

Contents lists available at ScienceDirect

Journal of Algebra

ALCEEBRA

www.elsevier.com/locate/jalgebra

Abelian quasinormal subgroups of finite *p*-groups

John Cossey^{a,1}, Stewart Stonehewer^{b,*}

^a Mathematics Department, School of Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia ^b Mathematics Institute, University of Warwick, Coventry CV4 7AL, England, United Kingdom

ARTICLE INFO

Article history: Received 5 January 2009 Available online 20 March 2010 Communicated by Peter Webb

MSC: 20E07 20E15

Keywords: Quasinormal subgroup p-group

1. Introduction

ABSTRACT

If G = AX is a finite *p*-group, with *A* an abelian quasinormal subgroup and *X* a cyclic subgroup, then we find two composition series of *G* passing through *A*, all the members of which are quasinormal subgroups of *G*.

© 2010 Elsevier Inc. All rights reserved.

A subgroup Q of a group G is said to be *quasinormal* (sometimes *permutable*) in G, and we write Q qn G, if QH = HQ for all subgroups H of G. Equivalently Q qn G if QH = HQ for all *cyclic* subgroups H of G. Of course QH = HQ if and only if $QH = \langle Q, H \rangle$. Normal subgroups are quasinormal, but the converse is false in general. In finite groups the difficulties associated with quasinormal subgroups are encountered in the p-groups. This is easy to explain. For, let G be a finite group with Q qn G and suppose that Q is core-free. Then it is shown in [8] that Q lies in the hypercentre of G. In particular Q is nilpotent. Also, by [10, Lemma 6.2.16], each Sylow p-subgroup P of Q is quasinormal in G; and it is easy to see that each p'-element of G centralises P. Thus if S is a Sylow p-subgroup of G, then P qn S and the complexities of the embedding of Q in G are reduced to those of P in S.

Very little is known about quasinormal subgroups of finite *p*-groups. Gross and Berger made a significant contribution in [6] and [1]; and several examples were constructed in [12] and [13] show-

* Corresponding author.

E-mail addresses: John.Cossey@anu.edu.au (J. Cossey), S.E.Stonehewer@warwick.ac.uk (S. Stonehewer).

¹ Author acknowledges support from EPSRC and hospitality from the University of Warwick.

0021-8693/\$ – see front matter @ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2010.03.007

ing how complicated core-free quasinormal subgroups can be. How cyclic quasinormal subgroups are embedded in finite groups was discovered in [2–4]. Also in [14] it was shown that when Q is an *abelian* quasinormal subgroup of *any* group G (finite or infinite), then $Q^n qn G$, provided n is odd or divisible by 4. Apart from this, given Q qn G, virtually nothing is known about which subgroups of Qare also quasinormal in G, even when Q is abelian. It was proved in [5] that if Q has order p^2 (with p an odd prime), then there is always a quasinormal subgroup of G of order p lying in Q. But this subgroup is in no way canonical and its existence was established only by an exhaustive analysis of possible minimal counter-examples. This lack of knowledge becomes even more surprising when one considers the significance of quasinormal subgroups within finite p-groups. Indeed it is the quasinormal subgroups, not the normal subgroups, that are invariant under automorphisms and isomorphisms of the subgroup lattices.

Obvious questions spring to mind. In a finite *p*-group, is a minimal non-trivial quasinormal subgroup always of order *p*? Do maximal chains of quasinormal subgroups form a composition series? In fact we know that the answer to the latter question is in the negative, but that will appear elsewhere. Here we concentrate on *abelian* quasinormal subgroups *A* of a finite *p*-group *G*. Given the difficulty of dealing with the case where *A* has order p^2 , progress is sure to be slow. Also since *A* qn *G* if and only if *A* qn *AX* for all cyclic subgroups *X* of *G*, we consider groups G = AX with *X* cyclic. This is the hypothesis that Gross and Berger assumed in [6] and [1]. Also in [9] Nakamura showed that if Q qn G = QX, with *X* cyclic and *G* a finite *p*-group, then there is a quasinormal subgroup of *G* of order *p* lying in *Q* (in fact in *Z*(*Q*)). Thus we shall consider abelian quasinormal subgroups *A* of finite *p*-groups G = AX, where *X* is cyclic. We shall prove that there is a canonical series

$$1 = Q_0 \leqslant Q_1 \leqslant \cdots \leqslant Q_s = A,$$

with Q_i qn G and $|Q_{i+1} : Q_i| = p$, all i. If A is core-free, then there is a unique series of this type passing through the subgroups $\Omega_i(A)$, $i \ge 0$. Also, when p is odd, there is a series passing through the subgroups A^{p^i} , $i \ge 0$ (though not necessarily unique). We see this work as an essential first step before removing the hypothesis G = AX with X cyclic.

