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ABSTRACT

The estimation of a corrugated wavefront after propagation through the atmosphere is usually solved optimally
with a Minimum-Mean-Square-Error algorithm. The derivation of the optimal wavefront can be a very computing
intensive task especially for large Adaptive Optics (AO) systems that operates in real-time. For the largest AO
systems, efficient optimal wavefront reconstructor have been proposed either using sparse matrix techniques or
relying on the fractal properties of the atmospheric wavefront. We propose a new method that exploits the
Toeplitz structure in the covariance matrix of the wavefront gradient. The algorithm is particularly well-suited
to Shack—Hartmann wavefront sensor based AO systems. Thanks to the Toeplitz structure of the covariance,
the matrices are compressed up to a thousand-fold and the matrix-to-vector product is reduced to a simple
one—dimension convolution product. The optimal wavefront is estimated iteratively with the MINRES algorithm
which exhibits better convergence properties for ill-conditioned matrices than the commonly used Conjugate
Gradient algorithm. The paper describes, in a first part, the Toeplitz structure of the covariance matrices and
shows how to compute the matrix-to-vector product using only the compressed version of the matrices. In a
second part, we introduced the MINRES iterative solver and shows how it performs compared to the Conjugate
Gradient algorithm for different AO systems.

Keywords: wavefront sensing, adaptive optics, toeplitz matrix, optimal wavefront estimation

1. INTRODUCTION

In an adaptive optics system, the estimation of the wavefront from the measurements of the wavefront sensor
is the main real-time computing burden. Recently several efficient methods have been proposed to address this
problem. The wavefront can be efficiently estimated in the Fourier domain! and more recently the CURE?
algorithm has shown remarkable performance for real-time applications.

While both methods are able to accurately reconstruct the wavefront, they are not optimal. By optimal,
we mean that these methods don’t minimize the mean square difference between the original wavefront and its
estimate, instead the euclidian norm between the wavefront measurements and the estimation measurements
is minimized. Efficient optimal wavefront reconstructor have been already proposed. One is based on sparse?
matrix techniques using an approximation to the inverse of the wavefront covariance matrix. Another is using the
fractal properties of the atmospheric wavefront to reconstruct the wavefront iteratively by successive application
of a fractal operator.?

The wavefront estimation method presented here is also optimal and it used the exact covariance matrices.
Its effectiveness is due to the exploitation of the Toeplitz structure of the covariance matrices for a system defined
in a cartesian geometry like the Shack—Hartmann wavefront sensor (SH-WF'S) or the pyramid wavefront sensor.

Further author information: (Send correspondence to R. Conan)
R. Conan: E-mail: rod.conan@anu.edu.au

Adaptive Optics Systems |V, edited by Enrico Marchetti, Laird M. Close,
Jean-Pierre Véran, Proc. of SPIE Vol. 9148, 91480R - © 2014 SPIE
CCC code: 0277-786X/14/$18 - doi: 10.1117/12.2054472

Proc. of SPIE Vol. 9148 91480R-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/21/2015 Terms of Use: http://spiedl.or g/terms



2. OPTIMAL WAVEFRONT ESTIMATION

Assuming a vector parameter 8 to be estimated from the data x, 6 is the estimator of 6 defined by
0=Mx (1)

where M is chosen such as it minimizes the Bayesian mean—square error® (MSE):
buse = (6 6)?) (2)

where (z) is the mean of the stochastic variable z. 6 is the Linear—Minimum-Mean-Square-Error (LMMSE)
estimator of @ and M is given by
M = CpaChrp. (3)

Eq. (1) assumes a kind of linear relationship between x and 6.

For an adaptive optics system, the measurement equation between the wavefront sensor data s and the
wavefront ¢ is
s=Gp+n (4)

where G is the WFS operator and n is a vector of white noise. Since this is a linear equation, the wavefront
estimate ¢ can be derived from Eq. (1) and Eq. (3) setting 8 = ¢ and x = s with

Cmm = GCchpGT + Onn (5)

and
Coz = CWPGT. (6)

Cypy is the wavefront covariance and Chy, is the noise covariance. With the former equations, the wavefront
estimate is written

