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ABSTRACT  

4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the 
European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy 
physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large
area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities 
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like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with 
~2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres 
feed two types of spectrographs; ~1600 fibres go to two spectrographs with resolution R>5000 (λ~390–930 nm) and 
~800 fibres to a spectrograph with R>18,000 (λ~392-437 nm & 515-572 nm & 605-675 nm). Both types of 
spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in 
which 5 year public surveys from both the consortium and the ESO community will be combined and observed in 
parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the 
southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing 
concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. 
This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more 
detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering 
implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7]. 
 
Keywords: Wide-field multi-object spectrograph facility, VISTA telescope, tilting-spine fibre postioner, wide field 
corrector, facility simulator, science operations, Gaia, eROSITA 
 

1. INTRODUCTION  
The need for wide-field, high-multiplex spectroscopic survey facilities has been identified in a number of strategic 
documents like the Science Vision for European Astronomy[9], the ASTRONET Infrastructure Roadmap[10], their updates 
and several others[11][12]. In response, ESO selected in 2011 the MOONS[13] and 4MOST projects to conduct Concept 
Design Studies for Multi-Object Spectroscopic (MOS) facilities in the near-infrared and the optical, respectively. Both 
projects went through their Concept Design Reviews in spring 2013 and were selected for implementation. For budget 
profile reasons at ESO the start of 4MOST was delayed by a year and the official kick-off of the Preliminary Design 
Phase with ESO is now expected in January 2015. 

While preparing for the Preliminary Design Phase, 4MOST is going through an Optimization Phase. During this phase 
the consortium is re-evaluating the science and system requirements with their proper flow down, seeking cost 
reductions from the Concept Design, consolidating the consortium and management structure and securing the required 
capital costs funding and labour resources beyond what is provided by ESO. 

The goal of 4MOST project is to create a general-purpose and highly efficient spectroscopic survey facility useful for 
many (for most?) astronomers in the ESO community. The 4MOST design philosophy is based on the notion that 
4MOST is not just an instrument, but is a survey facility, meaning that: 

• 4MOST runs all the time: there will be minimal instrument changes, 4MOST will be running almost all of the 
time on the telescope during its main two times 5 year surveys, 

• 4MOST provides a total package: the target selection, operations and survey strategy, instrument capabilities, 
and high level data product delivery are all part of facility and are optimally tuned to compliment each other, 

• One design fits many science cases: the design and operations will minimize the constraints on science cases 
that need optical spectroscopy, but the number of observing modes (e.g., spectrograph configurations) should be 
kept to a minimum (preferably one). The goal is to deliver a general-purpose, reliable, but simple instrument, 
operations concept and data analysis software that is well suited to most science cases. To increase efficiency all 
science cases will be running at the same time in parallel, all the time. 

The Project Office of the 4MOST project is located at the Leibniz-Institut für Astrophysik, Potsdam (AIP). During the 
Conceptual Design Phase the technical development was carried out by the AIP, Universität-Sternwarte München, Max-
Planck-Institut für extraterrestrische Physik, Landessternwarte Heidelberg in Germany, the University of Cambridge and 
Rutherford Appleton Lab in the United Kingdom, the Observatoire de Paris à Meudon in France, ASTRON in the 
Netherlands, and the European Southern Observatory. Additional science support was provided by the Uppsala and Lund 
Universities in Sweden and the University of Groningen in the Netherlands. The consortium structure for the following 
phases is described in Section 7. 

In Sections 2 and 3 we describe the main science drivers and the operations concept of 4MOST, which together drive the 
instruments specifications laid out in Section 4. In Section 5 we present an overview of the instrument concept and the 
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4MOST facility simulator and its results are described in Section 6. In Section 7 describes the consortium structure, and 
we conclude we conclude with the further schedule and summary in Section 8. 

2. SCIENCE DRIVERS 
We live in an era of ever larger and deeper sky surveys, covering a broad range of wavelengths. A number of surveys are 
completed/on-going (e.g., VISTA-surveys, VST-surveys, Pan-STARRS, SDSS, GALEX, WISE, 2MASS, DES, 
SkyMapper, Gaia) others are on the verge of being started/launched (e.g., eROSITA, ASKAP), while yet others have 
been approved for construction (e.g., Euclid, LSST, SKA). To reach their full potential and their most ambitious science 
goals, all these surveys are in strong need of large-area, high-multiplex spectroscopic complement in order to identify 
and characterize detected sources. While current facilities are used to conduct large spectroscopic surveys (e.g., RAVE, 
Gaia-ESO, Sloan/SEGUE/BOSS/APOGEE), the new flood of imaging surveys requires a next generation of 
spectroscopic survey instruments. The 4MOST facility aims to bring this capability to the ESO community. 

