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1. Introduction

A subgroup Q of a group G is said to be quasinormal (sometimes permutable) in G, and we write
Q qnG, if QH = HQ for all subgroups H of G. Equivalently Q qn G if QH = HQ for all cyclic sub-
groups H of G. Of course Q H=HQ if and only if Q H =(Q, H). Normal subgroups are quasinormal,
but the converse is false in general. In finite groups the difficulties associated with quasinormal sub-
groups are encountered in the p-groups. This is easy to explain. For, let G be a finite group with
Q gn G and suppose that Q is core-free. Then it is shown in [8] that Q lies in the hypercentre of G.
In particular Q is nilpotent. Also, by [10, Lemma 6.2.16], each Sylow p-subgroup P of Q is quasi-
normal in G; and it is easy to see that each p’-element of G centralises P. Thus if S is a Sylow
p-subgroup of G, then P gqn S and the complexities of the embedding of Q in G are reduced to those
of P in S.

Very little is known about quasinormal subgroups of finite p-groups. Gross and Berger made a
significant contribution in [6] and [1]; and several examples were constructed in [12] and [13] show-
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ing how complicated core-free quasinormal subgroups can be. How cyclic quasinormal subgroups are
embedded in finite groups was discovered in [2-4]. Also in [14] it was shown that when Q is an
abelian quasinormal subgroup of any group G (finite or infinite), then Q" gqn G, provided n is odd or
divisible by 4. Apart from this, given Q gn G, virtually nothing is known about which subgroups of Q
are also quasinormal in G, even when Q is abelian. It was proved in [5] that if Q has order p? (with
p an odd prime), then there is always a quasinormal subgroup of G of order p lying in Q. But this
subgroup is in no way canonical and its existence was established only by an exhaustive analysis of
possible minimal counter-examples. This lack of knowledge becomes even more surprising when one
considers the significance of quasinormal subgroups within finite p-groups. Indeed it is the quasinor-
mal subgroups, not the normal subgroups, that are invariant under automorphisms and isomorphisms
of the subgroup lattices.

Obvious questions spring to mind. In a finite p-group, is a minimal non-trivial quasinormal sub-
group always of order p? Do maximal chains of quasinormal subgroups form a composition series? In
fact we know that the answer to the latter question is in the negative, but that will appear elsewhere.
Here we concentrate on abelian quasinormal subgroups A of a finite p-group G. Given the difficulty
of dealing with the case where A has order p2, progress is sure to be slow. Also since A gn G if and
only if Agn AX for all cyclic subgroups X of G, we consider groups G = AX with X cyclic. This is
the hypothesis that Gross and Berger assumed in [6] and [1]. Also in [9] Nakamura showed that if
Q gn G = Q X, with X cyclic and G a finite p-group, then there is a quasinormal subgroup of G of
order p lying in Q (in fact in Z(Q)). Thus we shall consider abelian quasinormal subgroups A of
finite p-groups G = AX, where X is cyclic. We shall prove that there is a canonical series

1=Qo< Qi< <Qs=A4,

with Q; qn G and |Qj+1: Q;| =p, all i. If A is core-free, then there is a unique series of this type
passing through the subgroups £2;(A), i > 0. Also, when p is odd, there is a series passing through
the subgroups AP', i > 0 (though not necessarily unique). We see this work as an essential first step
before removing the hypothesis G = AX with X cyclic.

Section 3 contains the proofs of our theorems and in Section 4 we construct some examples
dealing with questions that arise naturally. Section 2 contains preliminary lemmas required for the
theorems and examples.

Notation is standard. The centre of a group G is denoted by Z(G). If H and K are subgroups
of G, then Cy(K) and Ny (K) are the centraliser and normaliser, respectively, of K in H. The repeated
commutator subgroup [H, K, K, ..., K], with i K’s, is written as [H, ;K] and H¢, HC are the (normal)
core and closure, respectively, of H in G. A maximal proper subgroup H of G is denoted by H <- G.
If G is a p-group, then, for all i > 0, £2;(G) = (x € G | xP = 1). For a cyclic group X, we shall write
Xi = £2;(X). Finally C, denotes a cyclic group of order n.