$= CwoGT (chwGT + Cn")71 s (7)
or i
@=(Cop+GTCraG) GTCpis. (8)
Eq. (8) is used in Ref. 3 and in Ref. 4 to derive . Our approach is to derive ¢ with Eq. (7). First lets note
that
GCoppG" = Cys (9)
is the covariance of the measurements and that
CppGT =Cps =E (10)

is the cross—correlation between the measurements and the wavefront. Moreover Cpy, is equal to Io2 with o2 the
wavefront sensor noise variance and I the identity matrix. We also have diag (Css) = Io? with o2 the variance
of the measurements. The above considerations are enough to prove that the matrix

O =Css+Cnn (11)
will have the same structure than Cgs. This is important for the method we are presenting. Finally Eq. (7) is
rewritten

¢ =3¢ (12)
with ¢ solution of
0¢ = s. (13)

This is similar to the tomographic wavefront estimation method proposed for Multi-Object Adaptive Optics
systems in Ref. 6. Eq. (13) will be solved with an iterative method requiring a single matrix—vector product
(MVP) per iteration. Another MVP, Eq. (12), is needed to obtain ¢.

In the following, we show that the MVP can be computed very efficiently and we use a fast converging
iterative method without pre-conditionning.
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3. THE COVARIANCES

In the following the WFS is assumed to be of the Shack—Hartmann (SH) type. The SH-WFS measurement s is
made of two vectors, the measurement along the x-axis s, and along the y-axis s, i.e. s = [s; sy]T. With this
definition for s, the matrices © and = are decomposed into x and y components:

o= =| (il (o [=[ o o] a2
and
E=(ps")=[(psi) (esy) |=[% E ] (15)

The covariance matrix are computed for the full square lenslet array. So for a lenslet array of linear size N,
the matrix © is made of 4 blocks of equal size N2 x N2.

Fig. 1 shows a 4 x 4 lenslet array with the location of the x and y measurements inside each lenslet. In Fig. 2,
the matrix of the vectors between pairs of lenslet is drawn. This matrix is a two—level recursive block Toeplitz
matrix (2RBT). It is made of 4 x 4 blocks in a Toeplitz arrangement and each block is a 4 x 4 Toeplitz matrix.
A N x N lenslet array will exhibit a matrix of vectors with NV x N blocks in a Toeplitz arrangement with each
block a N x N Toeplitz matrix.

The covariance matrix of the measurements Oy, Oyy, O,y and ©,, depend solely on the amplitude and
direction of the vectors linking pairs of lenslet. So each matrix has the structure shown in Fig. 2. A N x N
Toeplitx matrix is fully defined with its first row and column i.e. 2N — 1 elements. ©,;, Oy, Oy and O, are
each a two-level recursive block Toeplitz matrix so each is defined with only (2N — 1)? elements instead of N*4.

In Fig. 2, the unique elements of O, Oy, ©,, and O,, are those inscribed into the dash closed regions.
Table 1 compares the number of elements in the matrices Ouz, Oyy, Oy and ©O,, between their full and
compressed versions. The compression factor defined as the ratio between the total number of elements and the
unique elements is also reported.

The MVP of a recursive block Toeplitz matrix can be perform very efficiently, manipulating only the (2N —1)2
unique elements and never expanded the matrix to its full size.” The computing cost is reduced down to
O(N?1og(N)) instead of O(N*) traditionally.

Table 1. Number of elements in Oy, Oyy, Oy and O, for both the full and the Toeplitz—compressed matrices.

N 10 20 40 64 84 150
0., Full 10,000 160,000 2,560,000 16,777,216 49,787,136 506,250,000
O, 2RBT 361 1,521 6,241 16,129 27,889 89,401
Compression 28 105 410 1,040 1,785 5,663

o

e
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g
+

Figure 1. Measurement sampling with a 4 x 4 lenslet array. In the left hand side figure, the red circles show the locations
of the measurements with respect to the location of the wavefront samples (black dots).
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The MVP in Eq. (12) can also be performed very efficiently with the algorithm in Ref. 7 if the =, and Z,
are both 2RBT matrices. Fig. 2 shows the sampling for the wavefront and the measurements for the usual Fried

Proc. of SPIE Vol. 9148 91480R-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/21/2015 Terms of Use: http://spiedl.or g/terms



