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Spatial sound reproduction systems aim to produce a desired sound field over a volume of space. At

high frequencies, the number of loudspeakers required is prohibitive. This paper shows that the use of

loudspeakers with up to Nth order directivity allows reproduction over N times the bandwidth and

produces a significantly attenuated exterior sound field. If the constraint on exterior cancellation of

the field is removed, reproduction is possible over approximately 2N times the bandwidth. The use of

higher order loudspeakers thus allows a significant reduction in the number of loudspeaker units, at

the expense of increased complexity in each unit. For completeness, results are included for the

generation of an exterior field with or without cancellation of the interior field.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.3699192]
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I. INTRODUCTION

Sound reproduction systems aim to reproduce an arbi-

trary desired sound field within an array of loudspeakers.

The desired sound field properties are either synthetically

generated or recorded in the field using a microphone array.

There are two main approaches to the derivation of the loud-

speaker signals required to reproduce the sound field. The

first is based on the polar two dimensional (2D) or spherical

three dimensional (3D) harmonic expansions of a sound

field. To record the sound field, the field is decomposed into

a number of signals representing the polar or spherical har-

monic responses, and these can be used to reconstruct the

original sound field using a loudspeaker array.1–10 The sec-

ond approach is based on the Kirchhoff–Helmholtz (KH) in-

tegral formula, which shows that a sound field may be

produced within a volume of space by an infinite density of

monopole and normally oriented dipole sources on the sur-

face of that volume, and that the exterior field is zero. The

sources both generate an interior field, and cancel any sound,

leaving the desired reproduction volume.11–16 In practice,

the KH approach is implemented using discrete arrays, and

often employs only monopole loudspeakers, so that the exte-

rior field is not canceled.

The accuracy of surround systems is governed by the

wavelength and the size of the region over which accurate

reproduction is required. For wave number k and reproduc-

tion radius r the number of required loudspeakers is given

approximately by L2 � 2kr þ 1 in the 2D case and by

L3 � kr þ 1ð Þ2 in the 3D case.6,7 Hence, large numbers of

loudspeakers are required for the reproduction of high fre-

quencies over significant areas. For example, at 8 kHz and

for reproduction over a radius of 0.2 m, 60 loudspeakers are

required for the 2D case and 924 for the 3D case. It is typi-

cally infeasible to employ such numbers of loudspeakers in a

sound reproduction setup in the home.

A second limitation of sound reproduction systems is that

the loudspeaker sound fields reflect from room surfaces, creat-

ing a reverberant field inside the reproduction region, which

corrupts the reproduced field. If variable directivity loud-

speakers are used,11,17,18 as in the KH approach, the exterior

field may be eliminated below the spatial Nyquist fre-

quency,19 which in the 2D circular case20 is approximately18

f1 ¼
c L� 1ð Þ

4prL
; (1)

where c is the speed of sound, L is the number of loud-

speakers, and rL is the radius of the loudspeaker array. At

this frequency, the loudspeakers are approximately half a

wavelength apart. For practical numbers of loudspeakers, the

spatial Nyquist frequency is typically low, and so exterior

cancellation is only possible at bass frequencies.

If only fixed-directivity loudspeakers are available, the

direct to reverberant ratio can be increased, reducing the

effects of reverberation.21–24 Alternatively, the reverberation

can be reduced by digital pre-compensation of the loud-

speaker signals.25–29

The KH approach requires dipoles oriented normal to

the reproduction surface. In Ref. 18 the use of general first

order 2D sources, including dipoles tangential to the repro-

duction surface, was examined for improving the reproduc-

tion accuracy of circular arrays. The use of tangential

dipoles was shown to improve sound field reproduction and

to reduce the exterior field for frequencies close to and above

the spatial Nyquist frequency Eq. (1).