2. Preliminary lemmas
We begin with a key result.

Lemma 1. Let G = AX be a finite p-group, with A an elementary abelian subgroup and X a cyclic subgroup
of order at least p2. Suppose that AN X =1 and X1 = £21(X) < G. Then with X, = §22(X)

(i) AXy is elementary abelian and AX1 < AXa2;
(ii) A gn G if and only if the fixed point of any regular X, /X1-submodule of AX; liesin A.

Proof. Since X; < Z(G), AX; is elementary abelian of index p in AXy. Therefore AX; << AX, and (i)
follows.

For (ii), suppose that A gn G. Assume, for a contradiction, that there is a regular X,/Xj-submodule
W of AX;y such that (in additive module notation)

W1 —X)P 1 £ A.
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Let X, = (x»). Then there is an element a € A such that a(1 — x)P~! = a;x;, where a; € A and
(x1) = X1. Replacing a by a power if necessary, we may also assume that xg =x1.Let g= xz’la. Then

g = (x;la)p =x]’]a(1 _x;])P—l =X171(1(1 _XZ)p—l =a.

Now AX, = A(g). But |A(g): Al =|(g): AN (g)| = p, while |[AX; : A| = |X2| = p2, a contradiction.

Conversely, suppose that the fixed point of any regular X;/Xj-submodule of AX; lies in A. We
distinguish two possibilities.

Case 1. Suppose that X = X;. Certainly A gn AX;. Therefore let g € G \ AX;. Then g = xa, where
ac A and (x) = X. So gP? =xja(1 —x)P~1, where x; =xP. If a(1 — x)P~1 # 1, then it must lie in A.
Thus in any case A{gP)= AX; and A(g) = AX;1(g)=G. So AqnG.

Case 2. Suppose that X > X,. Let A < H <- G. Then by induction on |X|, we have

AqnH. (M
Now AS = AX; < H, for some X; < X. Also the subgroups containing A form a chain. So AS is gen-
erated by A and some conjugate of an element of A, i.e. an element of order p. Thus |A® : A| < p,
by (1), and then A® < K <- H. Let g1 € G\ H. Therefore AG(gf) =H and gf ¢ K. Hence A(gf) =H
(again by (1)) and so A(g1) =H(g1)=G. Then AgnG. O
As a consequence of this result, we find that A is always quasinormal in G in a certain situation.
Corollary 1. Assume the hypotheses of Lemma 1 and in addition suppose that Cx(A) > X». Then Aqn G.

Proof. Clearly as X,/X;-module, AX; has no regular submodules. Therefore Agn G, by Lemma 1. O

We shall be considering situations where an elementary abelian subgroup A is quasinormal in the
finite p-group G = AX, with X cyclic and AN X = 1. Then we always have

A® = Aor AXq, (2)
as in Case 2 of Lemma 1(ii) above. In fact when p is odd, this does not require AN X =1, by
Lemma 2.1(iv) of [5]. But it does when p = 2. (See Example 1 in Section 4.)

We now give a simple criterion for deciding which subgroups of A in Corollary 1 are quasinormal
in G.
Corollary 2. Assume the hypotheses of Corollary 1 and let B < A. Then B qn G if and only if BX = XB.
Proof. The necessity of the condition is clear. Conversely, suppose that BX = XB. By Corollary 1,
A qnG. So, by (2), AX; is an X-module. Let A<M <-G. Then M N BX = B(M N X) and therefore

B gqn M, by induction on |X|. Let g € G\ M. Thus g = xa, where (x) = X and a € A. It follows that with
|X]=p"*t! (n>1), we have

g =xP"a(1 —x)P" "1 =xV",
because |X/X,| = p"~!. Hence
21((g) = X1 = 21(X).

But B¢ = BX < BXN AX; = BX;. So BX; <G. Therefore B(g) = BX;(g) and B(g) is a subgroup. Thus
BgnG. O
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We shall see in Example 2 in Section 4 that when A gn G, we cannot remove the hypothesis
Cx(A) > X, in Corollary 2.

Lemma 1 enables us to establish a criterion for deciding if an elementary abelian subgroup A is
quasinormal in a finite p-group G = AX, where X is cyclic and AXj is an indecomposable X-module,
for example when A is core-free in G.