1 x% X & Js 32 %3 54 §5 <39 H0 \1;1 \4‘2»646“%7\&\1;9

< AN \ 38

A A T 21

Loy

5 118 18 2b QZ NP S N S AN
6 11:,_;___;___7- v A A U . U DR NN
R
T R T S SR I S A e
9 | 11> 17 14 14/‘ > 2 7 / A A * f <« x A\ \
10 10*:,_:"/_'"_/; « > 7 M, 0ot o x N
N N e T A S T
TV T Y S B AR S A S
13 4—>5/€/ I A / > # 7 f A A 0 T
14 3\):/_;__;__/-1 ~ - 7 / N > A f v A A T
15 3\‘: -~ — N 7 -7 \ N 7 ' v A A
16 l\j N N - VN - l ' v A

Figure 2. WFS vectors of measurement pairs for O.,, ©yy, O,y and Oy, matrices.

geometry.® The measurement samples are represented with the red circles at the lenslet centers and the wavefront
samples located on the black dots. The covariance matrix resulting from this geometry is a rectangular 2RBT
matrix as shown in Fig. 3. Fig. 3 depicts the matrix of the vectors between all pairs of slopes and wavefront.
This matrix is a rectangular 2RBT matrix. It is made of 5 x 4 blocks in a Toeplitz arrangement and each block
is a 5 x 4 Toeplitz matrix. A N x N lenslet array will exhibit a matrix of vectors with (V + 1) x N blocks in a
Toeplitz arrangement with each block a (N + 1) x N Toeplitz matrix.

The covariance matrices =, and =, depend solely on the amplitude and direction of the vectors linking pairs
of slopes and wavefronts. So each matrix has the structure shown in Fig. 3. A (N + 1) x N Toeplitx matrix
is fully defined with its first row and column i.e. 2N elements. =, and =, are each a two-level recursive block
Toeplitz matrix so each is defined with only 4N? elements instead of (N + 1)2N?2. The size of the matrices =,
and E, for the different geometry are summarized in Table 2. The compression factor is the ratio between the
full matrix in the Fried geometry and the compressed matrix.

Table 2. Number of elements in =, and =, for the Fried geometry, the 2RTB geometry and the Toeplitz—compressed

matrices.
N 10 20 40 64 84 150
N, 11 21 41 65 85 151
=, Full 12,100 176,400 2,689,600 17,305,600 50,979,600 513,022,500
= 2RBT 400 1,600 6,400 16,384 28,224 90,000
Compression 30 110 420 1056 1806 5700
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Figure 3. vectors of WFS and measurement pairs for =, and =, matrices.
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3.1 Matrix vector product
It has been shown that the matrices within © and = are 2RBT matrices. Each of ©.,, Oy, O,y and O, is

now replaced by a single vector, t&°, t&, tg, &', respectively; each vector with (2N — 1)? elements. In the
same way, Z, and Z, are replaced with the vectors % and tZ, of length 4N 2, The vector elements are ordered
according to the numbered elements in the covariance matrices drawn in Fig. 2 and in Fig. 3. In the following,
data will be filtered by the spectral contents of these vectors. So we replace them by they Fourier transform:
t = Ft where F is the Fourier operator. As all the vector ¢ are real, only half of the elements of £ need to be

computed, as the other half is the complex conjugate of the first half.

The matrix © and = are now redefined by
o= {T@} (16)

with the matrix T given by ~
To = [t&" &' t& t&] (17)

and

== {T;} (18)

with the matrix T given by
Ts = [tL #2]. (19)
An algorithm for fast multiplication of recursive block Toeplitz matrix is derived in Ref. 7. A very brief
summary of the method is given in following. Assuming a m? x n? 2RBT matrix A i.e. A = {t}, the matrix—
vector product Az = y is obtained through the following steps (vectors z and y have n? and m? elements,
respectively):

1. the vector = of length n? is assigned into a zero—valued vector 3 of length (2n — 1)? according to the rules:

Buij) = ZTi@y), VO0<i,j<n, (20a)
k(i,j) = in+3j, (20Db)
p(i,j) = (m+n)(n—1)—i(m+n—-1)—j, (20c)

2. the Fourier transform of 3 is computed

b=Fp, (21)

3. the vectors £ and b are multiplied element wise
¢ =1tb, (22)

4. the inverse Fourier transform of b is computed
c=F'é (23)

5. elements of ¢ are assigned into y according to the rules:

Yi(ig) = Whig)Ceig): V0 < 4,5 <m, (24a)
k(i,j) = im+j, (24b)
£(,9) = (m+n)m+n—-1)—(+1)(m+n—1)-(G+1), (24c)
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Wr(i,5) is zeros—ones valued vector indicating where in the square lenslet array slopes exist.