To derive the instrument requirements for a facility that runs both large dedicated surveys and is a general purpose tool 
for a large ESO community we decided to develop a number of Design Reference Surveys (DRSs) that 4MOST should 
be able to run in parallel.  The DRSs are those key science projects that are strongly supported by the European scientific 
community and at the same time put the tightest limits on the design. These DRSs will now be further developed into 
real 4MOST Consortium Surveys, while additional surveys from both the community and consortium will be added at a 
later time approximately three years before the start of operations. Below we first describe the key 4MOST Extra-
galactic and Galactic Surveys that the consortium will implement, then indicate some other surveys that could be 
conducted by 4MOST, and finally present a list of top-level science requirements derived from our DSRs. 

2.1 Extra-galactic Science and Cosmology 

Constraining the origin of the accelerating universe is expected to be a significant driver of the observations that are 
going to be done with 4MOST. Depending on the point of view, the accelerating universe can be interpreted as a form of 
dark energy or as modified gravity. 4MOST will provide constraints on the models by measuring the cosmic expansion 
history and the growth of structure using several different probes: 

1) Baryonic Acoustic Oscillations (BAO) and Redshift Space Distortions (RSD): By carrying out a large redshift 
survey (>10 million galaxies) across a large area of the southern sky (>15,000 deg2) 4MOST will measure the 
rate of expansion and structure growth of the universe. The surveys will concentrate on redshifts z<~1 samples 
to complement the higher redshift sample of Euclid, and maximize the area and number of targets suitable for a 
4m telescope. Combining measurements of object populations with different biases (Luminous Red Galaxies, 
Emission Line Galaxies, Active Galactic Nuclei, Lα forest) and using their cross-correlation even better 
constraints can be obtained on cosmological parameters. 

2) Weak Lensing: Weak lensing studies being carried out by imaging surveys like KIDS, DES, LSST and Euclid 
will be supported by providing large spectroscopic redshifts samples of galaxies to calibrate their photometric 
redshift techniques. Furthermore, by performing a redshift survey in the same area one can constrain the 
intrinsic alignment of galaxies that biases the weak lensing measurements. By cross-correlation the 
measurements of the foreground density field derived from a redshift survey using the RSD technique with 
lensing significantly improves the Dark Energy constraints, where 4MOST, being uniquely in the south, can 
improve constraints by another factor of 2–4x by spectroscopically surveying the same sky area as the above 
mentioned lensing surveys[14].  

3) Galaxy Clusters: As a highly biased population, galaxy clusters provide a strong constraint on the growth rate of 
structure through measurements of the evolution of the galaxy cluster mass function. Galaxy cluster samples 
will be created through both optical and X-rays (see below) selection and in addition to a redshift 4MOST will 
provide velocity dispersions of a large fraction of the detected clusters to provide an independent cluster mass 
calibration. 

4) Supernovae Ia (SNe Ia): By using large numbers of standard candels in the form of SNe Ia strong constraints 
can be obtained on the expansion rate of the universe. 4MOST can initially obtain redshifts of Sne Ia host 
galaxies discovered earlier by DES.  Later, once LSST is operational, any 4MOST observation will have been 
preceded by LSST in the last week and several 10s of LSST transients can be followed up per 4MOST pointing, 
resulting in >25k active transients followed up per year. 
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Next to the large dark energy surveys, 4MOST will perform a number of more dedicated extra-galactic surveys. In 
particular 4MOST will provide follow-up of the eROSITA X-ray mission. eROSTIA will in four years perform 8 
independent all-sky surveys at the 0.5–10 keV energy range. Starting 2016 eROSITA’s final combined survey will go to 
a limiting depth a factor 30 deeper than the ROSAT all-sky survey with broader energy coverage, better spectral 
resolution, and better spatial resolution. 4MOST will be used to survey the >50,000 Southern X-ray galaxy clusters that 
will be discovered by eROSITA, measuring 3–30 galaxies in each cluster.  These galaxy cluster measurements determine 
the evolution of galaxy populations in clusters, yield the cluster mass evolution, and provide highly competitive 
constraints on Dark Energy evolution. 4MOST will provide spectroscopy for about one million eROSITA detected 
AGN, achieving completeness levels as high as 90% for targets selected in both the soft (0.5-2 keV) and the hard (2-10 
keV) X-ray bands. In so doing, we will determine the physical properties of these X-ray selected AGNs, constraining the 
cosmic evolution of active galaxies, their clustering properties, and their connection with the large scale structure from 
z~0 all the way to z~3 (and possibly beyond). This will include (mildly) obscured objects, as well as bright AGN that are 
rare in current X-ray surveys because of volume limitations. 