Lemma 2. Let G = AX be a finite p-group, with A elementary abelian of rank r — 1, X cyclic of order p™*+1
m=>1),ANX=1, X1 =81(X), AX1 =A x X1 =V <G, where V is an indecomposable X-module, and
Cx(A) = X1. Then p"~1 <r < p™ Also Aqn G ifand only if r < p"~'(p — 1), in which case p is odd.

Proof. Since V is indecomposable, r < p". Also if r < p"~!, then X, = £2,(X) must centralise A, which
is not the case. Thus p"~! <r.

Suppose that A gn G. By Lemma 1(ii), the subgroup generated by the fixed points of the regular
X3/ X1-submodules of V lies in A. But X normalises this subgroup. Since A¢ =1, we deduce that
there are no regular X;/X;-submodules of V. Let X = (x) and choose a basis {w; |1 <i<r} of V
such that (in additive notation)

wix—1)=w;j1, 1<i<r—1, wrx—1)=1.
Then with g=p" ! and y =x9, wi(y — 1) = Wi4q and so

V=Wi xWyx-xWp (3)

as a decomposition into indecomposable X;/X1-submodules (with W; generated by w;). Each W; has
rank at most p — 1, since there are no regular submodules. Therefore r < p"~1(p — 1), as required.
(See Exercise 4 on page 227 of [10].)

Conversely, suppose that

r<p™'(p-1. (4)

Suppose also that there is a regular X/Xi-submodule of V. Since the ranks of any two W;j’s in (3)
differ by at most 1, we must have

rep+(P" T -1)p-D=p"p-1+1.

But this contradicts (4). Therefore V contains no regular X,/X;-submodules and A gn G by
Lemma 1(ii). O

Sufficient conditions for quasinormality in a more general situation can now be established.

Lemma 3. Let G = AX be afinite p-group with A elementary abelian, X cyclic of order p™+1, X1 = £21(X) <G,
ANX=1and V = AX;y < G. Suppose that all indecomposable X-submodules of V have rank at most
p"1(p —1). Then

(i) AgnG;and
(ii) B< Aand BX = XB implies B qn G.

Proof. (i) Clearly we may assume that n > 1 and A¢ = 1. Then V has only 1 fixed point as X-module.
Thus V is indecomposable and A gn G, by Corollary 1 and Lemma 2.

(ii) Let A < M <-G. Since the rank hypothesis is satisfied for V as XP-module, we may assume, by
induction on |X]|, that Bgn M. Let g € G\ M. Then g = xa, where (x) = X and a € A. So (using additive
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module notation)
n n n n
gP =xP"a(1 —x)P" 1 =xP" = x4,

where (x1) = X;. Thus B(g) = BX;(g). But B¢ = BXx <BXNV = BX;. Therefore BX; < G. Hence B(g)
is a subgroup and BqnG. O

It appears to be unknown whether a minimal (non-trivial) quasinormal subgroup of a finite p-
group G has order p. However, if G = AX with A abelian and quasinormal and X cyclic, then this is
the case inside A, as we now show. (We use the term “lemma” here in the hope that it will help to
establish a significantly more general result.)

Lemma 4. Let G = AX be a finite p-group with A an abelian quasinormal subgroup and X cyclic. Let B be a
minimal (non-trivial) quasinormal subgroup of G lyingin A. Then |B| = p if (i) p is odd or (ii) B is elementary.

Proof. Clearly we may assume that B =1. So BN X = 1. Also if p is odd, then BP gn G (by [14]) and
so BP =1, i.e. B is elementary abelian. Thus B¢ = BX = BXy, by (2). (Here X; = £21(X).) Therefore
there is a non-trivial central element of G of the form bxy, where b € B and x; € X;. Hence [b, X]=1
and so b=1. Then (x1) = X1 < Z(G).

Now Np(X) has order p. This is clear if p is odd. But if p = 2, having order 4 would involve a
dihedral action and B would not be quasinormal. Thus let Ng(X) = (b), of order p, and suppose that
B has rank i+ 1. Then [B, ;X] = (b) mod X;.Let A<M <-G. Thus b € Z(M). Let g € G\ M. Then B® =
BX; = B! = B£21({(g)), an indecomposable (g)-module. But [B, ;(g)] = [B,;X]. So b normalises (g).
Therefore (b) gn G and B = (b) of order p. O

3. Main results

Theorem 1 of [14] proves that if A gn G, with A abelian, and if p is an odd prime, then AP gn G.
On the other hand, Example 2 of the same paper shows that when G is a finite p-group, then £21(A)
is not always quasinormal in G. In that example, G = AX with X cyclic and A¢ # 1. Our first main
result shows that if Agc =1 in this situation, then we do have £2;(A) qn G, for all i > 1, and for all
primes p.

