Toward this end, for each (i, j) ∈ E , let A(i,j) be the matrix
characterizing the update rule when agents i and j are the only pair
to gossip. Then

x(t + 1) = Aσ(t)x(t)

where x =

x1 x2 · · · xn

′ is the vector of gossip variables
and σ : {0, 1, 2, . . .} → E is a switching signal whose value at
time t , is the index of the edge representing the randomly chosen
pair of agents gossiping at time t . For simplicity, we will adopt the
notation Aij instead of A(i,j) in the sequel. Let Ā denote the mean of
the independent and identically distributed (i.i.d.) matrices Aσ(t).
Then we have

E [x(t)] =

t
k=0

E

Aσ(k)


x(0) = Ātx(0).

Thus E[x(t)] converges if Āt converges as t → ∞. Following
Boyd et al. (2006), we term this convergence in expectation. The

2 Suppose A is a disconnected graph with k components. Then it is easy to verify
that P has eigenvalue 1 with multiplicity k.
conditions on Ā for this to happen have been stated in Boyd et al.
(2006). Let ∥ · ∥ denote the Euclidean norm on Rn. Suppose that
convergence in expectation occurs and that the limiting value of
x(t) is x∞. If in addition E[∥x(t) − x∞∥

2
] → 0 as t → ∞, we

say that x(t) converges in mean square. We are interested in having
both types of convergence and indeed ensuring that x∞ is actually
xave1, where 1 ∈ Rn is a column vector whose entries are all ones.
Convergence in expectation ensures that themean of the density of
x(t) converges, and convergence in mean square ensures that the
variance of those densities tends to zero. The notion of carrying
out a separate examination of these two types of convergence and
then amalgamating them to obtain the desired overall convergence
result is drawn from Boyd et al. (2006).

We first review the standard gossip algorithm studied in Boyd
et al. (2006). At time t ≥ 0, suppose that agent i is activated (with
probability 1

n ) and chooses its neighbor j (with probability pij > 0)
to gossip. Then both i and j update their values of gossip variables
at time t +1 to the average of their values at time t . In other words

xi(t + 1) =
1
2
xi(t) +

1
2
xj(t)

xj(t + 1) =
1
2
xi(t) +

1
2
xj(t).

(5)

The values of all the other agents remain the same:

xk(t + 1) = xk(t), k ≠ i, j. (6)

Then the update matrix Aij can be written as

Aij = I −
1
2
(ei − ej)(ei − ej)′

where ei is the unit n-vector with the ith entry equal to 1 and I is
the n × n identity matrix. The mean of Aσ(t) equals

Ā = E

Aσ(t)


=


i,j

1
n
pijAij.

For all i, j ∈ {1, 2, . . . , n}, each Aij is a ‘‘doubly stochastic matrix’’
where, by a doubly stochasticmatrix, wemean anonnegative square
matrix whose column and row sums all equal one, and so is Ā. It
has been shown in Boyd et al. (2006) that if all n agents in the
group adhere to the standard gossip algorithm (5) and (6), then
all n gossip variables converge to xave in expectation if and only if
Ā has eigenvalue 1 with multiplicity 1 and all the remaining n − 1
eigenvalues are strictly less than one in magnitude. The authors
of Boyd et al. (2006) also establish a necessary and sufficient
condition for convergence in mean square which is that E[Aσ(t) ⊗

Aσ(t)] has all but one eigenvalue less than one in magnitude,
where ⊗ stands for the Kronecker product. Moreover, a more
computationally convenient sufficient condition for convergence
in mean square is provided in Boyd et al. (2006) which is that
E[A′

σ(t)Aσ(t)] has all but one eigenvalue less than one. Since it can
be verified that E[A′

σ(t)Aσ(t)] = Ā, the rate of convergence in mean
square is determined by the second largest eigenvalue of Ā which
is nonnegative since Ā is positive semidefinite.

In Cao et al. (2006), Cao et al. introduce a technique which uses
memory in the form of shift-registers to accelerate the standard
gossip algorithm. Each agent is provided with the same number
of registers, the first of which stores the agent’s current value of
gossip variable, and the remainder of which store earlier values
corresponding to the agent. The algorithm changes how a pair of
agents update their gossip variables once they decide to gossip. For
each i ∈ {1, 2, . . . , n}, let xir denote the value stored in agent i’s rth
register.

In the case when each agent is provided with just two registers,
the first of which stores the agent’s current value and the second
of which stores the agent’s value before the latest update, the
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algorithm can be described as follows. Suppose i and j are the only
pair of agents to gossip at time t . Then

xi1(t + 1) = ω


1
2
xi1(t) +

1
2
xj1(t)


+ (1 − ω)xi2(t)

xi2(t + 1) = xi1(t)

xj1(t + 1) = ω


1
2
xi1(t) +

1
2
xj1(t)


+ (1 − ω)xj2(t)

xj2(t + 1) = xj1(t)

(7)

where 1 ≤ ω < 2 is an adjustable parameter independent of i
and j. The values of the registers of all the other agents remain the
same:

xkr(t + 1) = xkr(t), k ≠ i, j, r = 1, 2. (8)

In the case when each agent is provided with m > 2 registers,
the accelerated gossip algorithm is generalized as follows. Suppose
agents i and j are the only pair to gossip at time t . Then

xi1(t + 1) = ω1


1
2
xi1(t) +

1
2
xj1(t)


+

m
r=2

ωrxir(t)

xir(t + 1) = xi(r−1)(t), r = 2, 3, . . . ,m

xj1(t + 1) = ω1


1
2
xi1(t) +

1
2
xj1(t)


+

m
r=2

ωrxjr(t)

xjr(t + 1) = xj(r−1)(t), r = 2, 3, . . . ,m

(9)

where ωr , r ∈ {1, 2, . . . ,m}, are adjustable parameters satisfyingm
r=1 ωr = 1. The values stored in the registers of all the other

agents remain the same:

xkr(t + 1) = xkr(t), k ≠ i, j, r = 1, 2, . . . ,m. (10)

The experiments in Cao et al. (2006) use random geometric
graphswith four different configurations of shift-registers. The first
three, denoted by D2, D4, and D8, consist of 2, 4, and 8 registers
respectively for which only the first and last register are used to
compute the new value of the first register (i.e., ωr = 0 for r ≠

1,m). For the fourth one, denoted byX4, all of the registers are used
to compute the new value of the first register. The results of the
experiments show that by employing more registers and choosing
a clever combination of adjustable parameters, the algorithms can
speed up convergence substantially.