With the algorithm described above, Eq. (12) and Eq. (13) are re-written
o=F ! (Egéx + Zgéy) (25)
and _ _
]:—1 (t;é)xcx + téyCy)

P (e e

=s (26)

with EI = F¢, and C:y = F(y, assuming that the vector ¢ and s have been sized and ordered appropriately.

3.2 Derivation of the covariance matrices
3.2.1 Wavefront sensor slope covariance

Shack—Hartmann WFS centroids are a measure of the spatial derivatives of the wavefront averaged on each
subaperture. These derivatives are often referred as angle of arrivals:

o = gemge n(H(E) @)
= grag (D)0, %)

where A is the sensing wavelength, f the lenslet focal length and d the linear size of one subaperture.

The covariance matrix in Eq. (14) are derived from

Bap(r) = F [Was(Q)H(C)] (r) (29)
The power spectrum density of the slopes is given by:°
Wa.p(¢) = A (¢ @) (¢ - B) Wi (€)- (30)

a and B are unit vector of coordinates [1,0] and [0,1], respectively. W, (f) is the wavefront power spectrum
density!'? given by

1\ /6
W, (f) = 0.0229r,°"° < 2+ £2> (31)
0
and
H(¢) = sinc(mwd(, )sinc(md(, ). (32)
3.2.2 Wavefront and slopes cross—correlation
The cross—correlation in Eq. (15) are obtained by setting
Boa(r) = F [Wea () H(C)] (r) (33)
The cross—power spectrum density is given by:
Weal(f) = —tA (¢ a) Wy () (34)

Proc. of SPIE Vol. 9148 91480R-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/21/2015 Terms of Use: http://spiedl.or g/terms



~ =
L —

Figure 4. The vector of the T matrix for © (left).The vector of the T matrix for = (right).

3.2.3 Numerical estimation

In the former section, we gave the expression for the covariance of the slopes and the cross—correlation between the
wavefront and the slopes. The covariances need to be computed only for the unique elements in the corresponding
matrices as shown in Fig. 2 and Fig. 3. In Fig. 4, all the unique vectors in Fig. 2 and Fig. 3, respectively in the
left and right hand side panels, are put together, all coming out from the same point of origin. From Fig. 4, it
is clear that these vectors sample a 2D covariance map with sample points at (id, jd), Vi,j € [1 = N,..., N —1]
for © and at ((i —1/2)d, (j —1/2)d), Vi,j € [1— N,...,N] for Z.

The covariances are derived from the Fourier transform of the power spectrum density (PSD) (Eq. (29) and
Eq. (33)). The power spectrum must be sampled such as its Fourier transform gives accurate and unbiased
values of the covariance. Based on sampling requirements of the covariance, the largest spatial frequency is set
t0 fmaz = k/2d with k an integer, x > 1, and the sampling resolution is Ngp > N, leading to the sampling
frequency

K 1-— NF NF -1
d(NF—l)’v<k’l)€ 5 T g

The accuracy of the covariance depends on the choice of both x and Ng. From the 2D Fourier transform
of the PSD, the covariance is extracted at index given by (ik,jk), Vi,j € [1 = N,...,N — 1] for © and by
(ik,jK), Vi,j € [l = N,...,N] for E. Fig. 5 and Fig. 6 shows the compressed version of the matrix © amd =,
respectively.

(k,1)

Sy Sy

Figure 5. © 2RBT matrix for N = 40.
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Figure 6. 2 2RBT matrix for N = 40.

In Fig. 7, full and 2RBT MVP are compared for different lenslet array sizes. The runtime of MVP is plotted
in the left hand side graph and the memory requirements is plotted in the right hand side graph. The results for
the full matrix and for the 2RBT compressed matrix are drawn in blue and green, respectively. The circle and
square markers correspond to the matrix © and Z, respectively.