Section 3 contains the proofs of our theorems and in Section 4 we construct some examples dealing with questions that arise naturally. Section 2 contains preliminary lemmas required for the theorems and examples.

Notation is standard. The centre of a group *G* is denoted by *Z*(*G*). If *H* and *K* are subgroups of *G*, then $C_H(K)$ and $N_H(K)$ are the centraliser and normaliser, respectively, of *K* in *H*. The repeated commutator subgroup [H, K, K, ..., K], with *i K*'s, is written as [H, iK] and H_G , H^G are the (normal) core and closure, respectively, of *H* in *G*. A maximal proper subgroup *H* of *G* is denoted by H < G. If *G* is a *p*-group, then, for all $i \ge 0$, $\Omega_i(G) = \langle x \in G \mid x^{p^i} = 1 \rangle$. For a cyclic group *X*, we shall write $X_i = \Omega_i(X)$. Finally C_n denotes a cyclic group of order *n*.

2. Preliminary lemmas

We begin with a key result.

Lemma 1. Let G = AX be a finite p-group, with A an elementary abelian subgroup and X a cyclic subgroup of order at least p^2 . Suppose that $A \cap X = 1$ and $X_1 = \Omega_1(X) \triangleleft G$. Then with $X_2 = \Omega_2(X)$

- (i) AX_1 is elementary abelian and $AX_1 \triangleleft AX_2$;
- (ii) A qn G if and only if the fixed point of any regular X_2/X_1 -submodule of AX_1 lies in A.

Proof. Since $X_1 \leq Z(G)$, AX_1 is elementary abelian of index p in AX_2 . Therefore $AX_1 \triangleleft AX_2$ and (i) follows.

For (ii), suppose that A qn G. Assume, for a contradiction, that there is a regular X_2/X_1 -submodule W of AX_1 such that (in additive module notation)

$$W(1-X_2)^{p-1} \notin A.$$

Let $X_2 = \langle x_2 \rangle$. Then there is an element $a \in A$ such that $a(1 - x_2)^{p-1} = a_1x_1$, where $a_1 \in A$ and $\langle x_1 \rangle = X_1$. Replacing *a* by a power if necessary, we may also assume that $x_2^p = x_1$. Let $g = x_2^{-1}a$. Then

$$g^{p} = (x_{2}^{-1}a)^{p} = x_{1}^{-1}a(1-x_{2}^{-1})^{p-1} = x_{1}^{-1}a(1-x_{2})^{p-1} = a_{1}$$

Now $AX_2 = A\langle g \rangle$. But $|A\langle g \rangle : A| = |\langle g \rangle : A \cap \langle g \rangle| = p$, while $|AX_2 : A| = |X_2| = p^2$, a contradiction.

Conversely, suppose that the fixed point of any regular X_2/X_1 -submodule of AX_1 lies in A. We distinguish two possibilities.

Case 1. Suppose that $X = X_2$. Certainly A qn AX_1 . Therefore let $g \in G \setminus AX_1$. Then g = xa, where $a \in A$ and $\langle x \rangle = X$. So $g^p = x_1a(1-x)^{p-1}$, where $x_1 = x^p$. If $a(1-x)^{p-1} \neq 1$, then it must lie in A. Thus in any case $A\langle g^p \rangle = AX_1$ and $A\langle g \rangle = AX_1\langle g \rangle = G$. So A qn G.

Case 2. Suppose that $X > X_2$. Let $A \leq H \ll G$. Then by induction on |X|, we have

A qn H.
$$(1)$$

Now $A^G = AX_i \leq H$, for some $X_i \leq X$. Also the subgroups containing A form a chain. So A^G is generated by A and some conjugate of an element of A, i.e. an element of order p. Thus $|A^G : A| \leq p$, by (1), and then $A^G \leq K < H$. Let $g_1 \in G \setminus H$. Therefore $A^G \langle g_1^p \rangle = H$ and $g_1^p \notin K$. Hence $A \langle g_1^p \rangle = H$ (again by (1)) and so $A \langle g_1 \rangle = H \langle g_1 \rangle = G$. Then A qn G. \Box

As a consequence of this result, we find that A is always quasinormal in G in a certain situation.