3. Analysis

In this section, we provide a theoretical analysis of the acceler-
ated gossip algorithms proposed in Cao et al. (2006). Throughout
this section, we assume that P = P ′ except when otherwise noted.
For the case when each agent is provided with two registers, we
derive the fastest rate of convergence in expectation and the corre-
sponding optimal parameter ω; a sufficient condition on ω ensur-
ing convergence in mean square is also provided. We begin with
some quantities associated with the standard gossip algorithm.

In Boyd et al. (2006), Boyd et al. write the expectation matrix Ā
of the standard gossip algorithm as

Ā = I −
1
2n

D +
1
2n

(P + P ′)

where D is a diagonal matrix with entries dii =
n

j=1(pij + pji) =

1 +
n

j=1 pji. Note that the symmetry of Ā does not depend on P
being symmetric. However, for symmetric P , it is easier to calculate
certain quantities. For example, D = 2I and

Ā =


1 −

1
n


I +

1
n
P.

Let λ2(P) denote the second largest eigenvalue of P which is
necessarily real since P is symmetric. Then the second largest
eigenvalue of Ā equals

λ2(Ā) = 1 −
1
n
(1 − λ2(P))

which is also necessarily real.
Now we consider the changes that arise with the accelerated

gossip algorithm in the two-register case. The probabilities stay
the same, but the new update equations are listed in (7). Define
the enlarged state vector as

z =

x11 x21 · · · xn1 x12 x22 · · · xn2

′
.

Thematrices corresponding to Aij and Ā of dimension n×n are then
replaced bymatrices of dimension 2n×2n. Let Bij and B̄ denote the
corresponding enlarged matrices. Then

Bij =

k≠i,j

eke′

k +
ω

2
(ei + ej)(ei + ej)′

eie′

i + eje′

j

(1 − ω)(eie′

i + eje′

j)
k≠i,j

eke′

k


and

B̄ =


i,j

1
n
pijBij =

I +
ω

2n
(P + P ′) +

ω − 2
2n

D
1 − ω

n
D

1
n
D I −

1
n
D

 .

With P = P ′, there holds D = 2I and

B̄ =



1 +

ω − 2
n


I +

ω

n
P

2(1 − ω)

n
I

2
n
I


1 −

2
n


I

 . (11)

It is easy to see that for any ω, the row sums of Bij and B̄ all equal
one. However, not all entries of Bij and B̄ are nonnegative when
1 < ω < 2 because of the upper right block. Therefore Bij and B̄
are not stochastic matrices.

3.1. Convergence in expectation

In this subsection, we establish the existence of the desired
convergence in expectation of the accelerated gossip algorithm in
the two-register case. It is shown that the use of the second register
provides a speed-up in convergence. We study the behavior of the
second largestmagnitude of any eigenvalue of B̄, denoted by ρ2(B̄),
and identify the value of ω maximizing the speed-up.

First observe that with ω = 1, the rate of convergence in ex-
pectation remains the same as the standard gossip algorithm since
only one register is actually used.We shall next consider howρ2(B̄)
varies as a function of ω when 1 < ω < 2. Before doing this, we
show the existence of the desired convergence of the accelerated
gossip algorithm. Toward this end, we need the following lemma.

Lemma 1. Suppose M is an n × n real matrix. Let L be a 2n × 2n
matrix given by

L =


M aI
bI cI


where a, b, c ∈ R and ab ≠ 0. If there exist λ ∈ R and α, β ∈ Rn

such that α, β are not both zero vectors and

L

α
β


= λ


α
β


then α ≠ 0, λ ≠ c, and Mα = µα where

µ = λ −
ab

λ − c
. (12)
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Conversely, if there exist µ ∈ R and α ∈ Rn such that α ≠ 0 and
Mα = µα, then

L

α
βi


= λi


α
βi


, i = 1, 2

where λ1, λ2 are the two solutions of (12) and βi =
b

λi−c α.

The simple proof is omitted.
Lemma 1 implies that the 2n eigenvalues of the 2n× 2nmatrix

B̄ =


A aI
bI cI


where a =

2
n (1 − ω), b =

2
n , c = 1 −

2
n , and

A =


1 +

ω − 2
n


I +

ω

n
P (13)

are determined by the n eigenvalues of the n×nmatrix Awith (12)
which is equivalent to a quadratic equation

λ2
− (µ + c)λ + µc − ab = 0. (14)

In addition, the n eigenvalues of A are determined by the n
eigenvalues of P because of (13). Thus the 2n eigenvalues of B̄ are
determined by the n eigenvalues of P . Let λi(P) denote the ith
largest eigenvalue of P , i ∈ {1, 2, . . . , n}. Since P is a symmetric
stochastic matrix and we have assumed that P has eigenvalue 1
with multiplicity 1 and all the other n − 1 eigenvalues are strictly
less than one in magnitude, we have

1 = λ1(P) > λ2(P) ≥ λ3(P) ≥ · · · ≥ λn(P) > −1.

Let µi(A) denote the ith largest eigenvalue of A, i ∈ {1, 2, . . . , n}.
From (13), the n eigenvalues of A can also be written as a non-
increasing sequence with the values

µi(A) = 1 +
ω − 2

n
+

ω

n
λi(P). (15)

In particular, the largest eigenvalue of A is µ1(A) = 1 +
2
n (ω − 1).

