Abelian quasinormal subgroups of finite p-groups

John Cossey ${ }^{\mathrm{a}, 1}$, Stewart Stonehewer ${ }^{\mathrm{b}, *}$
${ }^{a}$ Mathematics Department, School of Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
${ }^{\mathrm{b}}$ Mathematics Institute, University of Warwick, Coventry CV4 7AL, England, United Kingdom

ARTICLE INFO

Article history:

Received 5 January 2009
Available online 20 March 2010
Communicated by Peter Webb

MSC:

20E07
20 E 15

Keywords:

Quasinormal subgroup
p-group

Abstract

If $G=A X$ is a finite p-group, with A an abelian quasinormal subgroup and X a cyclic subgroup, then we find two composition series of G passing through A, all the members of which are quasinormal subgroups of G.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A subgroup Q of a group G is said to be quasinormal (sometimes permutable) in G, and we write $Q q n G$, if $Q H=H Q$ for all subgroups H of G. Equivalently $Q q n G$ if $Q H=H Q$ for all cyclic subgroups H of G. Of course $Q H=H Q$ if and only if $Q H=\langle Q, H\rangle$. Normal subgroups are quasinormal, but the converse is false in general. In finite groups the difficulties associated with quasinormal subgroups are encountered in the p-groups. This is easy to explain. For, let G be a finite group with Q qn G and suppose that Q is core-free. Then it is shown in [8] that Q lies in the hypercentre of G. In particular Q is nilpotent. Also, by [10, Lemma 6.2.16], each Sylow p-subgroup P of Q is quasinormal in G; and it is easy to see that each p^{\prime}-element of G centralises P. Thus if S is a Sylow p-subgroup of G, then $P q n S$ and the complexities of the embedding of Q in G are reduced to those of P in S.

Very little is known about quasinormal subgroups of finite p-groups. Gross and Berger made a significant contribution in [6] and [1]; and several examples were constructed in [12] and [13] show-

[^0]ing how complicated core-free quasinormal subgroups can be. How cyclic quasinormal subgroups are embedded in finite groups was discovered in [2-4]. Also in [14] it was shown that when Q is an abelian quasinormal subgroup of any group G (finite or infinite), then $Q^{n} q n G$, provided n is odd or divisible by 4. Apart from this, given $Q q n G$, virtually nothing is known about which subgroups of Q are also quasinormal in G, even when Q is abelian. It was proved in [5] that if Q has order p^{2} (with p an odd prime), then there is always a quasinormal subgroup of G of order p lying in Q. But this subgroup is in no way canonical and its existence was established only by an exhaustive analysis of possible minimal counter-examples. This lack of knowledge becomes even more surprising when one considers the significance of quasinormal subgroups within finite p-groups. Indeed it is the quasinormal subgroups, not the normal subgroups, that are invariant under automorphisms and isomorphisms of the subgroup lattices.

Obvious questions spring to mind. In a finite p-group, is a minimal non-trivial quasinormal subgroup always of order p ? Do maximal chains of quasinormal subgroups form a composition series? In fact we know that the answer to the latter question is in the negative, but that will appear elsewhere. Here we concentrate on abelian quasinormal subgroups A of a finite p-group G. Given the difficulty of dealing with the case where A has order p^{2}, progress is sure to be slow. Also since $A q n G$ if and only if $A q n A X$ for all cyclic subgroups X of G, we consider groups $G=A X$ with X cyclic. This is the hypothesis that Gross and Berger assumed in [6] and [1]. Also in [9] Nakamura showed that if $Q q n G=Q X$, with X cyclic and G a finite p-group, then there is a quasinormal subgroup of G of order p lying in Q (in fact in $Z(Q)$). Thus we shall consider abelian quasinormal subgroups A of finite p-groups $G=A X$, where X is cyclic. We shall prove that there is a canonical series

$$
1=Q_{0} \leqslant Q_{1} \leqslant \cdots \leqslant Q_{s}=A,
$$

with $Q_{i} q n G$ and $\left|Q_{i+1}: Q_{i}\right|=p$, all i. If A is core-free, then there is a unique series of this type passing through the subgroups $\Omega_{i}(A), i \geqslant 0$. Also, when p is odd, there is a series passing through the subgroups $A^{p^{i}}, i \geqslant 0$ (though not necessarily unique). We see this work as an essential first step before removing the hypothesis $G=A X$ with X cyclic.

Section 3 contains the proofs of our theorems and in Section 4 we construct some examples dealing with questions that arise naturally. Section 2 contains preliminary lemmas required for the theorems and examples.

