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Abstract— The security of state estimation in critical net-
worked infrastructure such as the transportation and electricity
(smart grid) networks is an increasingly important topic. Here,
the problem of recursive estimation and model validation for
linear discrete-time systems with partial prior information is
examined. Further, detection of false-data attacks on robust
recursive estimators of this type is considered. The framework
considered in this work is stochastic. An underlying linear
discrete-time system is considered where the statistics of the
driving noise is assumed to be known only partially. A set-
valued estimator is then derived and the conditional expectation
is shown to belong to an ellipsoidal set consistent with the
measurements and the underlying noise description. When the
underlying noise is consistent with the underlying partial model
and a sequence of realized measurements is given then the
ellipsoidal, set-valued, estimate is computable using a Kalman
filter-type algorithm. A group of attacking entities is then
introduced with the goal of compromising the integrity of the
state estimator by hijacking the sensor and distorting its output.
It is shown that in order for the attack to go undetected, the
distorted measurements need to be carefully designed.

I. INTRODUCTION

The Kalman filter is an optimal filter, in the minimum
variance sense, in the class of linear filters; see [1]. Much
of the theory on Kalman filtering presumes the noise driving
the process and the measurement sequence is Gaussian and
white. Of course, this is not a necessary prerequisite for
optimality. However, if one does assume Gaussian noise
processes then it is of interest to know what the effect of
applying incorrect noise statistics are on the performance of
the filter. For example, early work in this area was proposed
by [2] where the effect of incorrect noise covariances are
used in the Kalman filtering algorithms and the performance
is analysed. Related work and analysis is given in [3], [4],
[5], [6]. This list is by no means exhaustive.

The problem of state estimation with uncertainty in the
model has been widely investigated in the field of robust
control and filtering. In this field it is typical to assume the
system and measurement model itself has uncertainty and
to model this uncertainty as a noise input drawn from a
particular class (or set) of signals. Early work along these
lines is given in [7], [8], [9], [10] where min-max type and
set-valued type filtering results are related to the Kalman
filter. These papers were generalized in [11], [12], [13],
[14], [15] where the uncertainty was characterised by integral
quadratic constraints. Similar work combining stochastic and
set-based uncertainties has also been considered; e.g. see
[16]. As discussed in, e.g., [17], set-valued state estimation is
particularly suited to a number of applications such as target
tracking. There are often physical constraints on the set of
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target states, e.g. the target speed might be upper bounded
etc, which leads to non-Gaussian target state distributions;
see [17].

Bayesian algorithms for posterior estimation and partial
prior knowledge etc have also been considered. Again, the
use of set-based methods have been used; see [18], [19].
The work of [20] is an underlying motivation for much
of the Bayesian development. Later, we outline a different
method for introducing stochastic uncertainties and dealing
with partial models of the statistics.

The idea of set-based estimation and robust filtering has
a natural relationship with the model-validation problem.
More specifically, for classes of uncertainties, set-valued state
estimators can be used to determine if the measured data is
consistent with the assumed system model; e.g. by checking
if the estimator (or some statistic) falls within the derived
set. This form of model validation was explored in, e.g.,
[11], [12], [13], [14], [15] and is further explored in this
paper where stochastic uncertainties are considered.

The first high-level problem considered in this work is
that of robust recursive Bayesian filtering given partial prior
information about the noise statistics. This partial prior
information comes in the form of a nominal system model
and a particular kind of constraint. In particular, the deviation
of the actual, real-world, model being observed is modelled
by a constraint on a probability measure obtained via a par-
ticular change-of-measure operation on the nominal system’s
measure.

Additionally, this work is concerned with the problem
of securing estimation and control systems. More specifi-
cally, this paper follows [21], [22], [23], [24] and consid-
ers the problem of safeguarding state estimators in critical
infrastructure. Specifically, we study false-data attacks on
stochastic and robust state estimation. We will consider an
underlying class of stochastically uncertain (discrete-time)
systems and we will outline a set-valued state estimation
algorithm that recursively produces an ellipsoidal set of all
those expected state estimates consistent with the measure-
ments and modelling assumptions. We then draw on this
set to infer the probability of an attack on the system and
to determine when one cannot safely produce a consistent
expected estimate.

II. PROBLEM SETUP

The scenario introduced in this section is novel in the
sense that we consider a robust estimation scenario involv-
ing stochastic uncertain systems formulated using Bayesian
probability and change-of-measure theory.