Corollary 1. Assume the hypotheses of Lemma 1 and in addition suppose that $C_X(A) \ge X_2$. Then A qn G.

Proof. Clearly as X_2/X_1 -module, AX_1 has no regular submodules. Therefore A qn G, by Lemma 1.

We shall be considering situations where an elementary abelian subgroup *A* is quasinormal in the finite *p*-group G = AX, with *X* cyclic and $A \cap X = 1$. Then we always have

$$A^G = A \text{ or } AX_1, \tag{2}$$

as in Case 2 of Lemma 1(ii) above. In fact when p is odd, this does not require $A \cap X = 1$, by Lemma 2.1(iv) of [5]. But it does when p = 2. (See Example 1 in Section 4.)

We now give a simple criterion for deciding which subgroups of A in Corollary 1 are quasinormal in G.

Corollary 2. Assume the hypotheses of Corollary 1 and let $B \leq A$. Then B qn G if and only if BX = XB.

Proof. The necessity of the condition is clear. Conversely, suppose that BX = XB. By Corollary 1, A qn G. So, by (2), AX_1 is an X-module. Let $A \leq M < G$. Then $M \cap BX = B(M \cap X)$ and therefore B qn M, by induction on |X|. Let $g \in G \setminus M$. Thus g = xa, where $\langle x \rangle = X$ and $a \in A$. It follows that with $|X| = p^{n+1}$ ($n \geq 1$), we have

$$g^{p^n} = x^{p^n} a(1-x)^{p^n-1} = x^{p^n},$$

because $|X/X_2| = p^{n-1}$. Hence

$$\Omega_1(\langle g \rangle) = X_1 = \Omega_1(X).$$

But $B^G = B^X \leq BX \cap AX_1 = BX_1$. So $BX_1 \lhd G$. Therefore $B\langle g \rangle = BX_1 \langle g \rangle$ and $B\langle g \rangle$ is a subgroup. Thus B qn G. \Box

We shall see in Example 2 in Section 4 that when A qn G, we cannot remove the hypothesis $C_X(A) \ge X_2$ in Corollary 2.

Lemma 1 enables us to establish a criterion for deciding if an elementary abelian subgroup A is quasinormal in a finite p-group G = AX, where X is cyclic and AX_1 is an indecomposable X-module, for example when A is core-free in G.

Lemma 2. Let G = AX be a finite p-group, with A elementary abelian of rank r - 1, X cyclic of order p^{n+1} $(n \ge 1)$, $A \cap X = 1$, $X_1 = \Omega_1(X)$, $AX_1 = A \times X_1 = V \lhd G$, where V is an indecomposable X-module, and $C_X(A) = X_1$. Then $p^{n-1} < r \le p^n$. Also A qn G if and only if $r \le p^{n-1}(p-1)$, in which case p is odd.

Proof. Since *V* is indecomposable, $r \leq p^n$. Also if $r \leq p^{n-1}$, then $X_2 = \Omega_2(X)$ must centralise *A*, which is not the case. Thus $p^{n-1} < r$.

Suppose that *A* qn *G*. By Lemma 1(ii), the subgroup generated by the fixed points of the regular X_2/X_1 -submodules of *V* lies in *A*. But *X* normalises this subgroup. Since $A_G = 1$, we deduce that there are no regular X_2/X_1 -submodules of *V*. Let $X = \langle x \rangle$ and choose a basis $\{w_i \mid 1 \leq i \leq r\}$ of *V* such that (in additive notation)

$$w_i(x-1) = w_{i+1}, \quad 1 \le i \le r-1, \qquad w_r(x-1) = 1.$$

Then with $q = p^{n-1}$ and $y = x^q$, $w_i(y-1) = w_{i+q}$ and so

$$V = W_1 \times W_2 \times \dots \times W_{n^{n-1}} \tag{3}$$

as a decomposition into indecomposable X_2/X_1 -submodules (with W_i generated by w_i). Each W_i has rank at most p - 1, since there are no regular submodules. Therefore $r \leq p^{n-1}(p-1)$, as required. (See Exercise 4 on page 227 of [10].)

Conversely, suppose that

$$r \leqslant p^{n-1}(p-1). \tag{4}$$

Suppose also that there is a regular X_2/X_1 -submodule of V. Since the ranks of any two W_i 's in (3) differ by at most 1, we must have

$$r \ge p + (p^{n-1} - 1)(p - 1) = p^{n-1}(p - 1) + 1.$$

But this contradicts (4). Therefore *V* contains no regular X_2/X_1 -submodules and *A* qn *G* by Lemma 1(ii). \Box

Sufficient conditions for quasinormality in a more general situation can now be established.