Theorem 1. Let G = AX be a finite p-group, with A an abelian quasinormal subgroup of G, Ac =1 and X
cyclic. Let W; = £2;(A), i > 0. Then W; qn G, for all i.

Proof. We have AN X =1. Let |X| = p"*! and let A have exponent p". So r <n, by [6]. (See also
[10, Theorem 5.2.8].) Also, by the same reference,

£2;(G)=W;X; <G, (5)

where X; = £2;(X), for all i; and AX;/W;X; is core-free in G/W;X;. Thus W;X;11/W;X; < G/W;X;. It
follows, by induction on n, that

WiXiqnG, alli. (6)
Since £2,(G) = AX, < G and Ag =1, it follows that A¢ = AX,. Also A < Cc(W;) = Cc(W1X1) <G.

So [W1, X;] = 1. Similarly [W3, X;] < W1X; and therefore [W2, X;_1] = 1. Continuing in this way we
obtain

[Wla XT*I“‘rl] = 15 (7)

foralli<r.
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Let g € G. We show that W;(g) is a subgroup. By (7), we may assume that g ¢ AX,_;11. We claim
that some power of g has the form w;x;, where w; € W; and (x1) = X;. For, if A(g) = AX;, then
A{gP) = AX,_1; and s > 2. Thus some power h of g belongs to AX,_j;> \ AX,_j11. Then h belongs
t0 AXr41 < Wye1Xrsq if i =1; and h belongs to AX, = W, X, if i >2. Let u=h?"""". Thus if i =1,
then u € W1Xy; and if i > 2, then u € W;_1X;_1. But u € AX; \ A. Hence u has the form wqxy if
i=1 (with wi; € Wy and (x1) = X1); and the form w;_1xq if i > 2 (with w;_1 € W;_1 and (x1) = X1).
Therefore our claim is true.

It follows that W;(g) = W;X;(g), which is a subgroup for all i, by (6). Thus W;gn G. O

The next result shows that, with the same hypotheses, there is a chain of quasinormal subgroups
of G between 1 and A, including the subgroups Wj, for all i > 0, such that each subgroup in the chain
has index p in the one above.

Theorem 2. Let G = AX be a finite p-group, with A an abelian quasinormal subgroup, Ac =1 and X cyclic.
Let Wi = £2i(A), all i > 0. Then there exists a composition series of G passing through the W;’s in which every
subgroup is quasinormal in G.

Proof. Clearly AN X =1. Also it is easy to establish the existence of the required composition series
between A and G, using (5). Thus, by Theorem 1, it suffices to establish the existence of the series
between W; and W;q, for all i. Let A have exponent p" and |X| = p™t'. Then r <n, as in Theorem 1.
Let X; = £2;(X), i >0.

Case (i). Suppose that i > 1. Again as in Theorem 1, we have, by induction on n, a composition
series of G between W;X; and W;,1X; consisting of quasinormal subgroups of G. Let Q be one of
these subgroups and let Q1 = AN Q. Then the subgroups Q; form a composition series between W;
and W;;1. We show that Q1 gn G. Thus let g € G. We prove that Q(g) is a subgroup. To see this, we
may assume, by (7), that g ¢ AX,_;. Also, as in Theorem 1, we see that

some power of g has the form w;xq,

where w; € W; and (x1) = Xj. It follows that Q(g) = Q1X1(g) = Q(g), which is a subgroup. So
Q1 gn G in this case.

Case (ii). Suppose that i = 0. As X-module, W1X; (= £21(G)) is indecomposable (since Ac =1) and
so is uniserial by [7, Theorem VII 5.3]. Thus there is a unique chief series between X; and W1X;. Let
Q be a term of this series and let Q2 = AN Q < Wy. Let g € G. We show that Q,(g) is a subgroup.