A. The Nominal Model

Fix a probability space (S, F, P). Consider a discrete-time
stochastic system of the form

X1 =

Yt ==

P, X +Ei
I‘tXt —+ Nt

(D
2

where X € R™ denotes the state of the system and Y € R!
is the measured output of the system. The notation X € R"
etc implies X : & — R". The random noise inputs to the
system are E € R" and N € R!. Also, a known control
input u € R™ could be applied but is omitted for brevity.

NOTE: Throughout this article when ‘=’ is used with
expressions of random variable (defined on the same proba-
bility space) on both sides it is used to mean that the random
variable expression on the left side is equal in distribution
to the random variable expression on the right side. When
‘2’ is used it means that we are defining a symbol (on the
left side) to represent the collection of symbols or expression
appearing on the right side.

In many cases we could legitimately think of ‘=’ in a
stronger sense but such a strengthening is typically unneces-
sary (unless otherwise noted).

s

Assumption 1. Let T > 0 be some terminal time, t € [0,T],
and let
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Let /4 € Fiy1 C F denote the completed o-algebra
generated by

—3(np) T Q@ (nr)
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o({Yo,Xo,-.., Yy, X4 }) 3
and let ), denote the completed o-algebra generated by
oc({Yo,....Y¢}) (6)
Define a so-called innovation sequence {N;} by
N: £ Y, - T/Ep [X[ V1] )

and let A; denote o({Ny, ..., N;}).

Lemma 1. ); = J\th

The proof of this lemma has been considered previously,
e.g. see [25], [26], and similar results are given later in this
paper without proof.

Note that IN; has zero mean and covariance matrix

I',Covp(X; — Ep [X¢|Vioa))T] + Q (8)

where Covp(X; — Ep [X¢|)V:—1]) denotes the covariance of
Xt — Ep [Xt|yt_1] under P.

B. A Change of Measure

The relative entropy of two probability measures P and Q
is defined by

Eq [1og (%)} if Q< P and
log (42) e11(@ @

otherwise

h(QlIP) £

oo

where Eq|[-] denotes the expectation with respect to Q and
Q < P means Q is absolutely continuous with respect to P.

Suppose that there exists two Fi-adapted random se-
quences {(;} and {7;}. Then, suppose that the restriction
of Q on F; satisfies

dQ
P |,

t
H eié(glv)TE_l(Ck:)+(§k)TE_1(ek) ~

b
Il
—

H e 3 (n6) TR () +(ni) TR (1)
k=0

(10)

3)
where a € R™ and ¢ € [0,7]. Note that U, is a strictly-

positive F;-measurable random variable and Ep[¥;] = 1.
Now it follows that
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and the sequences {U;} = {E;—(;} and {V;} = {N; —n;}
on (S, F,Q) are Gaussian with zero-mean and variances X
and Q respectively.

Now
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is the relative entropy introduced into the system as a result
of the measure change on the interval ¢ € [0, 7).

Definition 1 (Simple Energy Constraint). Suppose E =
ET>0X=2"T>02=0Q" >0 acR"ad
d > 0. Also there exists a finite time interval [0,T). Then,



we consider the class of uncertain inputs {(,n} and initial
conditions a such that

2h(Q[P) < 6 (13)

holds. Let Qg denote the set of measures Q such that
h(Q||P) < oo and (13) holds.

In Definition 1 the symbols ¢ € R™ and € R! are random
variables.

A less rigorous, but practically similar, condition can be
stated in terms of probabilistically bounded system distur-
bances, and such an approach has been used in a number of
robust estimation problems; see [27], [28].

Before proceeding, for further insight, imagine a normally
distributed random vector X on (S, F,P) with zero-mean
and constant covariance A. Now imagine another random
vector (X + ) on (S, F,P) where 1 is constant. One can
think of p as acting on the set of outcomes. However, now
let

dQ = e~ 2k AT utuT AT xgp (14)

such that on (S, F, Q) the random vector X has mean y and
constant covariance A. By changing the measure from P to
Q in this case we are leaving the outcomes alone but we are
assigning different probabilities to the sets of events in F
(and consequently to their outcomes).

C. A Stochastically Uncertain System Model
Consequently, the system (1) and (2) on the probability
space (S, F,Q) is
Xir1 =
Yt ==

DXy +Uppq + Ca1
I'iX; + Vi + 1

15)
(16)

and we note that the measure we are working under should
be clear from the context and notation. Note that we have
not specified the distribution of the F;-adapted random
sequences {(;} and {n;}. We have simply, by constraining
the set of admissible measure changes to Q.., bounded their
first moment in some fashion.