This prompted an investigation of the use of higher order

2D sources,30 capable of producing polar responses cos n/ð Þ
and sin n/ð Þ for n 2 0; 1;…;N½ �. These investigations showed
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that Nth order loudspeakers increase the bandwidth of

accurate reproduction by a factor of N, or equivalently,

increase the radius of accurate reproduction by N. This repre-

sents a considerable improvement over previous surround

approaches, but at the expense of more complex loudspeaker

units, which typically must be constructed using circular or

spherical arrays of transducers.24,31–35

When a higher order sound reproduction system is used

in a room, calibration may be used to reduce the reverberant

field and produce more accurate reproduction.36 For example,

a loudspeaker can reflect sound off a wall to produce direc-

tions of sound arrival other than loudspeaker angles. In this

approach the room may be viewed as an additional resource

for accurate sound reproduction, rather than a hindrance to it.

This paper considers the reproduction of sound fields

using arrays of higher order loudspeakers. For simplicity we

will consider the 2D case as in Ref. 30, and so the cylindrical

expansions simplify to polar expansions. We also restrict our

attention to free-field reproduction as we wish to examine

the basic performance of higher order arrays in direct field

sound reproduction.

We extend the work in Ref. 30 as follows: We first use

more physically derived loudspeaker responses than were

used in Ref. 30 and we also consider reproduction without the

requirement for exterior cancellation, to determine if the

resulting additional degrees of freedom produce an increase

in the bandwidth of accurate reproduction. We also consider

the complementary case of exterior sound field generation,

with and without interior field cancellation, which is also

described by the KH integral. In general, by linearity, an array

may generate two separate interior and exterior sound fields.

We first provide a theoretical background for sound field

reproduction in the 2D case, and introduce a more physically

based model for a higher order (2D) source. We then derive

the required loudspeaker weights using a least squares

approach and verify the results by numerical simulations.

We also derive the spatial Nyquist frequencies for the array

for the cancellation and non-cancellation cases and for inte-

rior and exterior field generation, and quantify their accuracy

by undertaking numerical simulations of sound field repro-

duction versus frequency.

II. THEORETICAL BACKGROUND

A. Polar expansion of 2D sound fields

The wave equation may be solved in polar coordinates

r;/ð Þ, where r is the radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The interior

expansion of the sound field in a region r < r0 that is homo-

geneous and free of sources is38

p r;/; kð Þ ¼
X1

m¼�1
Jm krð ÞAm kð Þeim/; (2)

where the Am(k) are the interior sound field expansion coeffi-

cients, Jm •ð Þ is the mth order Bessel function, and i ¼
ffiffiffiffiffiffiffi
�1
p

.

The corresponding expansion for regions r > r0 exterior

to any sound sources is

p r;/; kð Þ ¼
X1

m¼�1
Hm krð ÞBm kð Þeim/; (3)

where the Bm(k) are the exterior sound field expansion coef-

ficients and Hm •ð Þ ¼ H 1ð Þ
m •ð Þ is the mth order Hankel func-

tion of the first kind, assuming a harmonic time dependence

exp �ix tð Þ. An important example of relevance later is the

sound field due to a line source positioned at~rs ¼ rs;/sð Þ,

pline r;/; k; tð Þ ¼ e�ixtH
1ð Þ

0 k ~r �~rsk kð Þ ¼ e�ixt

X1
m¼�1

Jm krð ÞH 1ð Þ
m krsð Þeim /�/sð Þ; r < rs

X1
m¼�1

Jm krsð ÞH 1ð Þ
m krð Þeim /�/sð Þ; r > rs:

8>>>><
>>>>:

(4)

B. Description of higher order source

A 2D higher order source positioned at the origin has

the idealized form

pn r;/; kð Þ ¼ Hn krð Þein/; (5)

where we use an index n for the order of the source to distin-

guish it from the expansion coefficient m. From Eq. (3) this

is a single term in the expansion of the exterior field. This

form has been applied to the generation of sound fields in

Ref. 30. However, it has a magnitude that tends to infinity as

kr tends to zero and the associated impulse response is not

physically realizable. We therefore introduce a more physi-

cally derived source here.

A practical higher order loudspeaker would be one that

is capable of radiating sound with far-field polar responses

of the form cos(n/) and sin(n/). For the investigation in this

paper we will consider sources that produce a complex-

valued directivity of the form exp in/ð Þ to keep the mathe-

matical description simple. The sin and cos responses are

easily obtained from these complex-valued directivities. We

consider a source at the origin, of radius R, with a radial ve-

locity which can be written

vr /ð Þ ¼ V0

X1
m¼�1

ameim/; (6)

where the am are the Fourier series coefficients. The 2D exte-

rior field has the form of Eq. (3), from which the associated

radial velocity is
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vr r;/; kð Þ ¼ �i

qc

X1
m¼�1

BmH0m krð Þeim/: (7)

This must be equal to the radial velocity in Eq. (6) for r¼R.