By (7), [W1, X;] = 1. Therefore we may assume that g ¢ AX, (= A®). Then we claim that
£21((g)) = Xi1. For, some power h of g has the form ax;11, a € A, (Xr+1) = Xr+1. As we saw
in the proof of Theorem 1, AX;_1/W;_1X;—1 is quasinormal and core-free in G/W_1X;_1, and
M = AX;/W;_1X;_1 is an indecomposable X/X,_1-module. Since the fixed points of regular X;1/X;-
submodules of M all lie in AX,_1/W;_1X;_1, by Lemma 1(ii), and since these elements generate a
normal subgroup of G/W;,_1X;_1, it follows that there are no regular X;;1/X,-submodules in M.
Thus

hpEXr mod Wr_1Xr—1,

where x; :xf+]. So hP? € W,_1X;. Similarly hP ¢ W,_>X,_1 and continuing we obtain h?" € X; \ {1}.
Therefore £21({g)) = X1, as claimed.
Finally Q2(g) = Q2X1(g) = Q(g) is a subgroup. Thus Q,qnG. O

To end this section, we show that, when p is odd, the composition series of Theorem 2 is not
unique in general.



J. Cossey, S. Stonehewer / Journal of Algebra 326 (2011) 113-121 119

Theorem 3. Let p be an odd prime and let G = AX be a finite p-group, with A an abelian quasinormal
subgroup of G, Ac = 1 and X cyclic. Then there is a series

1=Q0< Q1< - <Qs=A4, (8)
with Q; qn G, |Qi+1 : Qi| = p, alli; and all powers AP (j = 1) occuras Qj’s.

Proof. By Theorem 1 of [14], B = AP gn G. Form the products of B with the terms of the composition
series of G between 1 and A passing through W; = £2;(A), i > 0, given by Theorem 2. Then omitting
repeats, we obtain a composition series of G between B and A consisting of quasinormal subgroups
of G. Suppose that H > K are adjacent terms of this composition series. So there exists h € H such
that H = K(h) and hP € K. Therefore HP = KP (hP) and hP® € KP. Thus |[HP : KP| = p or 1. Again
by Theorem 1 of [14], HP" gn G for all n > 1. It follows that taking those powers of all H in the
composition series between B and A and removing repetitions, we obtain the series (8). O

We shall show in Example 3 of the next section that in general there are more quasinormal sub-
groups of G lying in A than those described in Theorems 2 and 3.

4. Examples

We begin with an example of how the case p =2 can differ from the case when p is an odd
prime. In Lemma 2.1(iv) of [5], it is shown that if A is an elementary abelian quasinormal subgroup
of a finite p-group G, then A® always has exponent p if p is odd. Though A® need not be abelian,
as is shown by an example in the same paper. However, when p =2, then A® does not always have
exponent 2 and is not always abelian.

Example 1. Let H be the group of order 27 generated by elements b;, 0 <i < 3, and x subject to the
relations

b} =1[bi,bjl=1, alli,j,  x*=bo,  [bi,xI=bi1, 1<i<3.

Let B = (b; |0 <i<3). Then [B, X*] =1 and B is an X/X*-module. We define an automorphism « of
H by

bi+> b;, alli, x> x°bs.

Since (x°b3)8 = (xb3)® = x8b3(1 — x)” = by, we see that « preserves the relations of H. One checks
easily that [x2, o] = x8b, and [x*, «] = bo. Thus

[X, 052] = 4b3 (X4b3)a =X4b3X4b0b3 =1.

Therefore « is an automorphism of H of order 2.

Form the semi-direct product G of H by the cyclic group (a) of order 2, where the action of a on
H is defined by «. Let A = (a, B). Then A is elementary abelian of rank 5. We have B < G and G/B
is a modular group of order 16, i.e. all its subgroups are quasinormal. Thus A gn G. But A® = AX* of
exponent 4. Also A is not abelian.

Note that A here is not core-free in G. Indeed whenever A is a core-free elementary abelian
quasinormal subgroup of a finite p-group G, then A® is also elementary abelian, by [5, Lemma 2.1(ii)].
Let G = AX be a finite p-group, with A elementary abelian and quasinormal in G and X cyclic.
Suppose that Ac =1. So AN X =1 and £2;(X) < G. Let B < A and suppose that BX = XB. Then
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B qn G. For, if Cx(A) > £2,(X), then Corollary 2 applies; and if Cx(A) = £21(X), then Lemmas 2 and 3
apply. In the light of this result, it is reasonable to ask if the hypothesis Agc =1 is necessary here. In
fact it is, even when AN X =1, as we now show.