Notation is standard. The centre of a group G is denoted by $Z(G)$. If H and K are subgroups of G, then $C_{H}(K)$ and $N_{H}(K)$ are the centraliser and normaliser, respectively, of K in H. The repeated commutator subgroup [H, K, K, \ldots, K], with $i K$'s, is written as $\left[H,{ }_{i} K\right]$ and H_{G}, H^{G} are the (normal) core and closure, respectively, of H in G. A maximal proper subgroup H of G is denoted by $H<G$. If G is a p-group, then, for all $i \geqslant 0, \Omega_{i}(G)=\left\langle x \in G \mid \chi^{p^{i}}=1\right\rangle$. For a cyclic group X, we shall write $X_{i}=\Omega_{i}(X)$. Finally C_{n} denotes a cyclic group of order n.

2. Preliminary lemmas

We begin with a key result.
Lemma 1. Let $G=A X$ be a finite p-group, with A an elementary abelian subgroup and X a cyclic subgroup of order at least p^{2}. Suppose that $A \cap X=1$ and $X_{1}=\Omega_{1}(X) \triangleleft G$. Then with $X_{2}=\Omega_{2}(X)$
(i) $A X_{1}$ is elementary abelian and $A X_{1} \triangleleft A X_{2}$;
(ii) A qn G if and only if the fixed point of any regular X_{2} / X_{1}-submodule of $A X_{1}$ lies in A.

Proof. Since $X_{1} \leqslant Z(G), A X_{1}$ is elementary abelian of index p in $A X_{2}$. Therefore $A X_{1} \triangleleft A X_{2}$ and (i) follows.

For (ii), suppose that A qn G. Assume, for a contradiction, that there is a regular X_{2} / X_{1}-submodule W of $A X_{1}$ such that (in additive module notation)

$$
W\left(1-X_{2}\right)^{p-1} \nless A .
$$

Let $X_{2}=\left\langle x_{2}\right\rangle$. Then there is an element $a \in A$ such that $a\left(1-x_{2}\right)^{p-1}=a_{1} x_{1}$, where $a_{1} \in A$ and $\left\langle x_{1}\right\rangle=X_{1}$. Replacing a by a power if necessary, we may also assume that $x_{2}^{p}=x_{1}$. Let $g=x_{2}^{-1} a$. Then

$$
g^{p}=\left(x_{2}^{-1} a\right)^{p}=x_{1}^{-1} a\left(1-x_{2}^{-1}\right)^{p-1}=x_{1}^{-1} a\left(1-x_{2}\right)^{p-1}=a_{1}
$$

Now $A X_{2}=A\langle g\rangle$. But $|A\langle g\rangle: A|=|\langle g\rangle: A \cap\langle g\rangle|=p$, while $\left|A X_{2}: A\right|=\left|X_{2}\right|=p^{2}$, a contradiction.
Conversely, suppose that the fixed point of any regular X_{2} / X_{1}-submodule of $A X_{1}$ lies in A. We distinguish two possibilities.

Case 1. Suppose that $X=X_{2}$. Certainly A qn $A X_{1}$. Therefore let $g \in G \backslash A X_{1}$. Then $g=x a$, where $a \in A$ and $\langle x\rangle=X$. So $g^{p}=x_{1} a(1-x)^{p-1}$, where $x_{1}=x^{p}$. If $a(1-x)^{p-1} \neq 1$, then it must lie in A. Thus in any case $A\left\langle g^{p}\right\rangle=A X_{1}$ and $A\langle g\rangle=A X_{1}\langle g\rangle=G$. So $A q n G$.

Case 2. Suppose that $X>X_{2}$. Let $A \leqslant H<G$. Then by induction on $|X|$, we have

$$
\begin{equation*}
A q n H . \tag{1}
\end{equation*}
$$

Now $A^{G}=A X_{i} \leqslant H$, for some $X_{i} \leqslant X$. Also the subgroups containing A form a chain. So A^{G} is generated by A and some conjugate of an element of A, i.e. an element of order p. Thus $\left|A^{G}: A\right| \leqslant p$, by (1), and then $A^{G} \leqslant K<H$. Let $g_{1} \in G \backslash H$. Therefore $A^{G}\left\langle g_{1}^{p}\right\rangle=H$ and $g_{1}^{p} \notin K$. Hence $A\left\langle g_{1}^{p}\right\rangle=H$ (again by (1)) and so $A\left\langle g_{1}\right\rangle=H\left\langle g_{1}\right\rangle=G$. Then A qn G.

As a consequence of this result, we find that A is always quasinormal in G in a certain situation.

Corollary 1. Assume the hypotheses of Lemma 1 and in addition suppose that $C_{X}(A) \geqslant X_{2}$. Then A qn G.
Proof. Clearly as X_{2} / X_{1}-module, $A X_{1}$ has no regular submodules. Therefore A qn G, by Lemma 1 .

We shall be considering situations where an elementary abelian subgroup A is quasinormal in the finite p-group $G=A X$, with X cyclic and $A \cap X=1$. Then we always have

$$
\begin{equation*}
A^{G}=A \text { or } A X_{1} \tag{2}
\end{equation*}
$$

as in Case 2 of Lemma 1(ii) above. In fact when p is odd, this does not require $A \cap X=1$, by Lemma 2.1(iv) of [5]. But it does when $p=2$. (See Example 1 in Section 4.)