Lemma 3. Let G = AX be a finite p-group with A elementary abelian, X cyclic of order p^{n+1} , $X_1 = \Omega_1(X) \triangleleft G$, $A \cap X = 1$ and $V = AX_1 \triangleleft G$. Suppose that all indecomposable X-submodules of V have rank at most $p^{n-1}(p-1)$. Then

(i) A qn G; and

(ii) $B \leq A$ and BX = XB implies B qn G.

Proof. (i) Clearly we may assume that $n \ge 1$ and $A_G = 1$. Then *V* has only 1 fixed point as *X*-module. Thus *V* is indecomposable and *A qn G*, by Corollary 1 and Lemma 2.

(ii) Let $A \leq M \leq G$. Since the rank hypothesis is satisfied for V as X^p -module, we may assume, by induction on |X|, that B qn M. Let $g \in G \setminus M$. Then g = xa, where $\langle x \rangle = X$ and $a \in A$. So (using additive

module notation)

$$g^{p^n} = x^{p^n} a(1-x)^{p^n-1} = x^{p^n} = x_1,$$

where $\langle x_1 \rangle = X_1$. Thus $B\langle g \rangle = BX_1 \langle g \rangle$. But $B^G = B^X \leq BX \cap V = BX_1$. Therefore $BX_1 \lhd G$. Hence $B\langle g \rangle$ is a subgroup and B qn G. \Box

It appears to be unknown whether a minimal (non-trivial) quasinormal subgroup of a finite p-group G has order p. However, if G = AX with A abelian and quasinormal and X cyclic, then this is the case inside A, as we now show. (We use the term "lemma" here in the hope that it will help to establish a significantly more general result.)

Lemma 4. Let G = AX be a finite p-group with A an abelian quasinormal subgroup and X cyclic. Let B be a minimal (non-trivial) quasinormal subgroup of G lying in A. Then |B| = p if (i) p is odd or (ii) B is elementary.

Proof. Clearly we may assume that $B_G = 1$. So $B \cap X = 1$. Also if p is odd, then B^p qn G (by [14]) and so $B^p = 1$, i.e. B is elementary abelian. Thus $B^G = B^X = BX_1$, by (2). (Here $X_1 = \Omega_1(X)$.) Therefore there is a non-trivial central element of G of the form bx_1 , where $b \in B$ and $x_1 \in X_1$. Hence [b, X] = 1 and so b = 1. Then $\langle x_1 \rangle = X_1 \leq Z(G)$.

Now $N_B(X)$ has order p. This is clear if p is odd. But if p = 2, having order 4 would involve a dihedral action and B would not be quasinormal. Thus let $N_B(X) = \langle b \rangle$, of order p, and suppose that B has rank i + 1. Then $[B, _iX] \equiv \langle b \rangle$ mod X_1 . Let $A \leq M < G$. Thus $b \in Z(M)$. Let $g \in G \setminus M$. Then $B^G = BX_1 = B^{\langle g \rangle} = B\Omega_1(\langle g \rangle)$, an indecomposable $\langle g \rangle$ -module. But $[B, _i\langle g \rangle] = [B, _iX]$. So b normalises $\langle g \rangle$. Therefore $\langle b \rangle qn G$ and $B = \langle b \rangle$ of order p. \Box

3. Main results

Theorem 1 of [14] proves that if A qn G, with A abelian, and if p is an odd prime, then $A^p qn G$. On the other hand, Example 2 of the same paper shows that when G is a finite p-group, then $\Omega_1(A)$ is *not* always quasinormal in G. In that example, G = AX with X cyclic and $A_G \neq 1$. Our first main result shows that if $A_G = 1$ in this situation, then we do have $\Omega_i(A) qn G$, for all $i \ge 1$, and for all primes p.

Theorem 1. Let G = AX be a finite *p*-group, with *A* an abelian quasinormal subgroup of *G*, $A_G = 1$ and *X* cyclic. Let $W_i = \Omega_i(A)$, $i \ge 0$. Then W_i qn *G*, for all *i*.