The 4MOST WAVES Survey is a massively multiplexed spectroscopic survey of ~2 million galaxies build upon the 
excellent imaging data provided by two of the European Southern Observatories ongoing Public Surveys: VST KiDS and 
VISTA VIKING. The current survey design is proposed to comprise of two distinct sub-surveys, DEEP-WAVES and 
WIDE-WAVES (Figure 1). DEEP-WAVES will cover ~100 deg2 to r < 22 mag and extend the power of SDSS-like 
population statistics out to z~1. The deep survey will yield ~1.2 million galaxies allowing for the detection of ~50k dark 
matter haloes (to 1012M☉) and 5k filaments, representing the largest group and filament catalogue ever constructed, and 
forming the first detailed study of galaxy evolution as a function of halo mass. The groups themselves will be used in 
turn as telescopes in their own right to probe to the most distance corners of the Universe using gravitational lensing. 
WIDE-WAVES will cover 750 deg2 to r < 22 mag with photo-z pre-selection (z < 0.25). This will result in ~0.9 million 
galaxy targets and uncover a further 85k dark matter halos, allowing a detailed study of the halo occupancy in 1011 – 
1012M☉ halos to a stellar mass limit of 107M☉, and providing a field dwarf galaxy sample over a volume of > 10Mpc3. A 
key aim of the combined surveys will be to compare empirical observations of the spatial properties of galaxies, groups, 
and filaments, against numerical simulations in order to distinguish between Cold, Warm, and Self-Interacting Dark 
Matter models. They will enable an unprecedented study of the distribution and evolution of mass and energy in the 
Universe, probing structures extending from 1-kpc scale dwarfs galaxies in the local void to the morphologies of 200-
Mpc long filaments at z=1.0. 

 

 
2.2 Galactic Science 

With the successful launch of the Gaia mission in Dec 2013, the field of Galactic Archeology and Near-Field 
Cosmology, i.e. the study of the formation and evolution of the Milky Way and its satellite system in a cosmological 

Figure 1: Cone plot sections of 0.5 degree thickness of 
the simulated redshift distribution of galaxies for the 
combined DEEP- and WIDE-WAVES survey. Based on 
early access to data from the Theoretical Astrophysics 
Observatory, courtesy Prof. Darren Croton (Swinburne). 
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3. OPERATIONS CONCEPT 
As a general-purpose spectroscopic survey facility serving many communities, the planned science operations of 
4MOST is unique and will be different from normal ESO operations, where each observing program gets planned and 
executed sequentially on the telescope. For 4MOST, there are a few science cases that have high enough target densities 
to fill all fibres in a 4MOST field-of-view (these are termed Key Surveys), but there are many important science cases 
that need only a few targets in each field-of-view but have large numbers of targets spread over the entire sky (Add-on 
Surveys). To efficiently fill all fibres and to make surveys of targets with low density possible, all 4MOST surveys will 
be merged in one survey and observed simultaneously. The results of the 4MOST Facility Simulator demonstrate that the 
following straw man common survey strategy enables simultaneous and successful observing of the galactic and 
extragalactic science programs:  

- Each sky location is observed with a sequence of nominally 20 minute exposures, in typically two visits of 3x20 
minutes. Exposure times from 20 minutes to 2 hours are feasible depending on brightness and signal-to-noise 
needs of the targets, and, if needed, even longer in more often visited special areas (Galactic Bulge, deep fields, 
etc.), by reconfiguring only those fibres to new targets that have reached their total required exposure time.   

- The sky is subdivide into areas that will be preferentially observed under certain circumstances (predominantly 
moon phase), such that, with the predefined exposure time limits from the point above, magnitude ranges of 
targets can be set that ensure the S/N requirements of each science goal are met.  