We now give a simple criterion for deciding which subgroups of A in Corollary 1 are quasinormal in G.

Corollary 2. Assume the hypotheses of Corollary 1 and let $B \leqslant A$. Then B qn G if and only if $B X=X B$.

Proof. The necessity of the condition is clear. Conversely, suppose that $B X=X B$. By Corollary 1, A qn G. So, by (2), $A X_{1}$ is an X-module. Let $A \leqslant M<G$. Then $M \cap B X=B(M \cap X)$ and therefore B qn M, by induction on $|X|$. Let $g \in G \backslash M$. Thus $g=x a$, where $\langle x\rangle=X$ and $a \in A$. It follows that with $|X|=p^{n+1}(n \geqslant 1)$, we have

$$
g^{p^{n}}=x^{p^{n}} a(1-x)^{p^{n}-1}=x^{p^{n}}
$$

because $\left|X / X_{2}\right|=p^{n-1}$. Hence

$$
\Omega_{1}(\langle g\rangle)=X_{1}=\Omega_{1}(X)
$$

But $B^{G}=B^{X} \leqslant B X \cap A X_{1}=B X_{1}$. So $B X_{1} \triangleleft G$. Therefore $B\langle g\rangle=B X_{1}\langle g\rangle$ and $B\langle g\rangle$ is a subgroup. Thus $B q n G$.

We shall see in Example 2 in Section 4 that when A qn G, we cannot remove the hypothesis $C_{X}(A) \geqslant X_{2}$ in Corollary 2.

Lemma 1 enables us to establish a criterion for deciding if an elementary abelian subgroup A is quasinormal in a finite p-group $G=A X$, where X is cyclic and $A X_{1}$ is an indecomposable X-module, for example when A is core-free in G.

Lemma 2. Let $G=A X$ be a finite p-group, with A elementary abelian of rank $r-1, X$ cyclic of order p^{n+1} ($n \geqslant 1$), $A \cap X=1, X_{1}=\Omega_{1}(X), A X_{1}=A \times X_{1}=V \triangleleft G$, where V is an indecomposable X-module, and $C_{X}(A)=X_{1}$. Then $p^{n-1}<r \leqslant p^{n}$. Also A qn G if and only if $r \leqslant p^{n-1}(p-1)$, in which case p is odd.

Proof. Since V is indecomposable, $r \leqslant p^{n}$. Also if $r \leqslant p^{n-1}$, then $X_{2}=\Omega_{2}(X)$ must centralise A, which is not the case. Thus $p^{n-1}<r$.

Suppose that $A q n G$. By Lemma 1(ii), the subgroup generated by the fixed points of the regular X_{2} / X_{1}-submodules of V lies in A. But X normalises this subgroup. Since $A_{G}=1$, we deduce that there are no regular X_{2} / X_{1}-submodules of V. Let $X=\langle x\rangle$ and choose a basis $\left\{w_{i} \mid 1 \leqslant i \leqslant r\right\}$ of V such that (in additive notation)

$$
w_{i}(x-1)=w_{i+1}, \quad 1 \leqslant i \leqslant r-1, \quad w_{r}(x-1)=1 .
$$

Then with $q=p^{n-1}$ and $y=x^{q}, w_{i}(y-1)=w_{i+q}$ and so

$$
\begin{equation*}
V=W_{1} \times W_{2} \times \cdots \times W_{p^{n-1}} \tag{3}
\end{equation*}
$$

as a decomposition into indecomposable X_{2} / X_{1}-submodules (with W_{i} generated by w_{i}). Each W_{i} has rank at most $p-1$, since there are no regular submodules. Therefore $r \leqslant p^{n-1}(p-1)$, as required. (See Exercise 4 on page 227 of [10].)

Conversely, suppose that

$$
\begin{equation*}
r \leqslant p^{n-1}(p-1) \tag{4}
\end{equation*}
$$

Suppose also that there is a regular X_{2} / X_{1}-submodule of V. Since the ranks of any two W_{i} 's in (3) differ by at most 1 , we must have

$$
r \geqslant p+\left(p^{n-1}-1\right)(p-1)=p^{n-1}(p-1)+1
$$

But this contradicts (4). Therefore V contains no regular X_{2} / X_{1}-submodules and $A q n G$ by Lemma 1(ii).

Sufficient conditions for quasinormality in a more general situation can now be established.
Lemma 3. Let $G=A X$ be a finite p-group with A elementary abelian, X cyclic of order $p^{n+1}, X_{1}=\Omega_{1}(X) \triangleleft G$, $A \cap X=1$ and $V=A X_{1} \triangleleft G$. Suppose that all indecomposable X-submodules of V have rank at most $p^{n-1}(p-1)$. Then
(i) A qn G; and
(ii) $B \leqslant A$ and $B X=X B$ implies B qn G.