Hence the sound pressure is37

p r;/; k; tð Þ ¼ iqcV0

X1
m¼�1

am
Hm krð Þ
H0m kRð Þ e

im/e�ixt: (8)

We see that each mode has a phase variation exp im/ð Þ and a

radial variation Hm krð Þ, with a scale factor am=H0m kRð Þ. This

factor ensures that the mth order source has a magnitude of

zero at 0 Hz, and the associated impulse response is that of a

high pass function with finite energy.

In order to produce a single higher order source

response exp in/ð Þ the surface velocity must satisfy

am ¼
1; m ¼ n
0; m 6¼ n:

�
(9)

The mode responses qcHn krð Þ=H0n kRð Þ are shown for n¼ 0

to n¼ 5 in Fig. 1. The source produces a roll-off for frequen-

cies below, approximately, kR¼ n, or

fm ¼
nc

2pR
: (10)

For example, this produces fn¼ 433 Hz for n¼ 2 and

fn¼ 1083 Hz for n¼ 5. We note that, since sound reproduc-

tion systems work well at low frequencies with omnidirec-

tional loudspeakers, higher order modes are only required

at high frequencies, and hence the low magnitude of the

high order responses at low frequencies is not a significant

limitation. Note also that a practical higher order source

using discrete drivers would only produce the desired

response up to a finite frequency, above which aliasing

would occur.

C. Description of translated higher order sources

The sound field produced by an ideal higher order

source [Eq. (5)] positioned at rs;/sð Þ can be expressed rela-

tive to the origin using the cylindrical addition theorem,38

pn r;/; rs;/s; kð Þ ¼ Hn kr0ð Þeinbs ¼

X1
m¼�1

Jm krð ÞHmþn krsð Þeim /�/sð Þ; r < rs

X1
m¼�1

Jmþn krsð ÞHm krð Þeim /�/sð Þ; r > rs;

8>>>><
>>>>:

(11)

where see (Fig. 2) r0 ¼ ~r �~rsk k and bs is the angle meas-

ured between~r0 and the source vector~rs,

bs ¼ arctan
yrot

rs � xrot

� �
; (12)

where

xrot ¼ x cos /0 þ y sin /0 (13)

and

yrot ¼ �x sin /0 þ y cos /0: (14)

Equation (11) can be normalized by H0n kRð Þ to produce the

more physically reasonable form [Eq. (8)].

In practice, the infinite sums in Eq. (11) can be replaced

with finite summations, m 2 �M;M½ �, due to the high pass

FIG. 1. Cylinder mode responses for R¼ 0.25, D¼p/50. FIG. 2. Angles for application of the addition theorem.
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nature of the Bessel functions. For the interior expansion,

Jm krð Þ is small for m > kr and hence M ¼ krd e, where :d e
denotes rounding up to the next highest integer, is suffi-

cient.6,39 A more accurate derivation for the minimum

required order is m > ekr=2, where e¼ 2.718 is Euler’s

number, and we will use this form in deriving the array spa-

tial Nyquist frequencies in the next section.40 For the exte-

rior expansion Jmþn krsð Þ is small for m� n > krs and hence

M ¼ Nþ krsd e (more accurately M ¼ Nþ ekrs=2).

In both interior and exterior cases, mode orders higher

than the above-mentioned approximations are required to

describe the sound field near the source radius r¼ rs, and the

required order is larger at higher orders n. This can be shown

from the angle-averaged normalized truncation error of Eq.