For each µi(A), we can obtain two eigenvalues of B̄ which are the
two roots of (14), denoted by λi1 and λi2. We assume that λi1 ≥ λi2
if they are both real. Thus when µi(A) satisfies the condition that
Eq. (14) has two real roots, the corresponding two real eigenvalues
of B̄ are

λi1,2 =
µi(A) + c

2
±


µi(A) − c

2

2

+ ab. (16)

Replace µi(A) by λi(P) using (15), we get

λi1,2 = 1 +
1
n


1
2
ω(1 + λi(P)) − 2


±

1
2n


ω2(1 + λi(P))2 − 16(ω − 1). (17)

First, we notice from (16) that ∂λi1/∂µi(A) > 0, which implies that
the real eigenvalues λi1 (i belongs to a subset of {1, 2, . . . , n}) form
a non-increasing sequence. Second, from (17) we have λi2 ≥ 0
when 1 < ω < 2, which implies that all the real eigenvalues
of B̄ are nonnegative. Third, λ11 and λ12 are always real when
1 < ω < 2. In particular, λ11 = 1 is the largest real eigenvalue
of B̄ and

λ12 = 1 −
4
n

+
2ω
n

(18)

which can be computed using (17) with λ1(P) = 1. Furthermore,
if λ21 and λ22 are real as well, the second largest real eigenvalue of
B̄ is the larger of λ12 and λ21.

On the other hand, if for some µi(A), the corresponding two
eigenvalues of B̄ (i.e., the two roots of (14)) are complex, the
magnitudes of these two eigenvalues are the same:

|λi1,2| = |λi1| = |λi2| =


µc − ab

=


1 −

4
n

+
ω

n
(1 + λi(P)) +

2ω
n2

(1 − λi(P)). (19)

Now we have the explicit expressions for the magnitudes of all
eigenvalues of B̄, including both real and complex eigenvalues.

Lemma 2. Suppose P is an n × n symmetric probability matrix with
an eigenvalue 1 and all the remaining n − 1 eigenvalues strictly less
than 1 in magnitude. Let B̄ be defined by (11). If 1 < ω < 2, then
B̄ has an eigenvalue 1 and all the remaining 2n − 1 eigenvalues are
strictly less than 1 in magnitude.

Proof of Lemma 2. Weconsider the complex eigenvalues and real
eigenvalues of B̄ separately. For any complex eigenvalueλi1,2, using
(19) it can be checked that ∂|λi1,2|/∂ω > 0 and ∂|λi1,2|/∂λi(P) ≥

0. This implies that |λi1,2| increases as either ω or λi(P) increases.
Since 1 < ω < 2 and −1 < λi(P) ≤ 1, an upper bound of |λi1,2|

is given by (19) with ω = 2 and λi(P) = 1. With these values, the
right side of (19) evaluates as (1−

2
n )

1
2 . Thus |λi1,2| ≤ (1−

2
n )

1
2 < 1.

Next we turn to the real eigenvalues. Recall that following (17), we
have established that all the real eigenvalues of B̄ are nonnegative
and λ11 = 1 is the largest. It can be verified that the second
largest real eigenvalue is always smaller than 1 when 1 < ω < 2.
Therefore 1 is a simple eigenvalue of B̄. �

We are now in a position to show the convergence in expecta-
tion of the accelerated gossip algorithm (7) and (8).

Theorem 1. Suppose that the enlarged vector of gossip variables z(t)
evolves according to

z(t + 1) = Bσ(t)z(t), t ≥ 0 (20)

where Bσ(t) is determined by the accelerated gossip algorithm (7)
and (8). Let P be an n × n symmetric probability matrix with an
eigenvalue 1 and all the remaining n − 1 eigenvalues strictly less
than 1 in magnitude. If 1 < ω < 2, then all the entries of z(t)
converge in expectation to the average

zave =
1
n

n
i=1

xi1(0)

if each agent i’s two registers are initialized so that xi1(0) = xi2(0),
i ∈ {1, 2, . . . , n}.

The proof of Theorem 1 depends on the following lemma.

Lemma 3. Given any matrix M ∈ Rn×n and vectors c, d ∈ Rn such
that c ′d ≠ 0. The equation

lim
t→∞

M t
=

dc ′

c ′d

holds if and only if c ′M = c ′, Md = d, and ρ(M − dc ′/(c ′d)) < 1
where ρ(·) denotes the spectral radius of a matrix.

This lemma is Theorem2 in Xiao and Boyd (2004). Note that ρ(M−

dc ′/(c ′d)) equals the second largest magnitude of any eigenvalue
of M , and thus ρ(M − dc ′/(c ′d)) < 1 implies that 1 is a simple
eigenvalue of M .

Proof of Theorem 1. Since thematricesBσ(t), t ∈ {0, 1, 2, . . .}, are
independent and identically distributed, from (20) we have

E [z(t)] =

t
i=0

E

Bσ(i)


z(0) = B̄tz(0)
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Fig. 1. Distribution of the number of B̄’s real and complex eigenvalues.

where

B̄ = E

Bσ(t)


=


i,j

1
n
pijBij.

It can be verified that

Bij


1
1


=


1
1


(21)

and (Lemma 1 in Cao et al. (2006))
1′ (1 − ω)1′


Bij =


1′ (1 − ω)1′


. (22)

Because B̄ is a convex combination of Bij’s, Eqs. (21) and (22)
also hold for B̄. We have shown in Lemma 2 that one is a simple
eigenvalue of B̄ and all the other eigenvalues are strictly less than
one in magnitude. Thus by Lemma 3,

lim
t→∞

B̄t
=

1
(2 − ω)n


1
1

 
1′ (1 − ω)1′


.

If xi1(0) = xi2(0), then

lim
t→∞

E [z(t)] = lim
t→∞

B̄tz(0) =
1
n

n
i=1

xi1(0).

This completes the proof. �

In the sequel we will write the second largest magnitude of
any eigenvalue of B̄ as a function of ω, denoted by ρ2(B̄(ω)), and
then find the optimal value of ω ∈ (1, 2), denoted by ω∗, which
minimizes the function.

First we explore the distribution of the number of real and
complex eigenvalues of B̄. From (17) it is clear that whether λi1 and
λi2 are real or not depends on the sign of a second order polynomial

f (ω) = (1 + λi(P))2ω2
− 16ω + 16.