Proof. (i) Clearly we may assume that $n \geqslant 1$ and $A_{G}=1$. Then V has only 1 fixed point as X-module. Thus V is indecomposable and $A q n G$, by Corollary 1 and Lemma 2.
(ii) Let $A \leqslant M<\cdot G$. Since the rank hypothesis is satisfied for V as X^{p}-module, we may assume, by induction on $|X|$, that $B q n M$. Let $g \in G \backslash M$. Then $g=x a$, where $\langle x\rangle=X$ and $a \in A$. So (using additive
module notation)

$$
g^{p^{n}}=x^{p^{n}} a(1-x)^{p^{n}-1}=x^{p^{n}}=x_{1},
$$

where $\left\langle x_{1}\right\rangle=X_{1}$. Thus $B\langle g\rangle=B X_{1}\langle g\rangle$. But $B^{G}=B^{X} \leqslant B X \cap V=B X_{1}$. Therefore $B X_{1} \triangleleft G$. Hence $B\langle g\rangle$ is a subgroup and $B q n G$.

It appears to be unknown whether a minimal (non-trivial) quasinormal subgroup of a finite p group G has order p. However, if $G=A X$ with A abelian and quasinormal and X cyclic, then this is the case inside A, as we now show. (We use the term "lemma" here in the hope that it will help to establish a significantly more general result.)

Lemma 4. Let $G=A X$ be a finite p-group with A an abelian quasinormal subgroup and X cyclic. Let B be a minimal (non-trivial) quasinormal subgroup of G lying in A. Then $|B|=p$ if (i) p is odd or (ii) B is elementary.

Proof. Clearly we may assume that $B_{G}=1$. So $B \cap X=1$. Also if p is odd, then $B^{p} q n G$ (by [14]) and so $B^{p}=1$, i.e. B is elementary abelian. Thus $B^{G}=B^{X}=B X_{1}$, by (2). (Here $X_{1}=\Omega_{1}(X)$.) Therefore there is a non-trivial central element of G of the form $b x_{1}$, where $b \in B$ and $x_{1} \in X_{1}$. Hence $[b, X]=1$ and so $b=1$. Then $\left\langle x_{1}\right\rangle=X_{1} \leqslant Z(G)$.

Now $N_{B}(X)$ has order p. This is clear if p is odd. But if $p=2$, having order 4 would involve a dihedral action and B would not be quasinormal. Thus let $N_{B}(X)=\langle b\rangle$, of order p, and suppose that B has rank $i+1$. Then $\left[B,{ }_{i} X\right] \equiv\langle b\rangle \bmod X_{1}$. Let $A \leqslant M<\cdot G$. Thus $b \in Z(M)$. Let $g \in G \backslash M$. Then $B^{G}=$ $B X_{1}=B^{\langle g\rangle}=B \Omega_{1}(\langle g\rangle)$, an indecomposable $\langle g\rangle$-module. But $\left[B,{ }_{i}\langle g\rangle\right]=\left[B,{ }_{i} X\right]$. So b normalises $\langle g\rangle$. Therefore $\langle b\rangle q n G$ and $B=\langle b\rangle$ of order p.

3. Main results

Theorem 1 of [14] proves that if $A q n G$, with A abelian, and if p is an odd prime, then $A^{p} q n G$. On the other hand, Example 2 of the same paper shows that when G is a finite p-group, then $\Omega_{1}(A)$ is not always quasinormal in G. In that example, $G=A X$ with X cyclic and $A_{G} \neq 1$. Our first main result shows that if $A_{G}=1$ in this situation, then we do have $\Omega_{i}(A) q n G$, for all $i \geqslant 1$, and for all primes p.

Theorem 1. Let $G=A X$ be a finite p-group, with A an abelian quasinormal subgroup of $G, A_{G}=1$ and X cyclic. Let $W_{i}=\Omega_{i}(A), i \geqslant 0$. Then $W_{i} q n G$, for all i.

Proof. We have $A \cap X=1$. Let $|X|=p^{n+1}$ and let A have exponent p^{r}. So $r \leqslant n$, by [6]. (See also [10, Theorem 5.2.8].) Also, by the same reference,

$$
\begin{equation*}
\Omega_{i}(G)=W_{i} X_{i} \triangleleft G, \tag{5}
\end{equation*}
$$

where $X_{i}=\Omega_{i}(X)$, for all i; and $A X_{i} / W_{i} X_{i}$ is core-free in $G / W_{i} X_{i}$. Thus $W_{i} X_{i+1} / W_{i} X_{i} \triangleleft G / W_{i} X_{i}$. It follows, by induction on n, that

$$
\begin{equation*}
W_{i} X_{1} q n G, \text { all } i . \tag{6}
\end{equation*}
$$

Since $\Omega_{r}(G)=A X_{r} \triangleleft G$ and $A_{G}=1$, it follows that $A^{G}=A X_{r}$. Also $A \leqslant C_{G}\left(W_{1}\right)=C_{G}\left(W_{1} X_{1}\right) \triangleleft G$. So $\left[W_{1}, X_{r}\right]=1$. Similarly $\left[W_{2}, X_{r}\right] \leqslant W_{1} X_{1}$ and therefore $\left[W_{2}, X_{r-1}\right]=1$. Continuing in this way we obtain

$$
\begin{equation*}
\left[W_{i}, X_{r-i+1}\right]=1, \tag{7}
\end{equation*}
$$

for all $i \leqslant r$.