Lemma 2. Fix the probability space (S, F,Q) and consider
the system described by (15) and (16) with Q € Qgec. Then

Eq Ui =Eq[Vi =0 (17)

and the variance under QQ of U, and V; is 3 and Q
respectively. Furthermore, Eq [Xo] = —a and the variance

under Q of Xg is E.

This lemma is really a direct consequence of (10) and
the definition of Q. Note that the system (15) and (16) with
Q € Qe corresponds to the real world system while the
system (1) and (2) under P corresponds to a nominal system
model. This corresponds to the physical scenario in which
we do not know the exact characteristics of the real world
system but rather where we have a nominal system model
and a model class of uncertainty that specifies how the real
world model may deviate from the nominal model.

Proposition 1. The completed filtration F; on the system (1)
and (2) under P is equivalent to the completed filtration F;
on (15) and (16) under Q. Similarly, the completed filtration
YV: on the system (1) and (2) under P is equivalent to the
completed filtration YV, on (15) and (16) under Q.

This proposition simply states that no more or no less
events are possible under Q than under P. Changing the
measure simply changes the probability we assign to each
event.

III. A BAYESIAN SOLUTION TO THE ROBUST FILTERING
PROBLEM

The following standing assumption is adopted throughout
this section.

Assumption 2. Both {(;} and {n:} are sequences of de-
generate random variables with Q(¢; = () = 1 and
Q(n: = m) = 1 almost surely for constant values (; € R™
and 7; € R%.

Note that this assumption, while quite strong, does not
invalidate the spirit of the problem. Now note that

T
MQIP) = 3878 ta+ 3 Y Fo (6l B G
t=1

1 T
+5 Y Eqml" Q' Eqlm] (18)

t=0

_Under P recall that Ny 2 Y, — T'Ep [X;|)_1] and
N; = ); from Lemma 1 and N; is zero-mean with
variance I‘tMt“,lI‘tT 4. Under Q define another so-called
innovation sequence {N;} by

N, 2Y, - T,Eq XV 1]

LNG).

19)

and let \V; denote o({Ny, ..

Lemma 3. ); = /\7} = /\7}

Under Q it follows that N, has mean Eq [r);] and covari-
ance matrix

I';Covp(X; — Ep [X¢ Vi1 )T, + Q (20)

where

COVP(Xt — EP [Xt|yt71]) = COVQ(Xt — EQ [Xt‘yt,1]>
(2D
denotes the covariance of X; — Ep [X¢|Vt—1] under P. The
fact that the variance of N; under Q is the same as the
variance of IN; under P is easily verified.
We then have the following theorem.

Theorem 1. Let t € [0,T]. The expectation Eq [X.|V\] of
(15) and (16) with Q € Q.. belongs to an ellipsoidal set
X ={Eq[Xi V] eR" : X A Y, <6 — Ky}

t[t

(22)



where Ay, = Covp(X¢ — Ep [Xy|V:]|V:) denotes the
covariance of X; — Ep [X|V;] under P conditioned on Y,
and where

Y £ Eq [X¢|)4] — Ep [X4| )] (23)

and .
~ 71 ~
Rt £ ZN; [Q + FkAt‘t_lrg} Nk (24)
k=0
where Ay 2 Covp(Xy — Ep [X¢|Vi—1]|Vi—1) denotes

the covariance of X — Ep [X¢|Vi—1] under P conditioned
on V,_1 and

Ni 2 Y, — TyEp [Xi|Ve-1] (29)
and the centroid of the ellipse is given by Ep [X;|Vy].

Let Y; = {yo,.-.,y:} with y; € R! denote the set
of realized measurements. Consider the following Riccati
equations

-1

My = ML +T] Q_ll‘t} (26)
M1 = ‘I:’t—lMtfntfl‘i‘;rq +3 (27)
Mo‘o == E (28)

where the existence of a positive-definite solution to My; is

IV. ATTACK MODELS AND A DETECTION FRAMEWORK
Consider again the probability space (S, F,P). Now con-
sider the discrete-time stochastic system of the form
X1 =
Z, =

P, X +Ei
' X+ N+ oy

(34)
(35)

where X € R" denotes the state of the system and Z € R!
is the measured output of the system. Again, the notation
X € R" etc implies X : S — R™. The random noise inputs
to the system are E € R” and N € R’

The signal o; € R! is the so-called attack signal and
is intended to distort the output of any estimator. In this
case, oy is a deterministic, but unknown, signal as expected.
Consequently, the system (34) and (35) on the probability
space (S, F,Q) is simply

Xit1
Z, =

DX + U1 + Cey1
LXy 4+ Vi +m 4+ oy

(36)
(37)

and again the measure we are working under should be clear
from the context and notation.