Since f (1) ≥ 0 and f (2) ≤ 0, f (ω) has a unique zero point between
1 and 2 which is

ω(λi(P)) =
8 − 4


4 − (1 + λi(P))2

(1 + λi(P))2
.

Then for each λi(P), if 1 < ω ≤ ω(λi(P)), λi1 and λi2 are real; if
ω(λi(P)) < ω < 2,λi1 andλi2 are complex. In addition, dω(λi(P))/
dλi(P) > 0, which implies that ω(λi(P)) is an increasing function
of λi(P); in particular, ω(1) = 2. If we denote ω(λi(P)) as ωi−1 for
all i ∈ {2, 3, . . . , n}, we have

1 < ωn−1 ≤ ωn−2 ≤ · · · ≤ ω1 < 2.

If 1 < ω ≤ ωn−1, B̄ has 2n real eigenvalues; if ωn−1 < ω ≤ ωn−2,
B̄ has 2n − 2 real eigenvalues and 2 complex eigenvalues; . . .; if
ω2 < ω ≤ ω1, B̄ has 4 real eigenvalues and 2n − 4 complex eigen-
values; ifω1 < ω < 2, B̄ has 2 real eigenvalues and 2n−2 complex
eigenvalues. See Fig. 1 for the distribution of the number of B̄’s real
and complex eigenvalues.

Lemma 4. Suppose that P is an n × n symmetric probability matrix
with an eigenvalue 1 and all the remaining n − 1 eigenvalues strictly
less than 1 in magnitude. Let B̄ be defined by (11) and
ω1 =
8 − 4


4 − (1 + λ2(P))2

(1 + λ2(P))2

where λ2(P) is the second largest eigenvalue of P. If 1 < ω ≤ ω1,
then

ρ2(B̄(ω)) = λ21(ω) = 1 +
1
n


1
2
ω(1 + λ2(P)) − 2


+

1
2n


(1 + λ2(P))2ω2 − 16ω + 16. (23)

Proof of Lemma 4. We consider real eigenvalues and complex
eigenvalues separately. Since 1 < ω ≤ ω1, the second largest
real eigenvalue of B̄ is the larger one between λ12 and λ21, which
are given by (18) and (23) respectively. It can be checked that
λ21(ω) > λ12(ω) when 1 < ω ≤ ω1. Thus the second largest real
eigenvalue of B̄ is λ21. It can also be checked that ∂λ21(ω)/∂ω < 0
when 1 < ω ≤ ω1, which implies that λ21(ω) decreases as ω
increases. In addition, when ω = ω1, λ21(ω) and λ22(ω) are equal
and λ21(ω) reaches the minimum

λ21(ω1) =


1 −

4
n

+
ω1

n
(1 + λ2(P)) +

2ω1

n2
(1 − λ2(P)). (24)

Next we turn to complex eigenvalues. Recall that themagnitude of
complex eigenvalues increases as either ω or λi(P) increases, thus
the right side of (24) is an upper bound of |λi1,2|when 1 < ω ≤ ω1.
Therefore when 1 < ω ≤ ω1, λ21(ω) is always greater than the
largestmagnitude of any complex eigenvalue,which completes the
proof. �

Our next step is to consider the case when ω1 < ω < 2. In
this case, B̄ only has two real eigenvalues, 1 and λ12. The largest
magnitude of any complex eigenvalue is determined by λ2(P). So
the second largest magnitude of any eigenvalue of B̄ is the larger of
λ12 and |λ21|:

ρ2(B̄(ω)) = max{λ12(ω), |λ21(ω)|}.

We repeat the two expressions as follows:

λ12(ω) = 1 −
2
n
(2 − ω)

and

|λ21(ω)| =


1 −

4
n

+
ω

n
(1 + λ2(P)) +

2ω
n2

(1 − λ2(P)).

It can be verified that λ12(ω) ≥ |λ21(ω)| if and only if

g(ω) = 4ω2
+ (3n − λ2(P)n + 2λ2(P) − 18) ω + 16 − 4n ≥ 0.

Note that |λ21(ω)| > λ12(ω) when ω = ω1 and λ12(ω) > |λ21(ω)|
when ω = 2. So we have g(ω1) < 0 and g(2) > 0. Because g(ω) is
a second order polynomial, g(ω) has a unique zero point between
ω1 and 2. Let ω0 denote this zero point. Then when ω1 < ω < ω0,
|λ21| > λ12; when ω0 ≤ ω < 2, λ12 ≥ |λ21|. We are led to the
following lemma.

Lemma 5. Suppose that P is an n × n symmetric probability matrix
with an eigenvalue 1 and all the remaining n − 1 eigenvalues strictly
less than 1 in magnitude. Let B̄ be defined by (11) and

ω1 =
8 − 4


4 − (1 + λ2(P))2

(1 + λ2(P))2

where λ2(P) is the second largest eigenvalue of P. Then when ω1 <
ω < ω0, ρ2(B̄(ω)) = |λ21(ω)|, and when ω0 ≤ ω < 2, ρ2(B̄(ω)) =

λ12(ω).

Combining Lemmas 4 and 5, it is clear that ρ2(B̄(ω)) is
continuous on the interval (1, 2) and corresponds to a real
eigenvalue for the intervals (1, ω1] and [ω0, 2). We provide an
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Fig. 2. The magnitude of some eigenvalues of B̄(ω).

overview of ρ2(B̄(ω)) in Fig. 2 by plotting the curve of the
magnitude of those specific eigenvalues of B̄(ω) which determine
the value of ρ2(B̄(ω)). The dashed curve denotes the largest
magnitude of any complex eigenvalue; it is discontinuous at
ω1, ω2, . . . , ωn−1 because {λ1(P), λ2(P), . . . , λn(P)} is a discrete
set. Note that when ω = 2, λ12 = λ11 = 1 and thus convergence
cannot be reached.