Let $g \in G$. We show that $W_{i}\langle g\rangle$ is a subgroup. By (7), we may assume that $g \notin A X_{r-i+1}$. We claim that some power of g has the form $w_{i} x_{1}$, where $w_{i} \in W_{i}$ and $\left\langle x_{1}\right\rangle=X_{1}$. For, if $A\langle g\rangle=A X_{s}$, then $A\left\langle g^{p}\right\rangle=A X_{s-1}$; and $s \geqslant 2$. Thus some power h of g belongs to $A X_{r-i+2} \backslash A X_{r-i+1}$. Then h belongs to $A X_{r+1} \leqslant W_{r+1} X_{r+1}$ if $i=1$; and h belongs to $A X_{r}=W_{r} X_{r}$ if $i \geqslant 2$. Let $u=h^{p^{r-i+1}}$. Thus if $i=1$, then $u \in W_{1} X_{1}$; and if $i \geqslant 2$, then $u \in W_{i-1} X_{i-1}$. But $u \in A X_{1} \backslash A$. Hence u has the form $w_{1} x_{1}$ if $i=1$ (with $w_{1} \in W_{1}$ and $\left\langle x_{1}\right\rangle=X_{1}$); and the form $w_{i-1} x_{1}$ if $i \geqslant 2$ (with $w_{i-1} \in W_{i-1}$ and $\left\langle x_{1}\right\rangle=X_{1}$). Therefore our claim is true.

It follows that $W_{i}\langle g\rangle=W_{i} X_{1}\langle g\rangle$, which is a subgroup for all i, by (6). Thus $W_{i} q n G$.

The next result shows that, with the same hypotheses, there is a chain of quasinormal subgroups of G between 1 and A, including the subgroups W_{i}, for all $i \geqslant 0$, such that each subgroup in the chain has index p in the one above.

Theorem 2. Let $G=A X$ be a finite p-group, with A an abelian quasinormal subgroup, $A_{G}=1$ and X cyclic. Let $W_{i}=\Omega_{i}(A)$, all $i \geqslant 0$. Then there exists a composition series of G passing through the W_{i} 's in which every subgroup is quasinormal in G.

Proof. Clearly $A \cap X=1$. Also it is easy to establish the existence of the required composition series between A and G, using (5). Thus, by Theorem 1, it suffices to establish the existence of the series between W_{i} and W_{i+1}, for all i. Let A have exponent p^{r} and $|X|=p^{n+1}$. Then $r \leqslant n$, as in Theorem 1 . Let $X_{i}=\Omega_{i}(X), i \geqslant 0$.

Case (i). Suppose that $i \geqslant 1$. Again as in Theorem 1, we have, by induction on n, a composition series of G between $W_{i} X_{1}$ and $W_{i+1} X_{1}$ consisting of quasinormal subgroups of G. Let Q be one of these subgroups and let $Q_{1}=A \cap Q$. Then the subgroups Q_{1} form a composition series between W_{i} and W_{i+1}. We show that $Q_{1} q n G$. Thus let $g \in G$. We prove that $Q_{1}\langle g\rangle$ is a subgroup. To see this, we may assume, by (7), that $g \notin A X_{r-i}$. Also, as in Theorem 1, we see that

$$
\text { some power of } g \text { has the form } w_{i} x_{1}
$$

where $w_{i} \in W_{i}$ and $\left\langle x_{1}\right\rangle=X_{1}$. It follows that $Q_{1}\langle g\rangle=Q_{1} X_{1}\langle g\rangle=Q\langle g\rangle$, which is a subgroup. So $Q_{1} q n G$ in this case.

Case (ii). Suppose that $i=0$. As X-module, $W_{1} X_{1}\left(=\Omega_{1}(G)\right.$) is indecomposable (since $A_{G}=1$) and so is uniserial by [7, Theorem VII 5.3]. Thus there is a unique chief series between X_{1} and $W_{1} X_{1}$. Let Q be a term of this series and let $Q_{2}=A \cap Q \leqslant W_{1}$. Let $g \in G$. We show that $Q_{2}\langle g\rangle$ is a subgroup.