Under P let Z; denote the completed o-algebra generated
by

: : U({ZOa"'aZt}) (33)
guaranteed; see e.g. [29]. Consider also the following set of B
state equations and define a so-called innovation sequence {Z;} by
Rye = Poaxpoqp—1 + My D Q7 (yy — Ti®yo1x-11429) Z: 2 Z, — T\Ep [X|Zi_1] (39)
% = % 30 _ _ _ _
*olo * ¢ a)lnd let Z; denote o({Zo,...,Z:}). Note that Z; has mean
and «; and covariance matrix
~ o~ T T -1
R =Rty [TiMy T + Q] w 3D T, Covp(X; — Ep [X|Z_1))T] + Q (40)
where .
where Covp(X; — Ep [X;|Z;_1]) denotes the covariance of
vi =yt — Li®r1Xi 1t (32) ve(X: — Bp [Xi] Z5-1])

We then have the following theorem.

Theorem 2. Suppose YV, = Y. Denote by X; the set
Xy ={{eR": (¢ _ﬁt\t)TM (6 —=Xye) <0 —Fe } (33)

and consider t € [0,T]. Then the following statements hold
1) Ifk&: <6, Vt € [0,T), then the expectation Eq [X¢| V]
of (15) and (16) with Q € Qg belongs to the set X;.
2) The centroid of the set X; is the expected value
Ep [X¢|V:] of the system (1) and (2) under P.
3) The variance of Eq [X¢|Vt] € & is My,

-1
t[t

The preceding theorem outlines a solution to the recursive
estimation problem where the uncertainty in the system
model is characterized by a change-of measure from P to
Q where Q € Qe and Q.. is defined in Definition 1.

We also have a solution to the stochastic model validation
problem since one can define the conditional probability that
K¢ < 6 in terms of the underlying model and the constraint
Q € Qsec. In other words, if K; > 0, for some ¢ € [0, T] then
there is some probability one could assign to the condition
Q ¢ Qs or alternatively (but equivalently) there is some
probability that the underlying model is not as described.

Xt — Ep [Xt|Zt,1] under P.
Under Q define another so-called innovation sequence
{Z.} by

Z, 2 7, —T\Eq [X| 2] 41)

and let Z; denote o({Zo, ..., Z;}). Under Q it follows that
Z, has mean (Eq [1:] + o) and covariance matrix

I';Covp(X; — Ep [X¢|Z_1]))T] + Q (42)

Now note that in general the innovations under P given by
{Z;} are not computable as the attack signal o is unknown.
This is in contrast to the innovation sequence under P given
by {N;} which is typically computable given a realised
sequence of measurements.

Consider now the test function

[ 1 i Ep[Z £ Ep[Y)
20 ={ 5 itriin) b
and note the probability P(Ap(k) # Aq(k)) = 0 whenever
h(Ql[P) # 0.

Consider also the following test function

1 if3te{0,...,k}: Ap(t)=1
Ap(k)_{o if Ap(t)=0, Vte€{0,...,k}

(43)

(44)



such that if Ap(kg) = 1 for some ko then Ap(k) = 1 for
all k > ko while of course the same is not true for Ap(k).
Again, we have the probability P(Ap(k) # Aq(k)) = 0
whenever h(Q||P) # 0.

Of course, we do not know if our the output of our sensor
in practice gives the following set of realized measurements
Y: = {yo,...,y:} with y; € R or the following set of
attack corrupted realized measurements Z; = {zg,...,%Z:}
with z; € RL Tt may, or is likely to, be combination of
the two sets over a given time interval. As such, computing
Ap(k) or Ap(k) at every k is not possible. The focus of this
work will be on estimating Ap (k).

A. Attack Detection in Robust Stochastic Estimation
Recall that

o~ A -1
Kt = Re—1 + ytT [I‘tl\/It“,ll—‘;r + Q] Ut (45)

where

vt =Yyt — I‘t(I)tflxt—l\t—l (46)

and that k; < 0 is required to compute an ellipsoidal bound
on the expected value Eq [X;|);] of (15) and (16) with Q €
Qgec. This bound is in the form of the set X;.