(11), defined as6,17,21

�eM n;krð Þ¼

ð2p

0

pn r;/;rs;/s;kð Þ�pnM r;/;rs;/s;kð Þj j2d/ð2p

0

pn r;/;rs;/s;kð Þj j2d/

;

(15)

where pnM r;/; rs;/s; kð Þ is the Mth order truncated form of

Eq. (11). The truncation error can be shown to be

�eM n; krð Þ ¼

1 �

XM

m¼�M

J2
m krð Þ Hmþn krsð Þj j2

X1
m¼�1

J2
m krð Þ Hmþn krsð Þj j2

; r < rs

1 �

XM

m¼�M

J2
mþn krsð Þ Hm krð Þj j2

X1
m¼�1

J2
mþn krsð Þ Hm krð Þj j2

; r > rs:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(16)

This is shown for N¼ 3 in Fig. (3) for a source with krs¼ 8,

which may be compared with the N¼ 0 case in Ref. 17. The

m > kr approximation is valid for kr � krs, but for radii

close to the source, the required order tends to infinity. Simi-

larly, the exterior truncation error is small for

m > N þ krs ¼ 11 for radii that are not close to rs.

A general higher order source is a single loudspeaker

unit that can produce all orders of response up to a given

value N. A single Nth order source with coefficients

wn; n 2 �N;N½ � produces the sound field

pN r;/; rs;/sð Þ ¼
XN

n¼�N

wn
Hn k ~r �~rsk kð Þ

H0n kRð Þ einbs : (17)

From Eq. (11) the single higher order source has an expan-

sion relative to the origin given by

pN r;/; rs;/s; kð Þ ¼

X1
m¼�1

Jm krð Þeim /�/sð Þ
XN

n¼�N

wn
Hmþn krsð Þ

H0n kRð Þ

" #
; r < rs

X1
m¼�1

Hm krð Þeim /�/sð Þ
XN

n¼�N

wn
Jmþn krsð Þ
H0n kRð Þ

" #
; r > rs:

8>>>>><
>>>>>:

(18)

The superposition of L higher order sources that are controlled by individual weights wn;l; l 2 1; L½ � and which are arranged on

a circle of radius rs¼ rL, and at angles /l produces the sound field

p̂ r;/; kð Þ ¼

X1
m¼�1

Jm krð Þeim/
XL

l¼1

XN

n¼�N

wn;l
Hmþn krLð Þ
H0n kRð Þ e�im/l

" #
; r < rL

X1
m¼�1

Hm krð Þeim/
XL

l¼1

XN

n¼�N

wn;l
Jmþn krLð Þ
H0n kRð Þ e�im/l

" #
; r > rL;

8>>>>><
>>>>>:

(19)

FIG. 3. Truncation error for N¼ 3 source krs¼ 8.
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which is applied to approximate a desired interior or exterior

sound field [Eq. (2) or Eq. (3)].

III. SOUND REPRODUCTION

In order to reproduce a desired sound field with an array

of L sources, each producing up to Nth order polar responses,

the weights wn,l of each radiating mode must be determined.

There are two approaches to this problem. In the first, a con-

tinuous distribution of higher order sources is assumed and the

higher order source weights may be determined in a manner

similar to Ref. 18. Such a solution is the generalization of the

simple source solution. In the second approach, the weights

wn,l for the discrete array are determined directly using a least

squares error minimization. We follow this approach here. We

first consider the interior and exterior cases without specifying

control of the sound field in the other region, and then con-

sider the general case of producing separate interior and exte-

rior sound fields, one of which may be zero.

A. Interior case

For the creation of an interior field with no exterior con-

trol we require the weighted sum of the higher order source

fields to produce a desired interior field with arbitrary inte-

rior expansion coefficient Am. The higher order sources pro-

duce polar responses up to order N, and the order of the

expansion describing the desired sound field is M. Hence,

from Eqs. (2) and (19), this yields, for each mode,

XN

n¼�N

Hnþm krLð Þ
H0n kRð Þ

XL

l¼1

wn;le
�im/l ¼ Am; m 2 �M;M½ �:

(20)