Proof. We have $A \cap X = 1$. Let $|X| = p^{n+1}$ and let A have exponent p^r . So $r \leq n$, by [6]. (See also [10, Theorem 5.2.8].) Also, by the same reference,

$$\Omega_i(G) = W_i X_i \lhd G,\tag{5}$$

where $X_i = \Omega_i(X)$, for all *i*; and AX_i/W_iX_i is core-free in G/W_iX_i . Thus $W_iX_{i+1}/W_iX_i \triangleleft G/W_iX_i$. It follows, by induction on *n*, that

$$W_i X_1 qn G$$
, all *i*. (6)

Since $\Omega_r(G) = AX_r \triangleleft G$ and $A_G = 1$, it follows that $A^G = AX_r$. Also $A \leq C_G(W_1) = C_G(W_1X_1) \triangleleft G$. So $[W_1, X_r] = 1$. Similarly $[W_2, X_r] \leq W_1X_1$ and therefore $[W_2, X_{r-1}] = 1$. Continuing in this way we obtain

$$[W_i, X_{r-i+1}] = 1, (7)$$

for all $i \leq r$.

Let $g \in G$. We show that $W_i\langle g \rangle$ is a subgroup. By (7), we may assume that $g \notin AX_{r-i+1}$. We claim that some power of g has the form $w_i x_1$, where $w_i \in W_i$ and $\langle x_1 \rangle = X_1$. For, if $A\langle g \rangle = AX_s$, then $A\langle g^p \rangle = AX_{s-1}$; and $s \ge 2$. Thus some power h of g belongs to $AX_{r-i+2} \setminus AX_{r-i+1}$. Then h belongs to $AX_{r+1} \le W_{r+1}X_{r+1}$ if i = 1; and h belongs to $AX_r = W_rX_r$ if $i \ge 2$. Let $u = h^{p^{r-i+1}}$. Thus if i = 1, then $u \in W_1X_1$; and if $i \ge 2$, then $u \in W_{i-1}X_{i-1}$. But $u \in AX_1 \setminus A$. Hence u has the form w_1x_1 if i = 1 (with $w_1 \in W_1$ and $\langle x_1 \rangle = X_1$); and the form $w_{i-1}x_1$ if $i \ge 2$ (with $w_{i-1} \in W_{i-1}$ and $\langle x_1 \rangle = X_1$). Therefore our claim is true.

It follows that $W_i(g) = W_i X_1(g)$, which is a subgroup for all *i*, by (6). Thus W_i *qn G*. \Box

The next result shows that, with the same hypotheses, there is a chain of quasinormal subgroups of *G* between 1 and *A*, including the subgroups W_i , for all $i \ge 0$, such that each subgroup in the chain has index *p* in the one above.

Theorem 2. Let G = AX be a finite p-group, with A an abelian quasinormal subgroup, $A_G = 1$ and X cyclic. Let $W_i = \Omega_i(A)$, all $i \ge 0$. Then there exists a composition series of G passing through the W_i 's in which every subgroup is quasinormal in G.

Proof. Clearly $A \cap X = 1$. Also it is easy to establish the existence of the required composition series between A and G, using (5). Thus, by Theorem 1, it suffices to establish the existence of the series between W_i and W_{i+1} , for all i. Let A have exponent p^r and $|X| = p^{n+1}$. Then $r \leq n$, as in Theorem 1. Let $X_i = \Omega_i(X)$, $i \geq 0$.

Case (i). Suppose that $i \ge 1$. Again as in Theorem 1, we have, by induction on n, a composition series of G between $W_i X_1$ and $W_{i+1} X_1$ consisting of quasinormal subgroups of G. Let Q be one of these subgroups and let $Q_1 = A \cap Q$. Then the subgroups Q_1 form a composition series between W_i and W_{i+1} . We show that $Q_1 qn G$. Thus let $g \in G$. We prove that $Q_1 \langle g \rangle$ is a subgroup. To see this, we may assume, by (7), that $g \notin AX_{r-i}$. Also, as in Theorem 1, we see that

some power of *g* has the form $w_i x_1$,

where $w_i \in W_i$ and $\langle x_1 \rangle = X_1$. It follows that $Q_1 \langle g \rangle = Q_1 X_1 \langle g \rangle = Q \langle g \rangle$, which is a subgroup. So $Q_1 qn G$ in this case.

Case (ii). Suppose that i = 0. As X-module, $W_1X_1 (= \Omega_1(G))$ is indecomposable (since $A_G = 1$) and so is uniserial by [7, Theorem VII 5.3]. Thus there is a unique chief series between X_1 and W_1X_1 . Let Q be a term of this series and let $Q_2 = A \cap Q \leq W_1$. Let $g \in G$. We show that $Q_2\langle g \rangle$ is a subgroup.