Theorem 3. Consider Definition 1 with some 6 > 0 and
suppose the set of measurements is drawn from Y, i.e. there
are no attacks on the sensor readings. Define

Yo—To®P_1x_11

v = : 47)
Y:— 1_‘ze‘I’t71X1tf1|t71
and
LoMo_ g +Q - 0
T = :
0 I‘tMt‘t,lI‘:—i—Q
(48)
Then
P(R>0) =P (/X >0 <5 (49)

where ¢ = trace(X; ')

Proof of this theorem is a straightforward application of
the Chebyshev inequality which puts a bound on the event
probability that a random variable differs from its expected
value by more than some specified amount.

In the situation where there is no attack on the system,
0 is sufficiently large and ¢ < 7T then the probability
that the expected value of the actual system Eq [X;|)]
(considering (15) and (16)) for some Q € Q.. does not
belong to the set AX; is quite small. However, obviously the
bound on P (K; > 0) increases strictly with ¢. One would
expect that as ¢ — T (or more specifically, as the relative
entropy introduced via the measure change approaches §)
then P (K, > ¢6) — 1 at least loosely. Thus, for t > T
computing the set X; via § should be increasingly difficult
as the relative entropy between the nominal system and the
uncertain system is likely increasing unmodelled.

Now we consider the effect of an attack sequence that dis-
torts the measurement readings as previously specified. Thus,
suppose one constructs & as before but during the construc-
tion we substitute Y; with Y;(1 — Ap(t)) + Z:Ap(t). Of
course, the outcome of this substitution is unknown at the
estimator which is derived based purely on the assumption
that Y, is used. Then in practice one has

SO . —1 .

Fe=f1 + 7 [IiMy 1T +Q] o (50)
where

v =yi(1 = Ap(t) + 2 Ap(t) — T ®r1xq)e-1 (51)

but where it is still required that x; < § in order to compute
an ellipsoidal bound X; on the expected value Eq [X;|)]
of (15) and (16) with Q € Q...

Theorem 4. Consider Definition 1 with some 6 > 0 and
suppose the set of measurements is drawn from Y(1 —
Ap(t)) + ZAp(t); i.e. there may be attacks on the sensor
readings. Let

Yo(l — AP(O)) + ZoAp(O) — F0¢,1X,1|,1

Uy = :

Y. (1—-Ap(t)) +Z:Ap(t) — Ft(i’tflxt—l\t—l(sz

and define X as before. Then it follows that

(53)

P(Re>0) =P (0] ;'8 >0) < 5 a
with U; now defining %y and where ¢, = trace(X; ' Y;) and

t
2= of MMy L +9] e (54)

k=0

Thus, it follows that the bound on P (K, > ¢) increases
strictly with each attack on the measurements. Define the
attack detection estimator by

Aot ={

From the preceding two theorems it follows that the prob-
ability of detecting an attack (when there is an actual attack
on the system) likely increases faster than the probability
of generating a false alarm (whose bound grows only with
time). Thus, while this attack detection scheme is likely to
be conservative (especially as ¢ << T)) it is far less likely to
generate a false alarm (particularly when ¢t << T).

Note also that the bound on P (k; > §) increases strictly
with ¢ (even when there is an attacker present) and thus the
attacker will have an ever increasing challenge to attack the
system and remain undetected.

if kg >0
otherwise

(55)

V. CONCLUSION

The problem of recursive estimation and model validation
for linear discrete-time systems with partial prior information
was examined. An underlying linear discrete-time system is
considered where the statistics of the driving noise is as-
sumed to be known only partially; i.e. a class of noise inputs



is given from which the underlying actual noise is assumed
to be chosen. A set-valued estimator is then derived and the
conditional expectation is shown to belong to an ellipsoidal
set consistent with the measurements and the underlying
noise description. A method is also provided for estimating
the consistency between the assumed model, knowledge on
the partial prior noise statistics and the measured data. A
group of attacking entities is then introduced with the goal of
compromising the integrity of the state estimator by hijacking
the sensor and distorting its output. It is shown that in order
for the attack to go undetected, the distorted measurements
need to be carefully designed and that given the model in this
paper it is increasingly likely that an attack will be detected
as time goes by.
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