By (7), $\left[W_{1}, X_{r}\right]=1$. Therefore we may assume that $g \notin A X_{r}\left(=A^{G}\right)$. Then we claim that $\Omega_{1}(\langle g\rangle)=X_{1}$. For, some power h of g has the form $a x_{r+1}, a \in A,\left\langle x_{r+1}\right\rangle=X_{r+1}$. As we saw in the proof of Theorem 1, $A X_{r-1} / W_{r-1} X_{r-1}$ is quasinormal and core-free in $G / W_{r-1} X_{r-1}$, and $M=A X_{r} / W_{r-1} X_{r-1}$ is an indecomposable X / X_{r-1}-module. Since the fixed points of regular $X_{r+1} / X_{r}-$ submodules of M all lie in $A X_{r-1} / W_{r-1} X_{r-1}$, by Lemma 1(ii), and since these elements generate a normal subgroup of $G / W_{r-1} X_{r-1}$, it follows that there are no regular X_{r+1} / X_{r}-submodules in M. Thus

$$
h^{p} \equiv x_{r} \quad \bmod W_{r-1} X_{r-1}
$$

where $x_{r}=x_{r+1}^{p}$. So $h^{p} \in W_{r-1} X_{r}$. Similarly $h^{p^{2}} \in W_{r-2} X_{r-1}$ and continuing we obtain $h^{p^{r}} \in X_{1} \backslash\{1\}$. Therefore $\Omega_{1}(\langle g\rangle)=X_{1}$, as claimed.

Finally $Q_{2}\langle g\rangle=Q_{2} X_{1}\langle g\rangle=Q\langle g\rangle$ is a subgroup. Thus $Q_{2} q n G$.

To end this section, we show that, when p is odd, the composition series of Theorem 2 is not unique in general.

Theorem 3. Let p be an odd prime and let $G=A X$ be a finite p-group, with A an abelian quasinormal subgroup of $G, A_{G}=1$ and X cyclic. Then there is a series

$$
\begin{equation*}
1=Q_{0} \leqslant Q_{1} \leqslant \cdots \leqslant Q_{s}=A, \tag{8}
\end{equation*}
$$

with $Q_{i} q n G,\left|Q_{i+1}: Q_{i}\right|=p$, all i; and all powers $A^{p^{j}}(j \geqslant 1)$ occur as Q_{i} 's.
Proof. By Theorem 1 of [14], $B=A^{p} q n G$. Form the products of B with the terms of the composition series of G between 1 and A passing through $W_{i}=\Omega_{i}(A), i \geqslant 0$, given by Theorem 2. Then omitting repeats, we obtain a composition series of G between B and A consisting of quasinormal subgroups of G. Suppose that $H \geqslant K$ are adjacent terms of this composition series. So there exists $h \in H$ such that $H=K\langle h\rangle$ and $h^{p} \in K$. Therefore $H^{p}=K^{p}\left\langle h^{p}\right\rangle$ and $h^{p^{2}} \in K^{p}$. Thus $\left|H^{p}: K^{p}\right|=p$ or 1. Again by Theorem 1 of [14], $H^{p^{n}} q n G$ for all $n \geqslant 1$. It follows that taking those powers of all H in the composition series between B and A and removing repetitions, we obtain the series (8).

We shall show in Example 3 of the next section that in general there are more quasinormal subgroups of G lying in A than those described in Theorems 2 and 3.

4. Examples

We begin with an example of how the case $p=2$ can differ from the case when p is an odd prime. In Lemma 2.1(iv) of [5], it is shown that if A is an elementary abelian quasinormal subgroup of a finite p-group G, then A^{G} always has exponent p if p is odd. Though A^{G} need not be abelian, as is shown by an example in the same paper. However, when $p=2$, then A^{G} does not always have exponent 2 and is not always abelian.

Example 1. Let H be the group of order 2^{7} generated by elements $b_{i}, 0 \leqslant i \leqslant 3$, and x subject to the relations

$$
b_{i}^{2}=\left[b_{i}, b_{j}\right]=1, \quad \text { all } i, j, \quad x^{8}=b_{0}, \quad\left[b_{i}, x\right]=b_{i-1}, \quad 1 \leqslant i \leqslant 3 .
$$

Let $B=\left\langle b_{i} \mid 0 \leqslant i \leqslant 3\right\rangle$. Then $\left[B, X^{4}\right]=1$ and B is an X / X^{4}-module. We define an automorphism α of H by

$$
b_{i} \mapsto b_{i}, \quad \text { all } i, \quad x \mapsto x^{5} b_{3} .
$$

Since $\left(x^{5} b_{3}\right)^{8}=\left(x b_{3}\right)^{8}=x^{8} b_{3}(1-x)^{7}=b_{0}$, we see that α preserves the relations of H. One checks easily that $\left[x^{2}, \alpha\right]=x^{8} b_{2}$ and $\left[x^{4}, \alpha\right]=b_{0}$. Thus

$$
\left[x, \alpha^{2}\right]=x^{4} b_{3}\left(x^{4} b_{3}\right)^{\alpha}=x^{4} b_{3} x^{4} b_{0} b_{3}=1 .
$$

Therefore α is an automorphism of H of order 2 .
Form the semi-direct product G of H by the cyclic group $\langle a\rangle$ of order 2 , where the action of a on H is defined by α. Let $A=\langle a, B\rangle$. Then A is elementary abelian of rank 5 . We have $B \triangleleft G$ and G / B is a modular group of order 16, i.e. all its subgroups are quasinormal. Thus $A q n$. But $A^{G}=A X^{4}$ of exponent 4. Also A^{G} is not abelian.