By (7), $[W_1, X_r] = 1$. Therefore we may assume that $g \notin AX_r (= A^G)$. Then we claim that $\Omega_1(\langle g \rangle) = X_1$. For, some power *h* of *g* has the form ax_{r+1} , $a \in A$, $\langle x_{r+1} \rangle = X_{r+1}$. As we saw in the proof of Theorem 1, $AX_{r-1}/W_{r-1}X_{r-1}$ is quasinormal and core-free in $G/W_{r-1}X_{r-1}$, and $M = AX_r/W_{r-1}X_{r-1}$ is an indecomposable X/X_{r-1} -module. Since the fixed points of regular X_{r+1}/X_r -submodules of *M* all lie in $AX_{r-1}/W_{r-1}X_{r-1}$, by Lemma 1(ii), and since these elements generate a normal subgroup of $G/W_{r-1}X_{r-1}$, it follows that there are no regular X_{r+1}/X_r -submodules in *M*. Thus

$$h^p \equiv x_r \mod W_{r-1}X_{r-1}$$
,

where $x_r = x_{r+1}^p$. So $h^p \in W_{r-1}X_r$. Similarly $h^{p^2} \in W_{r-2}X_{r-1}$ and continuing we obtain $h^{p^r} \in X_1 \setminus \{1\}$. Therefore $\Omega_1(\langle g \rangle) = X_1$, as claimed.

Finally $Q_2(g) = Q_2 X_1(g) = Q(g)$ is a subgroup. Thus $Q_2 qn G$. \Box

To end this section, we show that, when p is odd, the composition series of Theorem 2 is not unique in general.

Theorem 3. Let *p* be an odd prime and let G = AX be a finite *p*-group, with *A* an abelian quasinormal subgroup of *G*, $A_G = 1$ and *X* cyclic. Then there is a series

$$1 = Q_0 \leqslant Q_1 \leqslant \dots \leqslant Q_s = A, \tag{8}$$

with Q_i qn G_i , $|Q_{i+1} : Q_i| = p$, all i; and all powers A^{p^j} $(j \ge 1)$ occur as Q_i 's.

Proof. By Theorem 1 of [14], $B = A^p qn G$. Form the products of *B* with the terms of the composition series of *G* between 1 and *A* passing through $W_i = \Omega_i(A)$, $i \ge 0$, given by Theorem 2. Then omitting repeats, we obtain a composition series of *G* between *B* and *A* consisting of quasinormal subgroups of *G*. Suppose that $H \ge K$ are adjacent terms of this composition series. So there exists $h \in H$ such that $H = K \langle h \rangle$ and $h^p \in K$. Therefore $H^p = K^p \langle h^p \rangle$ and $h^{p^2} \in K^p$. Thus $|H^p : K^p| = p$ or 1. Again by Theorem 1 of [14], $H^{p^n} qn G$ for all $n \ge 1$. It follows that taking those powers of all *H* in the composition series between *B* and *A* and removing repetitions, we obtain the series (8). \Box

We shall show in Example 3 of the next section that in general there are more quasinormal subgroups of *G* lying in *A* than those described in Theorems 2 and 3.

4. Examples

We begin with an example of how the case p = 2 can differ from the case when p is an odd prime. In Lemma 2.1(iv) of [5], it is shown that if A is an elementary abelian quasinormal subgroup of a finite p-group G, then A^G always has exponent p if p is odd. Though A^G need not be abelian, as is shown by an example in the same paper. However, when p = 2, then A^G does not always have exponent 2 and is not always abelian.

Example 1. Let *H* be the group of order 2^7 generated by elements b_i , $0 \le i \le 3$, and *x* subject to the relations

$$b_i^2 = [b_i, b_i] = 1$$
, all $i, j, x^8 = b_0$, $[b_i, x] = b_{i-1}$, $1 \le i \le 3$.

Let $B = \langle b_i | 0 \leq i \leq 3 \rangle$. Then $[B, X^4] = 1$ and B is an X/X^4 -module. We define an automorphism α of H by

$$b_i \mapsto b_i$$
, all i , $x \mapsto x^5 b_3$.

Since $(x^5b_3)^8 = (xb_3)^8 = x^8b_3(1-x)^7 = b_0$, we see that α preserves the relations of *H*. One checks easily that $[x^2, \alpha] = x^8b_2$ and $[x^4, \alpha] = b_0$. Thus

$$[x, \alpha^2] = x^4 b_3 (x^4 b_3)^{\alpha} = x^4 b_3 x^4 b_0 b_3 = 1.$$

Therefore α is an automorphism of *H* of order 2.