This set of equations may be put in matrix form

Hw ¼ a; (21)

where H is a 2Mþ 1 by (2Nþ 1)L matrix, w is a (2Nþ 1)L
by one vector of weights, and a is a 2Mþ 1 vector of interior

coefficients. This may be solved for the interior field solu-

tion. The solution

w ¼ HH HHH þ kI
� ��1

a; (22)

where I is the 2Mþ 1 by 2Mþ 1 identity matrix, exists for

2M þ 1 � L 2N þ 1ð Þ. For k¼ 0 this is the minimum energy

solution6 and k can be used to reduce the weight solutions for

cases where H has small singular values. The maximum range

of modes is controlled when 2M þ 1 ¼ L 2N þ 1ð Þ. However,

the Hnþm krLð Þ=H0n kRð Þ terms, and the condition number of H,

can become large for large m at low frequencies, and this can

produce large amplitude weight solutions. Furthermore, the

conditioning of H becomes poor when it is square.17,21,41 In

addition to the regularization of the solution, we use the

minimum required mode order for reproducing the interior

sound field, and limit the maximum mode order to

2M þ 1 < L 2N þ 1ð Þ. At low frequencies the required order

M to reproduce the sound field within the array is40

M kð Þ ¼ ekrL

2

� 	
: (23)

The order rises with frequency, and is limited to a maximum

value,

2Mmax þ 1 ¼ bL 2N þ 1ð Þ; b < 1: (24)

The approximate spatial Nyquist frequency of the array

occurs when the required order M(k) reaches the maximum

Mmax,

fNI ¼
c bL N þ 1=2ð Þ � 1=2ð Þ

eprL
: (25)

This value is more conservative than that derived using the

m¼ kr approximation and specifies when the reproduction

error begins to rise. However, the array can still produce rel-

atively accurate reproduction for frequencies above, but

close to, Eq. (24). Using a value of b below one reduces the

spatial Nyquist frequency slightly, but the interior reproduc-

tion error and exterior level above the Nyquist frequency are

lower and hence the performance of the system more robust.

Equation (25) is similar to Eq. (1) for N¼ 0 and b¼ 1 (the

difference being due to the use of the ekrL/2 rather than the

krL approximation).

Above the spatial Nyquist frequency, the maximum ra-

dius over which accurate reproduction is possible is smaller

than the array radius rL, and is given by

rmax fð Þ ¼ c bL N þ 1=2ð Þ � 1=2ð Þ
epf

: (26)

B. Exterior case

For the creation of an exterior field, with no constraint

on the interior field, from Eq. (19), we require

XN

n¼�N

Jmþn krLð Þ
H0n kRð Þ

XL

l¼1

wn;le
�im/l ¼ Bm; m 2 �M;M½ �;

(27)

which can be written

Jw ¼ b; (28)

where J is a 2Mþ 1 by (2Nþ 1)L matrix, w is a (2Nþ 1)L
by one vector of weights for exterior reproduction, and b is a

2Mþ 1 vector of interior coefficients. The solution is

obtained using Eq. (22).

As mentioned earlier, the required mode order M is deter-

mined at low frequencies from the exterior field constraint,

ME kð Þ ¼ N þ ekrL

2

� 	
: (29)

The maximum value is limited as in Eq. (24), yielding the

spatial Nyquist frequency,
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fNE ¼
c bL� 1ð Þ N þ 1=2ð Þ

eprL
: (30)

Note that fNE is slightly lower than fNI, due to the additional

term N in Eq. (29).

C. Interior/exterior case

In the general case, we require the weighted sum of the

higher order source fields to produce a desired interior field

with arbitrary interior expansion coefficient Am and a desired

exterior field with arbitrary interior expansion coefficient

Bm. One of these sets of coefficients may be zero.

Equations (19) and (27) may be combined as

H

J

� �
w ¼ Ww ¼ a

b

� �
; (31)

which can be solved in a similar manner to Eq. (22) using

W instead of H. The matrix W is 4Mþ 2 by (2Nþ 1)L. The

required interior order is given in Eq. (23) and the exterior

order in Eq. (29). At low frequencies these values may be

used, and the maximum total mode order limited to

2 MI þMEð Þ þ 1 ¼ bL 2N þ 1ð Þ. The spatial Nyquist fre-

quency is then

fNIE ¼
c bL� 1ð Þ N þ 1

2


 �
2perL

: (32)

This differs from the result in Ref. 30, which did not include

the term N in Eq. (29), did not include b, and which ignored

the order n¼ 0 source terms. However, the results in Sec. IV

C will show that Eq. (32) is a good indicator of the frequency

above which point the reproduction error starts to increase.