Theorem 2. Suppose that P is an n×n symmetric probability matrix
with an eigenvalue 1 and all the remaining n − 1 eigenvalues strictly
less than 1 in magnitude. Let B̄ be defined by (11) and λ2(P) be the
second largest eigenvalue of P. Then when 1 < ω < 2, the minimum
of ρ2(B̄(ω)) is unique; the value of ω at this minimum is

ω∗
= ω1 =

8 − 4

4 − (1 + λ2(P))2

(1 + λ2(P))2
(25)

and the minimum of ρ2(B̄(ω)) is

ρ2(B̄(ω1)) = 1 +
1
n


4 − 2


4 − (1 + λ2(P))2

1 + λ2(P)
− 2


. (26)

Proof of Theorem 2. When 1 < ω ≤ ω1, λ21 is a real eigenvalue.
Because of Lemma 4 and the fact that λ21(ω) is a decreasing
function of ω, λ21(ω1) gives the minimum of ρ2(B̄(ω)) when 1 <
ω ≤ ω1. When ω1 < ω < 2, λ21 is a complex eigenvalue. Because
|λ21(ω)| is an increasing function of ω and λ12(ω) > |λ21(ω)| on
ω1 < ω < 2, |λ21(ω1)| gives the infimum of ρ2(B̄(ω)) when ω1 <
ω < 2. In addition, ρ2(B̄(ω)) is continuous at ω1. Therefore ω1 is
the unique point which minimizes ρ2(B̄(ω)). �

Note that ρ2(Ā) = λ2(Ā) since Ā is symmetric and positive
semidefinite. Recall that the rate of convergence in expectation of
the standard gossip algorithm with symmetric P is

λ2(Ā) = 1 −
1
n
(1 − λ2(P)). (27)

It can be verified that ρ2(B̄(ω1)) < ρ2(Ā) when −1 < λ2(P) < 1.
We are led to the following result:

Corollary 1. Suppose that P is an n×n symmetric probability matrix
with an eigenvalue 1 and all the remaining n − 1 eigenvalues strictly
less than 1 in magnitude. Then the accelerated gossip algorithm utiliz-
ing two shift-registers at each agent with ω = ω∗ as defined in (25)
has a faster rate of convergence in expectation than the standard gos-
sip algorithm.

3.2. Convergence in mean square

In this subsection, we investigate the convergence in mean
square of the accelerated algorithm (7) and (8). Let y(t) = z(t) −

zave1 where z(t) = [x11 x21 · · · xn1 x12 x22 · · · xn2]′

and zave =
1
n

n
i=1 xi1(0). Then
y(t + 1) = z(t + 1) − zave1
= Bσ(t)z(t) − zaveBσ(t)1
= Bσ(t)y(t).

The second equation holds because of the fact that 1 is an
eigenvector of all Bσ(t) for eigenvalue one. Following the argument
of Boyd et al. (2006), we obtain the bound
E

y(t)′y(t)


≤ λt

1(E[B′B])∥y(0)∥2.

If y(t) were constrained to be orthogonal to the eigenvector of
E[B′B] for the largest eigenvalue, we would have

E

y(t)′y(t)


≤ λt

2(E[B′B])∥y(0)∥2. (28)
Therefore we would obtain a sufficient condition for the con-
vergence in mean square; the corresponding convergence rate is
λ2(E[B′B]). However, it is easy to verify that when ω = 1 and P =

P ′, λ1(E[B′B]) is greater than one; the same property holds for ω
near to one by continuity. Also examples reveal that we cannot al-
ways have λ2(E[B′B]) strictly less one.

In the sequel we will present a modification of this approach to
establish the convergence in mean square.3

Suppose that N is a nonsingular matrix. Observe that if N−1z(t)
and N−1y(t) converge, then so do z(t) and y(t), and conversely.
Thus we can study N−1z(t) and N−1y(t) rather than z(t) and y(t).
We retain B as shorthand for Bσ(t). The evolution of ŷ(t) = N−1y(t)
becomes
ŷ(t + 1) = N−1BNŷ(t).
Compared with the evolution of y(t), B is replaced by N−1BN , and
importantly, B′B is replaced by N ′B′(N−1)′N−1BN . Let C = N−1BN .
The eigenvalue properties of C are the same as those of B, but the
eigenvalue properties ofC ′C are not the sameas those ofB′B. In fact,
we are interested in the eigenvalues of E[C ′C], and in particular
its second largest eigenvalue. If we select N as a triangular block
matrix

N =


αI γ I
0 βI


where α, β , and γ are real-valued constants, then

N−1
=


1
α
I −

γ

αβ
I

0
1
β
I


and

C = N−1BN =


C11 C12
C21 C22


where

C11 =


k≠i,j

eke′

k +
ω

2
(ei + ej)(ei + ej)′ −

γ

β
(eie′

i + eje′

j)

C12 =
γ

α

ω

2
(ei + ej)(ei + ej)′

+


β

α
(1 − ω) −

γ 2

αβ


(eie′

i + eje′

j)

C21 =
α

β
(eie′

i + eje′

j)

C22 =


k≠i,j

eke′

k +
γ

β
(eie′

i + eje′

j).

Let r =
β

α
and s =

γ

β
. More can be said:

3 In Boyd et al. (2006), another criterion for convergence in mean square is
derived for the standard gossip algorithm based on the expected value of the
Kronecker product. However, rewriting E[B⊗B] in an elegant formhas so far eluded
us.
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Lemma 6. Let r and s be any two non-zero real numbers such that

r2(1 − s)(1 + s − ω) = 1. (29)

Then N ′v is an eigenvector of E[C ′C] for eigenvalue 1 where v is a
column vector such that

v′
=


1

2 − ω
1′

1 − ω

2 − ω
1′


.

Proof of Lemma 6. With symmetric P , it can be shown that

E[C ′C] =


E11 E12
E21 E22


where

E11 =


1 −

2
n

+
2
n


s2 +

1
r2


I +

2
n


ω2

2
− sω


(P + I)

E12 = E21 =
2
n


rs3 − rs(1 − ω) +

s
r


I

+
2
n


rs

ω2

2
− rs2ω +

r
2
ω(1 − ω)


(P + I)

E22 =
2
n
(r2s4 − 2r2s2(1 − ω) + r2(1 − ω)2 + s2)I

+
2
n


r2s2

ω2

2
− r2s3ω + r2sω(1 − ω)


(P + I)

+


1 −

2
n


I.