The 4MOST consortium Key Surveys are designed to fully exploit the 4MOST capabilities and make sure all fibres can 
be used, yet these surveys have low enough completeness requirements such that they leave many fibres free for 
additional surveys. Community consultation during survey design, peer review during Phase 1, and yearly data release 
schedules similar to ongoing large programs (Gaia-ESO, PESSTO), will make sure that the large Key Surveys are in the 
interest of the entire community.  

To enable this scheme, Phase I becomes a two-tiered process. First the large Key Surveys of 5-year duration are defined 
that ensure that enough targets are available at any pointing across the sky. These Key Surveys will set the survey 
strategy boundaries, such that next ESO users can plan their Community Surveys (also of 5-year duration) using a 
4MOST Survey Simulator tool. The selected Community Surveys can either be all-sky surveys or more targeted special 
area surveys (high target density areas in the Bulge or Magellanic Clouds, deep fields, time series fields, etc.). Once all 
surveys have submitted their target catalogs, exposure requirements, and total survey figure-of-merit requirements, 
Phase II gets completed by merging all surveys in one big program from which joint telescope Observing Block (OB) 
commands are created using the 4MOST Observer Support Software. These OBs are then scheduled for observation and 
executed using the current VISTA operation scheme.  

The merging of surveys in one OB results also in merged data reduction treatment. The Consortium Data Management 
System will process all raw data to calibrated 1D spectra. Given that all Consortium Surveys are Public Surveys, it is 
assumed that all Community Surveys are also Public Surveys, with similar data release policies. Data Management is 
also involved in quality control on same-night (technical failures), few-days (spectra of sufficient S/N and quality) and 
~yearly time scales (are enough spectra produced for the science goals of the different surveys).  

4. INSTRUMENT SPECIFICATION 
The instrument specification was derived from the science requirements and the operations concept. The main 4MOST 
Instrument Specifications are listed in Table 1.  

Table 1. Main 4MOST instrument specifications. 

Specification Requirement Goal 

Spectral resolution 
  Low Resolution Spectrograph 
 
  High Resolution Spectrograph 
 

 
R>5000 over full  λ range 
 
R>18,000 over full  λ range, 
 

 
R>7000 @ 800 nm, 
R>5000 over full  λ range 
R>18,000 over full  λ range, 
R>20,000 average over full  λ range 
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development and exploitation; however, Table 2 also lists which institutes have the lead responsibility for the different 
consortium surveys. 

Table 2. 4MOST Consortium work package distribution. 

Institute Instrument responsibility Science responsibility 
Leibniz-Institut für Astrophysik Potsdam (AIP) Management and System Engineering, 

Telescope interface (including WFC), 
Metrology, Fibre System, Calibration 
System, Instrument Control, Safety 
System, System MAIV and 
Commissioning 

Milky Way Disk/Bulge LR 

Australian Astronomical Observatory (AAO) Fibre Positioner Galaxy Groups Survey (WAVES) 
Centre de Recherche Astrophysique de Lyon 
(CRAL) 

Low Resolution Spectrographs Galaxy Cluster Survey 

European Southern Observatory (ESO) Detectors System  
Institute of Astronomy, Cambridge (IoA) Data Management System Milky Way Halo LR 
Ludwigs-Maximilians-Unversität München (LMU) Instrument Control System  
Max-Planck-Institut für extraterrestrische Physik 
(MPE) 

Science Operations System X-ray selected Galaxy Clusters, X-
ray selected AGN 

Zentrum für Astronomie der Universität Heidelberg 
(ZAH)  

High Resolution Spectrograph, 
Instrument Control System Software 

Milky Way Halo HR 

Rijksuniversiteit Groningen (RuG)  Milky Way Halo LR 
Lunds Universitet (Lund)  

Milky Way Disk/Bulge HR Uppsala Universitet (UU)  

8. SUMMARY 
4MOST will provide a wide-field, high-multiplex spectroscopic survey capability for the ESO community that has a 
broad range of applications, ranging from obtaining precision cosmological constraints to determining the formation 
history and structure of the Milky Way, and from studying the evolutionary connection between galaxies and their black 
holes out to high redshifts to characterizing host stars of exo-planets. The technical implementation with a 2.5 degree 
diameter field-of-view, and with ~2400 fibres feeding two R>5000 and one R>18,000 spectrographs enables a highly 
efficient surveying capability of a large fraction of the southern sky at high target density. The unique operation mode of 
4MOST will ensure that both large and small surveys can be accommodated in the most efficient way. Following the 
approval of ESO, preliminary design will officially kick-off in January 2015 with an expected 4MOST first light by the 
end of 2020. 
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