The maximum region of reproduction for interior/exte-

rior control for frequencies above the spatial Nyquist fre-

quency is

rMIE fð Þ ¼
c bL� 1ð Þ N þ 1

2


 �
2pef

: (33)

From Eqs. (32) and (33), we see that the Nth order spatial

Nyquist frequency and the radius of accurate reproduction

are approximately N times those of a zeroth or first order

array30 [Eq. (1)].

IV. RESULTS

A. Reproduction error in the reproduction region

The accuracy of interior sound field reproduction with

radius may be quantified by the angle-averaged relative

error,6,17,18,21

�e krð Þ ¼

ð2p

0

p r;/; kð Þ � p̂ r;/; kð Þj j2d/ð2p

0

p r;/; kð Þj j2d/

: (34)

Substituting from Eqs. (2) and (19) and employing the ortho-

normality of the phase modes yields

�e krð Þ ¼

X1
m¼�1

J2
m krð Þ Am kð Þ � ZI mð Þj j2

X1
m¼�1

J2
m krð Þ Am kð Þj j2

; (35)

where

ZI mð Þ ¼
XL

l¼1

XN

n¼�N

wn;lHmþn krLð Þ
" #

e�im/l : (36)

Similarly, the exterior angle-averaged reproduction error is

�e krð Þ ¼

X1
m¼�1

J2
m krð Þ Bm kð Þ � ZE mð Þj j2

X1
m¼�1

J2
m krð Þ Bm kð Þj j2

; (37)

where

ZE mð Þ ¼
XL

l¼1

XN

n¼�N

wn;lJmþn krLð Þ
" #

e�im/l : (38)

The radial error can be summed over a range of radii to pro-

duce an average over volume (for height invariance), which

will be used to quantify the average performance of higher

order arrays as a function of frequency in Sec. IV C.

B. Sound level in cancellation region

The cancellation of the sound field in the non-

reproduction zone may be quantified by the average over

angle of the magnitude squared of the approximate sound

pressure p̂ r;/; kð Þ, relative to the average magnitude squared

pressure due to the desired sound field p r;/; kð Þ at the higher

order source array radius rL.17,18,21 For interior reproduction,

the exterior relative level is

�CE krð Þ ¼

ð2p

0

p̂ r;/; kð Þj j2d/ð2p

0

p rL;/; kð Þj j2d/

; r > rL: (39)

Substituting from Eq. (2) and Eq. (19) yields

�CE krð Þ ¼

X1
m¼�1

Hm krð Þj j2 ZE mð Þj j2

X1
m¼�1

Am kð Þj j2J2
m krLð Þ

; r > rL: (40)

Similarly, for exterior reproduction, the relative interior

level is
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�CI krð Þ ¼

X1
m¼�1

Jm krð Þj j2 ZI mð Þj j2

X1
m¼�1

Bm kð Þj j2 Hm krLð Þj j2
; r < rL: (41)

The sound level can also be averaged over radius to produce

a single figure of merit at a given frequency

C. Simulations

We will assume an array of L¼ 15 higher order sources,

each of radius R¼ 0.25 m, in a circular array with a radius of

rL¼ 3 m. We consider mode orders up to N¼ 4 and a mode

order regulation factor of b¼ 0.75, which produces a slight

reduction in spatial Nyquist frequency and accurate repro-

duction radius, but lower reproduction errors above the spa-

tial Nyquist frequency. We use a regularization parameter

k ¼ 0:001 for obtaining the solutions for the weights accord-

ing to Eq. (22). The desired source is a line source [Eq. (4)],

positioned at a radius of 6 m and an angle of 36�, halfway

between the higher order sources at 24� and 48�.
Figure 4 shows the sound field produced by a first order

array with attempted exterior cancellation at a frequency of

250 Hz, well above the array spatial Nyquist frequency (100

Hz). The radius of reproduction is rMIE¼ 1.0 m, shown as the

dashed circle. The sound field is accurate within this radius,

but is less accurate outside it, and the exterior sound field is

non-zero. Figure 5 shows the sound field for the second order

source array at the same source frequency, for which the spa-

tial Nyquist frequency is 170 Hz. The reproduction radius is

rMIE¼ 2.0 m, and reproduction as accurate over twice the

reproduction region in Fig. 4. The value of rMIE is somewhat

conservative, as the field appears approximately correct out

FIG. 5. N¼ 2, f0¼ 250 Hz, with exterior cancellation.