Thus

E[C ′C]N ′v =


E11 E12
E21 E22

 
a1
b1


=


aΦ1
bΨ 1


(30)

where a =
α

2−ω
, b =

γ+β(1−ω)

2−ω
, and

Φ = 1 −
2
n

+
2
n


s2 +

1
r2


+

4
n


ω2

2
− sω


+

2
r(1 − s)n


rs3 − rs(1 − ω) +

s
r


+

4
r(1 − s)n


rs

ω2

2
− rs2ω +

r
2
ω(1 − ω)


Ψ = 1 −

2
n

+
2
n
(r2s4 − 2r2s2(1 − ω) + r2(1 − ω)2 + s2)

+
4
n


r2s2

ω2

2
− r2s3ω + r2sω(1 − ω)


+

2
n
r(1 − s)


rs3 − rs(1 − ω) +

s
r


+

4
n
r(1 − s)


rs

ω2

2
− rs2ω +

r
2
ω(1 − ω)


.

It can be verified thatΦ = Ψ if and only if r2(1−s)(1+s−ω) = 1.
Moreover, Φ = Ψ = 1 when (29) holds. Then from (30), we
have E[C ′C]N ′v = N ′v, which implies that N ′v is an eigenvector
of E[C ′C]. �

Note that given any pair of non-zero real numbers r and s, there
always exist α, β, γ ∈ R such that r =

β

α
and s =

γ

β
. In addition,

from (29) it is clear that

ω − 1 < s < 1. (31)

Recall that y(t) = z(t)− zave1. With the initial conditions xi1(0) =

xi2(0), i ∈ {1, 2, . . . , n}, Eq. (22) ensures that v′y(t) = 0 for all
t ≥ 0. Consequently, ŷ(t) ⊥ N ′v for all t ≥ 0. Thus similar to (28),
provided that 1 is the largest eigenvalue of E[C ′C], we have

E

ŷ(t)′ŷ(t)


≤ λt

2(E[C ′C])∥ŷ(0)∥2.

The fact that 1 is the largest eigenvalue of E[C ′C]will be established
with the aid of the following lemma.

Lemma 7. Suppose M is an n × n real matrix. Let L be a 2n × 2n
matrix given by

L =


a1I + a2(M + I) a3I + a4(M + I)
a3I + a4(M + I) a5I + a6(M + I)


where ai ∈ R, i ∈ {1, 2, . . . , 6}, and I is the n×n identity matrix. If µ
is an eigenvalue of M, then there are two corresponding eigenvalues
of L, which are the two roots of the quadratic equation

λ2
+ bλ + c = 0 (32)

with b = −(a1 + a5) − (a2 + a6)(1 + µ) and c = −(a23 − a1a5) −

(2a3a4 − a1a6 − a2a5)(1 + µ) − (a24 − a2a6)(1 + µ)2.

The straightforward proof is omitted.
From the proof of Lemma 6, it is easy to see that E[C ′C] has the

same form as L. By Lemma 7, for each eigenvalue µ of P (−1 <
µ ≤ 1), there are two corresponding eigenvalues of E[C ′C] which
are the two roots of (32):

λ =
1
2


(a1 + a5) + (a2 + a6)(1 + µ) ±

√
∆


(33)

where

∆ =

4a23 + (a1 − a5)2


+ (8a3a4 + 2(a1 − a5)(a2 − a6))

× (1 + µ) +

4a24 + (a2 − a6)2


(1 + µ)2

= 4 (a3 + a4(1 + µ))2 + ((a1 − a5) + (a2 − a6)(1 + µ))2 .

For the matrix E[C ′C], we have

a1 = 1 −
2
n

+
2
n


s2 +

1
r2


a2 =

2
n


ω2

2
− sω


a3 =

2
n


rs3 − rs(1 − ω) +

s
r


a4 =

2
n


rs

ω2

2
− rs2ω +

r
2
ω(1 − ω)


a5 = 1 −

2
n

+
2
n
(r2s4 − 2r2s2(1 − ω) + r2(1 − ω)2 + s2)

a6 =
2
n


r2s2

ω2

2
− r2s3ω + r2sω(1 − ω)


.

(34)

It is clear that λ ≥ 0 since E[C ′C] is symmetric and positive
semidefinite. When we choose the plus sign and µ = 1 in (33),
it can be verified that λ = 1. In addition, it can be shown from (33)
that a sufficient condition under which λ = 1 is the unique largest
eigenvalue of E[C ′C] consists of the following two inequalities:
a2 + a6 ≥ 0
8a3a4 + 2(a1 − a5)(a2 − a6) ≤ 8a24 + 2(a2 − a6)2.

(35)

The computation shows that a2 + a6 ≥ 0 if and only if

ω ≤ 4 − 2
√
2 (36)

and

ω −


ω2 − 8ω + 8 ≤ 4s ≤ ω +


ω2 − 8ω + 8. (37)
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Fig. 3. The rate of convergence in mean square with ω = 4 − 2
√
2.

Fig. 4. The rate of convergence in expectation.

When (36) holds, it can be checked that (37) holds as well and it
gives a tighter bound on s than (31). Let s =

ω
4 with which (37)

holds and let

r = ((1 − s)(1 + s − ω))−
1
2

so that (29) holds. With these values, it can be verified that the
second inequality in (35) also holds. Thus when 1 < ω ≤ 4 −

2
√
2, E[C ′C] has one as the largest eigenvalue and all the other

eigenvalues are strictly less than one. We have proved the
following.

Proposition 1. Suppose that the enlarged vector of gossip variables
z(t) evolves according to z(t + 1) = Bσ(t)z(t), t ≥ 0 where Bσ(t) is
determined by the accelerated gossip algorithm (7) and (8). Let P be
an n × n symmetric probability matrix with an eigenvalue 1 and all
the remaining n − 1 eigenvalues strictly less than 1 in magnitude. If
1 < ω ≤ 4 − 2

√
2, then z(t) converges in mean square.