Form the semi-direct product *G* of *H* by the cyclic group $\langle a \rangle$ of order 2, where the action of *a* on *H* is defined by α . Let $A = \langle a, B \rangle$. Then *A* is elementary abelian of rank 5. We have $B \lhd G$ and G/B is a modular group of order 16, i.e. all its subgroups are quasinormal. Thus *A* qn *G*. But $A^G = AX^4$ of exponent 4. Also A^G is not abelian.

Note that A here is not core-free in G. Indeed whenever A is a core-free elementary abelian quasinormal subgroup of a finite p-group G, then A^G is also elementary abelian, by [5, Lemma 2.1(ii)].

Let G = AX be a finite *p*-group, with A elementary abelian and quasinormal in G and X cyclic. Suppose that $A_G = 1$. So $A \cap X = 1$ and $\Omega_1(X) \triangleleft G$. Let $B \leq A$ and suppose that BX = XB. Then *B* qn *G*. For, if $C_X(A) \ge \Omega_2(X)$, then Corollary 2 applies; and if $C_X(A) = \Omega_1(X)$, then Lemmas 2 and 3 apply. In the light of this result, it is reasonable to ask if the hypothesis $A_G = 1$ is necessary here. In fact it is, even when $A \cap X = 1$, as we now show.

Example 2. Let *p* be an odd prime and let *A* be an elementary abelian *p*-group of rank p + 1, with basis $a_1, a_2, ..., a_p, b$. Let $X_1 = \langle x_1 \rangle$ be a cyclic group of order *p* and form the direct product $H = A \times X_1$. Now *H* has an automorphism ξ of order *p* defined by

 $a_i \mapsto a_i a_{i+1}, \quad 1 \leq i \leq p-1, \qquad a_p \mapsto a_p, \qquad b \mapsto b x_1^{-1}, \qquad x_1 \mapsto x_1.$

Then by [11, 9.7.1(ii)], there is an extension G of H by a cyclic group of order p defined as follows:

$$G = \langle A, x \mid [a_i, x] = a_{i+1}, 1 \leq i \leq p-1, [a_p, x] = 1, [x, b] = x^p \rangle.$$

Here $x^p = x_1$. Then $A_1 = \langle a_1, \ldots, a_p \rangle \triangleleft G$ and G/A_1 has order p^3 with all its subgroups quasinormal. Therefore A qn G. Also with $B = \langle b \rangle$, BX = XB. But $(xa_1)^p = x^pa_1(1-x)^{p-1} = x_1a_p$. If B were quasinormal in G, then b would normalise $\langle xa_1 \rangle$, i.e. $[xa_1, b] \in \langle xa_1 \rangle^p = \langle x_1a_p \rangle$. However, $[xa_1, b] = x_1$ and we would have a contradiction. Thus B is not quasinormal in G.

It is easy to construct a similar example when p = 2, by taking A of rank 5, X of order 8 and defining $[x, b] = x^4$.

Our final example shows that, in general, the subgroups given by Theorems 2 and 3 do not account for all the quasinormal subgroups of G lying in A.

Example 3. Let *p* be a prime ≥ 5 (for convenience) and let *M* be the group of order p^5 defined by the presentation

$$\langle b, y, x \mid b^p = y^p = [b, y] = x^{p^3} = 1, \ [b, x] = y, \ [y, x] = x^{p^2} \rangle.$$

Let $W = \langle b, y \rangle \cong C_p \times C_p$ and $X = \langle x \rangle \cong C_{p^3}$. So M = WX and $W \cap X = 1$. We construct an automorphism α of M as follows. Let $0 \leq i, j \leq p - 1$ and define

$$\alpha: b \mapsto b, \qquad y \mapsto y, \qquad x \mapsto x^{1+p} b^i y^j.$$

One checks easily that $\alpha : x^p \mapsto x^{p+p^2}$ and $x^{p^2} \mapsto x^{p^2}$. Also α preserves the relations of M and therefore α defines an automorphism of M. For all $n \ge 1$,

$$\alpha^n: x \mapsto x^{(1+p)^n} (b^i y^j)^n.$$

So $|\alpha| = p^2$. Moreover $[x, \alpha^p] = x^{p^2} = [x, y^{-1}]$. Thus the action of α^p on M coincides with conjugation by y^{-1} . Then again by [11, 9.7.1(ii)], there is a group G of order p^6 which is an extension of M by a cyclic group of order p, generated by a, such that a acts on M according to α and $a^p = y^{-1}$. Therefore

$$G = \langle b, a, x \mid b^p = a^{p^2} = [b, a] = x^{p^3} = 1, \ [x, b] = a^p, \ [x, a] = x^p b^i a^{-jp} \rangle.$$