FIG. 6. N¼ 2, f0¼ 250 Hz, without exterior cancellation.FIG. 4. N¼ 1, L¼ 15, f0¼ 250 Hz, with exterior cancellation.

FIG. 7. N¼ 3, f0¼ 250 Hz, with exterior cancellation.

3820 J. Acoust. Soc. Am., Vol. 131, No. 5, May 2012 Poletti et al.: Higher order sound reproduction

Downloaded 05 Mar 2013 to 150.203.162.16. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



to the array radius of 3 m. However, the exterior field is non-

zero, and the array is not able to completely meet the exterior

cancellation constraint below the spatial Nyquist frequency,

although the exterior amplitude is lower than in Fig. 4.

Figure 6 shows the sound field for N¼ 2 but without

exterior cancellation. The spatial Nyquist frequency is 370

Hz, which is larger than the 250 Hz source frequency.

Reproduction is now accurate throughout the interior of the

array, but the exterior field is larger than it is in Fig. 5, par-

ticularly where the sound field radiates out of the array at

angles near 216�.
Figure 7 shows the field with exterior cancellation, for

N¼ 3, producing a spatial Nyquist frequency of 310 Hz. The

field is now accurate within the array and the exterior field is

small. The exterior level is below –30 dB for radii greater

than 4.5 m (1.5 m from the sources). This is shown in Fig. 8,

which displays the angle-averaged radial errors for all of the

above-mentioned cases. The second order array produces

accurate reconstruction over two times the radius of the first

order array, but the third order array produces only around 2.5

times the reproduction radius. This is because the maximum

radius of accurate reproduction is close to the higher order

source radius, and the approximate mode limitation [Eqs. (23)

and (29)] are less applicable to the higher order source expan-

sions. For the N¼ 2 case without exterior cancellation the in-

terior error is smaller than the third order array with

cancellation, but the exterior level is higher than all other

configurations.

Figure 9 shows the interior reproduction error as a func-

tion of frequency for both exterior cancellation and no can-

cellation. This was calculated as the average of the radial

error from 0 to 2.5 m, 0.5 m away from the higher order sour-

ces. The reproduction error begins to rise above the spatial

Nyquist frequencies given in Table I. In particular, the

requirement for exterior cancellation produces approximately

half the spatial Nyquist frequency of the no-cancellation

case. The mean exterior levels are shown in Fig. 10. The lev-

els with cancellation are small below the spatial Nyquist fre-

quency, but the weight magnitudes tend to increase above it,

producing mean exterior levels over 10 dB. Without exterior

cancellation, the weight magnitudes and exterior levels are

up to 20 dB higher than the exterior cancellation levels. The

weight magnitudes and the exterior sound level can be

reduced by increasing the regularization parameter k. Alter-

natively, a simpler sound reproduction strategy could be used

for frequencies above the spatial Nyquist frequency, such as

a fixed directivity approach, which provides some reduction

of the reverberant field.21 However, a low-order fixed

FIG. 8. Interior radial reproduction error and exterior radial level for

N¼ 1–3, f0¼ 250 Hz, L¼ 15 with exterior cancellation. The N¼ 2 without

exterior cancellation is also shown.

FIG. 9. Interior reproduction: Interior error with exterior cancellation (—)

and without (- - -).

TABLE I. Spatial Nyquist frequencies, b¼ 0.75, including the results from

Ref. 30.

N fNI (Hz) fNE (Hz) fNIE (Hz) fNIE (Hz) (Ref. 30)

1 220 210 100 130

2 370 340 170 260

3 520 480 240 400

4 670 620 310 540

FIG. 10. Interior reproduction: Exterior mean level with exterior cancella-

tion (—) and without (- - -).
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directivity solution would produce a smaller zone of accurate

reproduction than the regularized higher order solution.