From (33), it is clear that an upper bound of the rate of conver-
gence in mean square is

λ2[C ′C] =
1
2


(a1 + a5) + (a2 + a6)(1 + λ2(P)) +

√
∆


(38)

where

∆ = 4 (a3 + a4(1 + λ2(P)))2

+ ((a1 − a5) + (a2 − a6)(1 + λ2(P)))2 .
Here the ai, i ∈ {1, 2, . . . , 6}, are given by (34) with s =
ω
4 and

r = ((1 − s)(1 + s − ω))−
1
2 . Recall that the fastest rate of conver-

gence in expectation is

ρ2(B̄(ω∗)) = 1 +
1
n


4 − 2


4 − (1 + λ2(P))2

1 + λ2(P)
− 2


.

It is of interest to compare the two convergence rates. Toward this
end, set ω = 4 − 2

√
2. Then both λ2[C ′C] and ρ2(B̄(ω1)) depend

only on n and λ2(P). We plot them in Figs. 3 and 4 respectively as a
function of λ2(P) and nwith−1 < λ2(P) < 1 and 100 ≤ n ≤ 200.
It is shown from the figures that the rate of convergence in mean
square is slower than the rate of convergence in expectation.

3.3. Multi-register cases

In order to possibly achieve faster convergence, we analyze
more general multi-register cases of the accelerated gossip
algorithms in Cao et al. (2006) from the standpoint of convergence
in expectation. We take X4 of Cao et al. (2006) as an example in
which all of the 4 registers are used to compute the new value of
the first register. Suppose agents i and j are thepair to gossip at time
t ≥ 0. Then the accelerated gossip algorithm is given as follows:

xi1(t + 1) = ω1


1
2
xi1(t) +

1
2
xj1(t)


+

4
r=2

ωrxir(t)

xir(t + 1) = xi(r−1)(t), r = 2, 3, 4

xj1(t + 1) = ω1


1
2
xi1(t) +

1
2
xj1(t)


+

4
r=2

ωrxjr(t)

xjr(t + 1) = xj(r−1)(t), r = 2, 3, 4

where ωr , r ∈ {1, 2, 3, 4}, are adjustable parameters satisfying4
r=1 ωr = 1. We define the state vector as a 4n-dimensional

column vector ordering the entries in the same way as we did in
the two-register case. The matrices corresponding to Aij and Ā are
now replaced by Bij and B̄ of dimension 4n × 4n. Using a similar
analysis as presented earlier, we obtain

B̄ =


A1

2ω2

n
I

2ω3

n
I

2ω4

n
I

bI cI 0 0
0 bI cI 0
0 0 bI cI


where b =

2
n , c = 1 −

2
n , and

A1 =


1 +

ω1 − 2
n


I +

ω1

n
P

A1 is symmetric because P is. Then the 4n eigenvalues of B̄ are
determined by the n eigenvalues of A1 through the equation

µ = λ −
2ω2

n
b

λ − c
−

2ω3

n
b2

(λ − c)2
−

2ω4

n
b3

(λ − c)3

where λ denotes an eigenvalue of B̄ andµ denotes an eigenvalue of
A1. Also, the eigenvalues of A1 are determined by the eigenvalues
of P through the relation

µi(A1) = 1 +
ω1 − 2

n
+

ω1

n
λi(P), i ∈ {1, 2, . . . , n}. (39)

It is easy to extend the preceding results to more general cases.
That is, for the m-register accelerated algorithm (9) and (10) with
P = P ′, themn eigenvalues of themn×mnmatrix B̄ are determined
by the n eigenvalues of n × nmatrix A1 through the equation

µ = λ −

m
r=2

2ωr

n


b

λ − c

r−1

(40)
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while the eigenvalues of A1 are determined by the eigenvalues of
P through the relation (39). In particular, λ1(P) = 1 and µ1(A1) =

1+
2
n (ω1 − 1). Although it becomes much harder to get an explicit

expression for λ from (40) when m > 2, we can establish a neces-
sary condition on the combination of theωr for the convergence in
expectation.

Set λ = 1 + ϵ. Then the right hand side of (40) can be written
as a function of ϵ:

h(ϵ) = 1 + ϵ −

m
r=2

2rωr

n(2 + nϵ)r−1
.

Note that h(0) = µ1(A1) which is the largest eigenvalue of A1 and
that

h′(ϵ) = 1 +

m
r=2

2rωr(r − 1)
(2 + nϵ)r

.

When ϵ = 0, λ = 1 is an eigenvalue of B̄. Thus in order to ensure
the convergence in expectation, λ = 1+ϵ cannot be an eigenvalue
of B̄when ϵ > 0, which implies that h′(0) ≥ 0. Therefore, we get a
necessary condition for the ωr :

1 +

m
r=2

ωr(r − 1) ≥ 0. (41)

If only the first and last registers are used to compute the new
value of the first register, the ωr = 0, r ∈ {2, 3, . . . ,m − 1}, and
ωm = 1 − ω1. Then the necessary condition (41) becomes

ω1 ≤ 1 +
1

m − 1
. (42)

It is easy to verify that the simulation results of X4 in Cao et al.
(2006) satisfy (41) and that of D2, D4, and D8 all satisfy (42). See
TABLE II in Cao et al. (2006). In addition, the condition (42) implies
that when only the first and last registers are used, the allowable
range ofω1 becomes smaller and smaller as the number of registers
m increases. For example, 1 < ω1 ≤ 1.032 when m = 32. Also
note that from (42), ω1 ≤ 2 when m = 2. But it has been shown
in Section 3.1 that when ω1 = 2, the convergence in expectation
cannot be reached. Thus (42) is not a sufficient condition.