Example 2. Let p be an odd prime and let A be an elementary abelian p-group of rank p + 1, with
basis aq,az,...,ap,b. Let X1 = (x1) be a cyclic group of order p and form the direct product H =
A x X1. Now H has an automorphism & of order p defined by

a;— aiaiy1, 1<i<p-1, ap = ap, br—>bx1_l, X1 = X1.

Then by [11, 9.7.1(ii)], there is an extension G of H by a cyclic group of order p defined as follows:
G=(A.x|lai,x] =011, 1<i<p—1, [ap.x] =1, [x,b] =xP).

Here xP =Xx;. Then A1 = (a1, ...,ap) <G and G/A1 has order p3 with all its subgroups quasinormal.
Therefore A qn G. Also with B = (b), BX = XB. But (xa;)? =xPa;(1 —x)P~1 = x1ap. If B were quasi-
normal in G, then b would normalise (xa1), i.e. [xai, b] € (xa1)P = (x1ap). However, [xay, b] =x; and
we would have a contradiction. Thus B is not quasinormal in G.

It is easy to construct a similar example when p = 2, by taking A of rank 5, X of order 8 and
defining [x, b] = x*.

Our final example shows that, in general, the subgroups given by Theorems 2 and 3 do not account
for all the quasinormal subgroups of G lying in A.

Example 3. Let p be a prime > 5 (for convenience) and let M be the group of order p° defined by
the presentation

(b,y.x|bP —yP =[b,yl=x" =1, [b,x] =y, [y,x]:xpz).

Let W=(b,y)=Cp x Cp and X = (x) = Cp3.So M=WX and W N X =1. We construct an automor-
phism « of M as follows. Let 0 <i, j < p — 1 and define

a:b—>b,  y—y, x> xTPpiyl.

One checks easily that « : xP xP+P” and xP* > xP”. Also « preserves the relations of M and there-
fore o defines an automorphism of M. For all n > 1,

am:x s xTEP" (piyd),

So |o| = p%. Moreover [, aP] —xP’ = [x, y~1]. Thus the action of &P on M coincides with conjugation
by y~!. Then again by [11, 9.7.1(ii)], there is a group G of order p® which is an extension of M by a
cyclic group of order p, generated by a, such that a acts on M according to « and a? = y~!. Therefore

G=(b.a,x|bP —a” =[b.a]=x"" =1, [x.b] =d”. [x.a] :pria’jp>.
Let A= (b,a). We claim that

AqnG. (9)



J. Cossey, S. Stonehewer / Journal of Algebra 326 (2011) 113-121 121

For, let X = £25(X). Since (b,aP) < Z(AX3), we have A qn AX;. Let g = x’b™a", where p {£. One
checks that

gP =xP mod 21(G)

and hence gp2 :xepz, ie. 21((g) = X1 (= 21(X)). Thus |A(g)| = |A||(g)| = p® and A(g) =G. So (9)
is true.
Since Ag =1, Theorems 2 and 3 apply to G and so

(aP), (b,aP) and A are quasinormal in G.

Observe that there is no cyclic quasinormal subgroup of G of order p? here. Indeed if i £ 0, then such
a subgroup cannot exist. But suppose that i = 0. Then we claim that, for O<k<p—1,

Q =(b*a)qnG. (10)

For, since QP = (aP) < Z(AX>), factoring AX, by QP, we see from Lemma 3 that Q gn AX;. Thus
let g =x‘b™a", p L. As above, 21({g)) = X1, and so Q (g) = Q X1{(g). To see that this product is a
subgroup, we may factor by X;. Then [x,aP] =1 and so we may also factor by (a”). But then applying
Lemma 3 to

G/QPX1 = ((b) x Q)X/QPXi,

we see that Q /QPX; is quasinormal in this group, since b*a normalises X/QPXy. Therefore Q X1(g)
is a subgroup and (9) is true.

It follows that, when i = 0, there are p cyclic quasinormal subgroups of G of order p? lying in A,
none of which appears in Theorems 2 and 3.
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