Figure 11 shows the reproduction error for the produc-

tion of an exterior sound field, using a source radius of 1.5 m,

within the source array. The spatial Nyquist frequencies with

cancellation are essentially the same as for the cancellation

case in Fig. 9. They are relatively conservative values which

define approximately the frequency where the reproduction

error begins to rise, even though the accuracy remains rea-

sonable (e.g., below�20 dB) for a range of frequencies

above the spatial Nyquist frequency. Note that in the exterior

reproduction case without interior field cancellation, there are

peaks in the error without interior cancellation. These peaks

vary with the source position. The interior level without inte-

rior cancellation is larger than that with cancellation, as

shown in Fig. 12, and produces peaks at the same frequencies

as those where the exterior error is large. The precise cause

of these peaks is currently unclear: they do not appear to be

related in a simple manner to the internal resonant modes of

a cylinder, and the behavior is complicated further by the fact

that the mode matching order increases with frequency.

V. CONCLUSIONS

The performance of sound reproduction systems that

make use of higher order loudspeakers has been investigated,

for the simple case of 2D reproduction. It has been verified

that a circular array of Nth order loudspeakers produces

accurate reproduction over N times the radius of a monopole

array, or equivalently, over N times the frequency range,

with simultaneous cancellation of the exterior sound field. If

the requirement for exterior cancellation is removed, the

array is able to produce accurate sound fields to 2N times

that of the monopole source case. For the complementary

case of exterior sound field generation, similar results occur.

The increase may be viewed intuitively as occurring because

an Nth order loudspeaker is able to produce approximately

2N times the spatial variation in the sound field for field radii

close to the loudspeaker radius.

The method developed in this paper allows a trade-off

between the bandwidth of reproduction and the errors that

occur above the spatial Nyquist frequency, by limiting the

maximum mode order that is controlled by the array. By

reducing the maximum mode order, the spatial Nyquist fre-

quency is reduced slightly, but poor conditioning is avoided

and the exterior sound levels that occur above the spatial

Nyquist frequency are reduced in amplitude. The limited

mode order ensures that the exterior cancellation solutions

always produce a lower exterior field than the solutions with-

out exterior control. The exterior level can be further

reduced by careful choice of the regularization parameter. A

fixed value has been used in the simulations presented here

and methods for determining the optimum regularization

with frequency have not been considered, but this will be im-

portant for producing robust sound reproduction at high fre-

quencies. The alternative solution at high frequencies is to

revert to fixed directivity solutions. First order fixed directiv-

ity has been considered in Ref. 21, but the capabilities of

fixed higher order loudspeakers have yet to be examined.

The average interior reproduction error has been pre-

sented for a reproduction radius of 2.5 m, close to the loud-

speaker radius, to verify the spatial Nyquist frequency

calculations. This produces relatively small bandwidths of

accurate reproduction (Fig. 9). In practice, the reproduction

radius for a single listener can be less than a tenth of this ra-

dius, producing over ten times the bandwidth. For example,

an ideal fourth order, exterior cancellation, system consisting

of 15 loudspeakers at a radius of 3 m will provide accurate

reproduction over 0.25 m radius up to 4 kHz. At frequencies

above the spatial Nyquist frequency of 400 Hz, a reverberant

field will be produced within the reproduction region, whose

level must be controlled by regularization.

A more general form of higher order sound reproduction

system would include the effects of the room surfaces in

determining the loudspeaker weights. If a higher order micro-

phone is positioned at the listener position, the spherical har-

monic responses of each loudspeaker mode can be measured

and the loudspeaker weights determined to produce a desired
FIG. 12. Exterior reproduction: Interior mean level with interior cancella-

tion (—) and without (- - -).

FIG. 11. Exterior reproduction: Exterior mean error with interior cancella-

tion (—) and without (- - -).
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spherical harmonic spectrum. In this case the higher order

array uses the room surfaces to improve sound reproduction,

for example by reflecting sound off a wall to produce angles

of incidence different from the loudspeaker angles. An initial

assessment of such systems has been given in Ref. 36. Fur-

ther work is required to show to what extent the use of room

surfaces reduces reproduction error, and how robust repro-

duction is above the spatial Nyquist frequency of the array.

A relatively small array of higher order loudspeakers is

more practical to install in a typical living space than a large

array of monopole loudspeakers, suggesting that higher-

order arrays can contribute to the improvement of commer-

cial surround systems.
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