Let $A = \langle b, a \rangle$. We claim that

$$A qn G. (9)$$

For, let $X_2 = \Omega_2(X)$. Since $\langle b, a^p \rangle \leq Z(AX_2)$, we have $A qn AX_2$. Let $g = x^{\ell} b^m a^n$, where $p \nmid \ell$. One checks that

$$g^p \equiv x^{\ell p} \mod \Omega_1(G)$$

and hence $g^{p^2} = x^{\ell p^2}$, i.e. $\Omega_1(\langle g \rangle) = X_1 (= \Omega_1(X))$. Thus $|A \langle g \rangle| = |A||\langle g \rangle| = p^6$ and $A \langle g \rangle = G$. So (9) is true.

Since $A_G = 1$, Theorems 2 and 3 apply to G and so

$$\langle a^p \rangle$$
, $\langle b, a^p \rangle$ and A are quasinormal in G.

Observe that there is no cyclic quasinormal subgroup of *G* of order p^2 here. Indeed if $i \neq 0$, then such a subgroup cannot exist. But suppose that i = 0. Then we claim that, for $0 \le k \le p - 1$,

$$Q = \langle b^k a \rangle qn G. \tag{10}$$

For, since $Q^p = \langle a^p \rangle \leq Z(AX_2)$, factoring AX_2 by Q^p , we see from Lemma 3 that Q $qn AX_2$. Thus let $g = x^{\ell}b^m a^n$, $p \nmid \ell$. As above, $\Omega_1(\langle g \rangle) = X_1$, and so $Q \langle g \rangle = Q X_1 \langle g \rangle$. To see that this product is a subgroup, we may factor by X_1 . Then $[x, a^p] = 1$ and so we may also factor by $\langle a^p \rangle$. But then applying Lemma 3 to

$$G/Q^{p}X_{1} = (\langle b \rangle \times Q)X/Q^{p}X_{1},$$

we see that $Q/Q^p X_1$ is quasinormal in this group, since $b^k a$ normalises $X/Q^p X_1$. Therefore $QX_1\langle g \rangle$ is a subgroup and (9) is true.

It follows that, when i = 0, there are p cyclic quasinormal subgroups of G of order p^2 lying in A, none of which appears in Theorems 2 and 3.

References

- [1] T.R. Berger, F. Gross, A universal example of a core-free permutable subgroup, Rocky Mountain J. Math. 12 (1982) 345-365.
- [2] J. Cossey, S.E. Stonehewer, Cyclic permutable subgroups of finite groups, J. Aust. Math. Soc. 71 (2001) 169-176.
- [3] J. Cossey, S.E. Stonehewer, The embedding of a cyclic permutable subgroup in a finite group, Illinois J. Math. 47 (2003) 89-111.
- [4] J. Cossey, S.E. Stonehewer, The embedding of a cyclic permutable subgroup in a finite group II, Proc. Edinb. Math. Soc. 47 (2004) 101–109.
- [5] J. Cossey, S.E. Stonehewer, G. Zacher, Quasinormal subgroups of order p^2 , Ric. Mat. 57 (2008) 127–135.
- [6] F. Gross, p-subgroups of core-free quasinormal subgroups, Rocky Mountain J. Math. 1 (1971) 541-550.
- [7] B. Huppert, N. Blackburn, Finite Groups II, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [8] R. Maier, P. Schmid, The embedding of quasinormal subgroups in finite groups, Math. Z. 131 (1973) 269-272.
- [9] K. Nakamura, Charakteristische Untergruppen von Quasinormalteiler, Arch. Math. 32 (1979) 513–515.
- [10] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, 1994.
- [11] W.R. Scott, Group Theory, Prentice Hall, Englewood Cliffs, 1964.
- [12] S.E. Stonehewer, Permutable subgroups of some finite p-groups, J. Aust. Math. Soc. 16 (1973) 90-97.
- [13] S.E. Stonehewer, Permutable subgroups of some finite permutation groups, Proc. Lond. Math. Soc. (3) 28 (1974) 222-236.
- [14] S.E. Stonehewer, G. Zacher, Abelian quasinormal subgroups of groups, Rend. Mat. Accad. Lincei (9) 15 (2004) 69-79.