Note that A here is not core-free in G. Indeed whenever A is a core-free elementary abelian quasinormal subgroup of a finite p-group G, then A^{G} is also elementary abelian, by [5, Lemma 2.1(ii)].

Let $G=A X$ be a finite p-group, with A elementary abelian and quasinormal in G and X cyclic. Suppose that $A_{G}=1$. So $A \cap X=1$ and $\Omega_{1}(X) \triangleleft G$. Let $B \leqslant A$ and suppose that $B X=X B$. Then

B qn G. For, if $C_{X}(A) \geqslant \Omega_{2}(X)$, then Corollary 2 applies; and if $C_{X}(A)=\Omega_{1}(X)$, then Lemmas 2 and 3 apply. In the light of this result, it is reasonable to ask if the hypothesis $A_{G}=1$ is necessary here. In fact it is, even when $A \cap X=1$, as we now show.

Example 2. Let p be an odd prime and let A be an elementary abelian p-group of rank $p+1$, with basis $a_{1}, a_{2}, \ldots, a_{p}, b$. Let $X_{1}=\left\langle x_{1}\right\rangle$ be a cyclic group of order p and form the direct product $H=$ $A \times X_{1}$. Now H has an automorphism ξ of order p defined by

$$
a_{i} \mapsto a_{i} a_{i+1}, \quad 1 \leqslant i \leqslant p-1, \quad a_{p} \mapsto a_{p}, \quad b \mapsto b x_{1}^{-1}, \quad x_{1} \mapsto x_{1}
$$

Then by [11, 9.7.1(ii)], there is an extension G of H by a cyclic group of order p defined as follows:

$$
G=\left\langle A, x \mid\left[a_{i}, x\right]=a_{i+1}, 1 \leqslant i \leqslant p-1,\left[a_{p}, x\right]=1,[x, b]=x^{p}\right\rangle
$$

Here $x^{p}=x_{1}$. Then $A_{1}=\left\langle a_{1}, \ldots, a_{p}\right\rangle \triangleleft G$ and G / A_{1} has order p^{3} with all its subgroups quasinormal. Therefore A qn G. Also with $B=\langle b\rangle, B X=X B$. But $\left(x a_{1}\right)^{p}=x^{p} a_{1}(1-x)^{p-1}=x_{1} a_{p}$. If B were quasinormal in G, then b would normalise $\left\langle x a_{1}\right\rangle$, i.e. $\left[x a_{1}, b\right] \in\left\langle x a_{1}\right\rangle^{p}=\left\langle x_{1} a_{p}\right\rangle$. However, $\left[x a_{1}, b\right]=x_{1}$ and we would have a contradiction. Thus B is not quasinormal in G.

It is easy to construct a similar example when $p=2$, by taking A of rank $5, X$ of order 8 and defining $[x, b]=x^{4}$.

Our final example shows that, in general, the subgroups given by Theorems 2 and 3 do not account for all the quasinormal subgroups of G lying in A.

Example 3. Let p be a prime $\geqslant 5$ (for convenience) and let M be the group of order p^{5} defined by the presentation

$$
\left\langle b, y, x \mid b^{p}=y^{p}=[b, y]=x^{p^{3}}=1,[b, x]=y,[y, x]=x^{p^{2}}\right\rangle
$$

Let $W=\langle b, y\rangle \cong C_{p} \times C_{p}$ and $X=\langle x\rangle \cong C_{p^{3}}$. So $M=W X$ and $W \cap X=1$. We construct an automorphism α of M as follows. Let $0 \leqslant i, j \leqslant p-1$ and define

$$
\alpha: b \mapsto b, \quad y \mapsto y, \quad x \mapsto x^{1+p} b^{i} y^{j}
$$

One checks easily that $\alpha: x^{p} \mapsto x^{p+p^{2}}$ and $x^{p^{2}} \mapsto x^{p^{2}}$. Also α preserves the relations of M and therefore α defines an automorphism of M. For all $n \geqslant 1$,

$$
\alpha^{n}: x \mapsto x^{(1+p)^{n}}\left(b^{i} y^{j}\right)^{n}
$$

So $|\alpha|=p^{2}$. Moreover $\left[x, \alpha^{p}\right]=x^{p^{2}}=\left[x, y^{-1}\right]$. Thus the action of α^{p} on M coincides with conjugation by y^{-1}. Then again by [11, 9.7.1(ii)], there is a group G of order p^{6} which is an extension of M by a cyclic group of order p, generated by a, such that a acts on M according to α and $a^{p}=y^{-1}$. Therefore

$$
G=\left\langle b, a, x \mid b^{p}=a^{p^{2}}=[b, a]=x^{p^{3}}=1,[x, b]=a^{p},[x, a]=x^{p} b^{i} a^{-j p}\right\rangle
$$