The runtime has been measured on a NVIDIA Tesla M2090 GPU card. The MVP for the full matrices has
been implemented with CUBLAS 5.5 and the MVP for the compressed 2RBT matrices is using CUFFT 5.5.

Looking first at the memory requirement, the 2RBT matrices never exceed 10MB whereas the full matrices
rapidly required several GB. Due to the large memory requirement for the full matrices and the limited amount
of memory available, 5GB on the GPU, the MVP for the full matrix was limited to N = 84 for both © and =.

The MVP for both full matrices takes several milliseconds when N reach 64 whereas it takes only a few 100
microseconds up to N = 150 for the 2RBT compressed matrix.

The runtime for the MVP with the 2RBT matrices is dominated by the time spent to compute the Discrete
Fourier Transform (DFT). For example, the runtime for the MVP for the matrix Z¢s and Zg4 are nearly the
same because their DFT sizes are identical. The MVP of © requires the computation of 6 DFTs compared to 3
for = (Eq. (26) and Eq. (25)). However the DFT execution are batched whenever possible.

1

10 10’
=)
=
£ g
E 3
= x
g
=
: - =& - Full X
............... —& - MV Full . ~@ - Compressed ||
—& - MVM Compressed : S SAEEEEE T SEEEEEY
10'2 i i 1 1 10'2 1 i i i
20 q0 64 84 150 q0 61 84 150
Lenslet Array Size Lenslet Array Size

Figure 7. MVP runtime and memory requirement.
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4. WAVEFRONT ESTIMATION

The estimation of the wavefront ¢ from the wavefront sensor measurements s is given by Eq. (25) and Eq. (26).
Eq. (25) is a MVP that can be done very efficiently as shown in the former section. In Eq. (25), ¢ is solution of
the linear system of equation given in Eq. (26). In the following, Eq. (26) is solved using iterative methods.!!
The matrix © is symmetric and positive definite. An iterative method of choice for this type of matrices is the
conjugate gradient.'?> The conjugate gradient algorithm is written:

e initialization:
1. r = Axg
2. o = b —To
3. po=ro
e loop from k = 0:
q = Apg
Y= TkTTk

Irlly = v
b

ap = ——
k= pTq

Tk+1 = Tk + Pk

A o

Tk4+1 =Tk — Oq
T
Te41Tk+1
7. 6k — %
8. Dr+1 = Tht1 + Brpr

The convergence of the conjugate gradient method is proportional to the condition number of ©.'2 Fig. 8 gives
the condition number for matrix © as a function of the lenslet pitch. This matrix is obviously ill-conditioned.
To remedy to this situation, pre—conditioner can be employed to improve the conditioning of the system and

@ condition #

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
lenslet pitch [m]

Figure 8. Condition number of the matrix © as a function of the lenslet array pitch for 3 lenslet array size 20, 40 and 64.

hence increasing the converging rate of the conjugate gradient. Alternatively, another iterative method could be
used. The MINRES algorithm'#4 6 has been shown to have better convergence properties for ill-conditionned
positive definite matrices. The MINRES algorithm is written:
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Altitude[m] 25 275 425 1250 4000 8000 13000

&o 0.1257 0.0874 0.0666 0.3498  0.2273 0.0681 0.0751

19| [m/s] 5.6540 5.7964 5.8942 6.6370 13.2925 34.8250 29.4187

arg (0)[rd] 0.0136 0.1441 0.2177 0.5672  1.2584 1.6266 1.7462
Table 3. 7 layers atmosphere profile.

e initialization:

r = Axg
v = b— 1%}
A1 = llmll,

n=pf,mn=v=10=00=0,19=0

vo=0,wy=w_1=0

AN I

e loop from k = 1:

1. v =v;/B;
2. Vi1 = Ay,
3.y =vlvig
4. Vig1 = Vig1 — qiv — Bivioa
5.0 =yia; —vi—10:B;
6. p2 = o +vi—17Bi
7. p3=0i-15;
8. Bit1 = lvit1lly
9. ;1= m
10. Yit1 =0d/p1
11. oiy1 = Biv1/m
12. w; = (v — pawi—2 — pawi—1)/p1
13. 2y = xi1 + Yir1nwi
. Irilly = loigal [Irieally
15. n=0it1n
16.
Vi1 < V;
Vi 4 Vi
Wi—2 < Wi—1
Wii1 — U

5. SIMULATIONS

The simulations were done for single conjugated adaptive optics system (SCAO) running in open—loop. All the
test runs are noiseless. The same 7 layers atmospheric profile (Table 3) is used for all the tests with the same
outer scale set to Lo = 30m. The parameters of the 5 test cases are given in Table 4.
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Case I I mr v v

N 20 40 64 84 150

Dm] |36 8 5 42 30

dfem] | 18 20 7.5 50 20

Table 4. The simulation test case parameters.