4. Experimental validation

In this section we will validate the theoretical results derived
in the preceding section by exploring some classes of graphs
and comparing them with the experimental results in Cao et al.
(2006). Toward this end, we assume that each agent, if activated,
gossips with its neighbors with equal probability. This assumption
is also made in the experiments in Cao et al. (2006). Then for any
symmetric gossip algorithm, an allowable gossip graph A uniquely
determines a probability matrix P . Moreover, such P matrices have
the following property: For each integer d ∈ {2, 3, . . . , n − 1},
A = dP is the adjacency matrix of a d-degree regular graph whose
eigenvalues are

d = µ1(A) > µ2(A) ≥ µ3(A) · · · ≥ µn(A) > −d.

It is clear that λi(P) =
µi(A)

d , i ∈ {1, 2, . . . , n}. From (25), ω∗ de-
pends on λ2(P), the second largest eigenvalue of P . We are now
interested in how ω∗ varies with different λ2(P).

We first consider two special classes of regular graphs: com-
plete graphs Kn (with d = n−1) and cycle graphs Cn (with d = 2).
For any complete graph Kn, n ≥ 2, the spectrum of its adjacency
matrix consists of n−1 with multiplicity 1 and −1 with multiplic-
ity n − 1 (Cvetkovic, Doob, & Sachs, 1979). So in this case λ2(P) =

−
1

n−1 . In particular, when n ≥ 10000, λ2(P) ≈ 0 and thus ω∗
≈

1.0718. For any cycle graphCn,n ≥ 3, the spectrumof its adjacency
matrix consists of the numbers 2 cos(2π i/n), i ∈ {1, 2, . . . , n}
(Cvetkovic et al., 1979). So in this case λ2(P) = cos 2π
n . In par-

ticular, when n ≥ 10000, λ2(P) ≈ 1 and thus ω∗
≈ 2. Next we

consider another class of regular graphs C2
n, the second power of

cycle graphs Cn.4 The adjacency matrix of C2
n is a circulant matrix

and its eigenvalues are given by µj = wj + w2
j + wn−2

j + wn−1
j ,

j ∈ {0, 1, . . . , n − 1}, where wj are the n roots of the unity which
satisfy wn

j = 1 (Biggs, 1974).
In Alon (1986), Alon has shown that for any fixed d and any in-

finite family of d-regular graphs Gi, i ∈ {1, 2, . . .}, lim infµ2(Ai) ≥

2
√
d − 1, where Ai is the adjacency matrix of Gi. He also con-

jectured that almost all d-regular graphs with n vertices satisfy
µ2(A) ≤ 2

√
d − 1 + o(1) as n tends to infinity. The conjecture

has subsequently been proved by Friedman (2003). Thus we take
2
√
d − 1 as an estimate of µ2(A). Then

λ2(P) ≈
2
√
d − 1
d

. (43)

A different class of regular graphs, namely two-dimensional grid
graphs (with d = 4), can be seen as a crude approximation to the
topology of a sensor network in the case when sensors are uni-
formly distributed and sensors have the same sensing radius (Pen-
rose, 2003). If we ignore the boundary effect and substitute d = 4
into (43), we have λ2(P) ≈ 0.866 and thus ω∗

≈ 1.47, which
agrees with the experimental result thatω∗ should lie between 1.4
and 1.5. See TABLE II in Cao et al. (2006).

While Cao et al. (2006) contains comprehensive experimental
results, the analysis developed in this paper has not yet reached the
point where a full set of comparisons can be made. This is because
the tools developed in this paper are tailored for symmetric P while
most of the graphs considered in Cao et al. (2006) are random
geometric graphs (Penrose, 2003)which rarely have a symmetric P .
This explains why the analytical values ofω∗ in the cases of Kn and
Cn are quite different from the experimental results in Cao et al.
(2006).

From the preceding, we have derived the values or approxi-
mations of λ2(P) where P is the probability matrix which char-
acterizes a gossip algorithm for some classes of regular graphs in
the case when each agent, if activated, gossips with its neighbors
with equal probability. Let rs denote the convergence rate of the
standard gossip algorithm, re denote the optimal rate of conver-
gence in expectation of the two-register accelerated gossip algo-
rithm, and rm denote an upper bound of the rate of convergence in
mean square of the two-register accelerated gossip algorithmwith
ω = 4 − 2

√
2. Recall that rs given in (27), re given in (26), and rm

given in (38) all depend on λ2(P) and the number of agents n. Then
it is possible to calculate or estimate these convergence rates for
some specific allowable gossip graphs. The computation results are
summarized in Table 1. From the table, it is clear that re < rs < rm.
But it is worth emphasizing that rm is just an upper bound of the
convergence in mean square. The optimization of rm, as what we
have already done for re, has so far eluded us and is a subject for
future research.

5. Conclusions and future work

In this paper, we study the accelerated gossip algorithms
proposed in Cao et al. (2006) under a symmetry assumption. For
the two-register case, we investigate the spectrum of the enlarged
expectation matrix and derive the fastest rate of convergence in
expectation which depends on the probability matrix P . We also
establish a sufficient condition for the convergence inmean square.
The theoretical results are verified by looking into some special
classes of regular graphs and comparing with existing empirical

4 The kth power of a graph G is a graph with the same set of vertices as G and
an edge between two vertices if and only if there is a path in G of length at most k
between them.
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Table 1

rs re rm

K50 0.9796 0.9705 0.9941
K100 0.9899 0.9853 0.9970
K500 0.9980 0.9971 0.9994
C50 0.9998 0.9966 0.9999
C100 0.9999 0.9991 0.9999
C2

50 0.9996 0.9947 0.9998
C2

100 0.9999 0.9986 0.9999
G50 0.9973 0.9874 0.9987
G100 0.9987 0.9937 0.9994
G500 0.9997 0.9987 0.9999

data. Through a similar approach based on matrix analysis, a
necessary condition for the multi-register cases is also provided.

Currently we are looking at the more challenging case where
the probability matrix P is asymmetric. The technical difficulty is
that the expectation of the system update matrix can no longer be
written as a clean block matrix as we have done for the symmetric
case, and thus it is hard to use the spectrum analysis technique that
we have heavily relied on in this paper. Tools from the convergence
analysis of infinite sequences of nonnegative matrices may prove
to be useful for our research in the future.
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