Let $A=\langle b, a\rangle$. We claim that

For, let $X_{2}=\Omega_{2}(X)$. Since $\left\langle b, a^{p}\right\rangle \leqslant Z\left(A X_{2}\right)$, we have $A q n A X_{2}$. Let $g=x^{\ell} b^{m} a^{n}$, where $p \nmid \ell$. One checks that

$$
g^{p} \equiv \chi^{\ell p} \quad \bmod \Omega_{1}(G)
$$

and hence $g^{p^{2}}=x^{\ell p^{2}}$, i.e. $\Omega_{1}(\langle g\rangle)=X_{1}\left(=\Omega_{1}(X)\right.$). Thus $|A\langle g\rangle|=|A \|\langle g\rangle|=p^{6}$ and $A\langle g\rangle=G$. So (9) is true.

Since $A_{G}=1$, Theorems 2 and 3 apply to G and so

$$
\left\langle a^{p}\right\rangle,\left\langle b, a^{p}\right\rangle \text { and } A \text { are quasinormal in } G .
$$

Observe that there is no cyclic quasinormal subgroup of G of order p^{2} here. Indeed if $i \neq 0$, then such a subgroup cannot exist. But suppose that $i=0$. Then we claim that, for $0 \leqslant k \leqslant p-1$,

$$
\begin{equation*}
Q=\left\langle b^{k} a\right\rangle q n G . \tag{10}
\end{equation*}
$$

For, since $Q^{p}=\left\langle a^{p}\right\rangle \leqslant Z\left(A X_{2}\right)$, factoring $A X_{2}$ by Q^{p}, we see from Lemma 3 that $Q q n A X_{2}$. Thus let $g=x^{\ell} b^{m} a^{n}, p \nmid \ell$. As above, $\Omega_{1}(\langle g\rangle)=X_{1}$, and so $Q\langle g\rangle=Q X_{1}\langle g\rangle$. To see that this product is a subgroup, we may factor by X_{1}. Then $\left[x, a^{p}\right]=1$ and so we may also factor by $\left\langle a^{p}\right\rangle$. But then applying Lemma 3 to

$$
G / Q^{p} X_{1}=(\langle b\rangle \times Q) X / Q^{p} X_{1},
$$

we see that $Q / Q^{p} X_{1}$ is quasinormal in this group, since $b^{k} a$ normalises $X / Q^{p} X_{1}$. Therefore $Q X_{1}\langle g\rangle$ is a subgroup and (9) is true.

It follows that, when $i=0$, there are p cyclic quasinormal subgroups of G of order p^{2} lying in A, none of which appears in Theorems 2 and 3.

References

[1] T.R. Berger, F. Gross, A universal example of a core-free permutable subgroup, Rocky Mountain J. Math. 12 (1982) $345-365$.
[2] J. Cossey, S.E. Stonehewer, Cyclic permutable subgroups of finite groups, J. Aust. Math. Soc. 71 (2001) 169-176.
[3] J. Cossey, S.E. Stonehewer, The embedding of a cyclic permutable subgroup in a finite group, Illinois J. Math. 47 (2003) 89-111.
[4] J. Cossey, S.E. Stonehewer, The embedding of a cyclic permutable subgroup in a finite group II, Proc. Edinb. Math. Soc. 47 (2004) 101-109.
[5] J. Cossey, S.E. Stonehewer, G. Zacher, Quasinormal subgroups of order p^{2}, Ric. Mat. 57 (2008) 127-135.
[6] F. Gross, p-subgroups of core-free quasinormal subgroups, Rocky Mountain J. Math. 1 (1971) 541-550.
[7] B. Huppert, N. Blackburn, Finite Groups II, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
[8] R. Maier, P. Schmid, The embedding of quasinormal subgroups in finite groups, Math. Z. 131 (1973) 269-272.
[9] K. Nakamura, Charakteristische Untergruppen von Quasinormalteiler, Arch. Math. 32 (1979) 513-515.
[10] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, 1994.
[11] W.R. Scott, Group Theory, Prentice Hall, Englewood Cliffs, 1964.
[12] S.E. Stonehewer, Permutable subgroups of some finite p-groups, J. Aust. Math. Soc. 16 (1973) 90-97.
[13] S.E. Stonehewer, Permutable subgroups of some finite permutation groups, Proc. Lond. Math. Soc. (3) 28 (1974) $222-236$.
[14] S.E. Stonehewer, G. Zacher, Abelian quasinormal subgroups of groups, Rend. Mat. Accad. Lincei (9) 15 (2004) 69-79.

[^0]: * Corresponding author.

 E-mail addresses: John.Cossey@anu.edu.au (J. Cossey), S.E.Stonehewer@warwick.ac.uk (S. Stonehewer).
 ${ }^{1}$ Author acknowledges support from EPSRC and hospitality from the University of Warwick.