N runtime [ms] # solver it. WFE[nm]
20 3.01 18 36
40 4.45 26 39
64 11.18 58 18
84 3.75 16 82
150 18.39 47 41

Table 5. Open-loop performance for a sampling rate of 500Hz and no frame delay.

5.1 Iterative solver convergence

For this test, one sets d/ro = 1. For each test, Eq. (26) was solved numerically with the GG and MINRES
algorithms for an increasing number of iterative step from 1 to 200. The wavefront is then estimated with
Eq. (25) and the wavefront error as a function of the number of iterative steps is shown in Fig. 9. The MINRES
algorithm exhibits a smaller residue but also the residue decrease quasi—-monotonically with the number of
iterations while the residue from the CG algorithm decreases more slowly and in a more chaotical manner. The
MINRES algorithm always reach the limit corresponding to the fitting error whereas the CG algorithm is able
to reach the fitting error limit only for one case (N = 20). It is worth noting that, for the MINRES algorithm,
the WFE is reduced by a factor 5 per decade of iterations for all the cases.

These results demonstrate that MINRES always converges faster that CG, but this convergence is still rather
slow with several 10 of iterations required to reach the minimal WFE.

5.2 Open—loop

For the open—loop tests, rg is set to 15cm. The wavefront and wavefront gradient are sampled at 500Hz and the
open-loop simulations are run for 200 steps. There is no servo-lag error meaning there is no time delay between
the wavefront estimate and the on—axis NGS wavefront. The iterative solvers are set such as the first guess of
the iterative solvers is the previous estimate. Table 5 and Table 6 give, for each case, the computing time for
the wavefront reconstruction, the number of iterations required by the solver and the wavefront error (WFE).

For Table 5, the MINRES algorithm is set such as it stop itself when it reaches the minimum WFE. The
highly sampled pupil N = 64 and N = 150 are the ones converging the slowest as expected. For a 500Hz SCAO
system, the wavefront reconstruction computing time should be less than 2ms. In Table 6, for the cases N =20,
40 and 82, the number of iterations in MINRES is set such as the computing time is less than 2ms. This results in
a slight increase of the WFE. Fig. 10 compares, for N = 150, the true” wavefront to the reconstructed wavefront
from left to right in the top graph and gives the residual wavefront error map in the bottom graph.

6. CONCLUSION AND FUTURE WORK

A new method to estimate a wavefront with optical turbulence aberrations has been presented. This method
belongs to the LMMSE class of methods. The method achieves small computer memory requirements and fast
wavefront reconstruction by exploiting the recursive Toeplitz structure of the stochastic covariance matrices. It

N runtime [ms] # solver it. WFE[nm]
20 1.70 10 37
40 1.82 10 48
64 - -
84 1.93 8 92
150 - - -

Table 6. Open—loop performance for a sampling rate of 500Hz and no frame delay with limited number of iterations.
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Figure 9. Residual wavefront error as a function of the number of iterations of the CG and MINRES solvers.
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Figure 10. Top left: on—axis wavefront; Top right: estimated on-—axis wavefront; Bottom: Residual wavefront error for
N = 150.

is shown that on a single NVIDIA GPU, the required storage of the matrices never exceed 10MB for SCAO
system up to 150 x 150 and the MVP of the covariances matrices can be performed in a few 100us. For all
the SCAO systems, using the MINRES iterative solver, they converge to the fitting error in a few milli-seconds
making the methods real-time ready for a few of the simulated SCAO systems.

The CUDA code for the wavefront estimator is freely available at http://github.com/rconan/CEOQ.

As for future work, the use of preconditioners to accelerate the convergence of the iterative solver is going to
be investigated as well as the tayloring of the algorithm for real-time application using multiple GPUs.
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