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This paper focuses on constrained confidence intervals in the context of environmental time series studies
where one seeks to ascertain the effects of ambient air pollution on human mortality. If the regression
parameter representing such effects is non-negative, corresponding to a belief that more pollution cannot be
beneficial, a desirable goal is to produce a constrained confidence interval for the parameter which is entirely
non-negative. We show how this goal can be achieved using the method of tail functions. The proposed
methodology is illustrated by the application to an environmental study of 100 cities in the United States
involving regressions of mortality counts on levels of particulate matter air pollution. The large number of
constrained CIs that contain zero is an indication that for the majority of the 100 cities there is not enough
evidence to conclude a positive association between air pollution and mortality.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The impact on human mortality and/or morbidity of exposure to
ambient air pollution is a topic that has received extensive attention in
the scientific literature (Bell et al., 2008; Liang et al., 2009;
Moolgavkar, 2000; Pope et al., 1999). Studies investigating the
association between daily time series of mortality and/or morbidity
and daily time series of ambient air pollution concentrations have
been at the forefront of this research. These studies have contributed
to a better understanding of the health effects of exposure to ambient
air pollution and added to the weight of evidence that has lead to
stricter regulations (Bell et al., 2004). Amongst these studies some of
themost influential have been the recentmulti-city studies conducted
in North America and Europe (Bell et al., 2006; Peng et al., 2005;
Samoli et al., 2008, 2005). By combining estimates such studies have
produced pooled estimates of the effect of pollution, both at national
and regional levels. The pollutants of interest in these investigations
have primarily been particulate matter air pollution and ozone.

Our focus here is on the use of time series studies to obtain
estimates of the adverse health effects of ambient air pollution at the
individual city level. The individual city-level effect estimates are the
quantities that are combined in multi-city studies. Estimation of the
adverse health effects of air pollution at the city level is a complex

issue that involves disentangling the relatively small effect of air
pollution from those of other confounding variables including
temperature, humidity, and seasonality. Complicating the estimation
process further are themyriad choices that need to bemade regarding
what confounders to include and how to include them. Some multi-
city studies avoid these problems by fitting the same model relating
air pollution and confounding variables to mortality within each city
(Dominici et al., 2007; Roberts and Martin, 2006).

One aspect of the complicated process of estimating air pollution
effects is that a 95% confidence interval (CI) for the “true” city-level
effect often contains negative values and in some cases is entirely
negative (Roberts and Martin, 2006). A problem of interpretation can
arise if a CI containing negative values leads people to believe that air
pollution might be beneficial to health. One way to address this
problem is to exclude negative values and only report the truncated
CI. However, this solution fails when the original CI is entirely
negative. This motivates the need for a procedure that is guaranteed
to lead to a CI which is entirely non-negative and non-empty.

A number of studies support the belief that air pollution cannot be
beneficial to health. For example, in Vedal et al. (2003) it has been
shown that low levels of air pollution are associated with increases in
mortality, and other studies have stated that negative values are
spurious or difficult to interpret (HEI, 2001; Murray and Nelson, 2000;
Smith et al., 2000). The finding that even low levels of air pollution
pose health risks would, for example, mean that hormesis (low
concentrations of air pollution being beneficial to health) is unlikely. A
few previous studies of air pollution and mortality have used
constrained maximum likelihood estimation to ensure that the
estimated effects of air pollution are non-negative (Roberts, 2006,
2004). In contrast, our focus here is on the construction of confidence
intervals rather than point estimates.
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In this paper we construct constrained CIs using the tail functions
approach of Puza and O'Neill (2006a,b, 2008, 2009). This approach is
attractive in that it can be “engineered” to provide an optimal CI in
some regard, such as minimising prior expected length. Other
methods could be used, but these have disadvantages which will be
discussed below. The proposed method will be illustrated by
application to environmental data from the United States (US). This
illustration will highlight that constrained CIs provide interpretable
results when commonly used (or “standard”) methods do not. Finally,
the method will be applied to 100 cities contained in the National
Morbidity, Mortality, and Air Pollution Study (NMMAPS) database.

2. Materials and methods

2.1. Materials

The data used in this paper were obtained from the freely available
NMMAPS database (http://www.ihapss.jhsph.edu/data/data.htm).
This database contains daily mortality, air pollution and weather
time series data for over 100 cities of the US for the period 1987–2000.
For each city used in this investigation we extracted, where available,
daily time series of mortality counts for individuals aged 65 years and
over, the average concentration of particulate matter (PM) air
pollution of less than 10 μm in diameter, measured in units of μg/
m3, and daily 24-hour average measures of temperature and dew
point temperature.

2.2. Single-city estimation

To estimate the effect of PM on mortality within a single-city we
utilize a Poisson log-linear model relating the mean number of daily
deaths to daily PM and other confounding variables. The exact
specification of the model used in this study is:

log μ tð Þ = βPMt−2 + γ1D1t + … + γ6D6tð Þ + s tempt ; df = 6ð Þ

+ s tempt;1−3;df = 6
! "

+ s dewt ;df = 3ð Þ

+ s dewt;1−3;df = 3
! "

+ s t;df = 6 × yearsð Þ;

ð1:1Þ

where μt is the mean mortality count for day t, PMt−2 is the PM
concentration on day t−2, Dit is the indicator variable for day t being
day i of the week (e.g., D5t=1 if day t is a Friday, and D5t=0
otherwise), tempt and dewt are, respectively, the temperature and
dew point temperature on day t,tempt, 1− 3 and dewt, 1− 3 are,
respectively, the average temperature and average dew point
temperature over the three days t, t−1 and t−2, and the functions
s() are natural cubic splines with the indicated degrees of freedom.
The function s(t,df=6× years) fits a smooth function of time that
allows for slow-changing time trends in the mean mortality counts.
Models of the same or similar form of Eq. (1.1) have been fitted in
many studies of the association between PM and mortality (Dominici
et al., 2007; Roberts andMartin, 2006). It is important to note that due
to the frequency at which PM concentrations are recorded in most US
cities the measure of PM used in Eq. (1.1) is restricted to a single-day's
PM. In most US cities PM concentrations are recorded only “once
every six days” meaning that if a PM concentration is recorded today
that the next recorded PM concentration will not be for another six
days. This “missingness” in the PM time series data means that, for
example, fitting a singlemodel that includes the lag-0, lag-1, and lag-2
PM concentrations simultaneously is not possible because there are
typically “gaps” of six days between recorded PM concentrations. For
reasons of illustration we focus on the lag-2 PM concentration here
because it provides examples where the standard CIs are entirely
negative.

The estimated effect of PM onmortality obtained from Eq. (1.1) for
the city in question, β̂, and its associated standard error, SEðβ̂Þ, are

then used for inference on the effect of PM on mortality in that city, β.
There are a number of papers that produce figures depicting the value

of β̂, along with an associated 95% CI, β̂F1:96 × SE β̂
! "h i

(which may

be termed the “standard” CI), for each of a number of cities (Dominici
et al., 2002; Roberts and Martin, 2006). As mentioned above, it is
common for these 95% CIs to contain negative values. If we believe
that β must be non-negative then it may be desirable that the
intervals created based on β̂ only contain plausible values, that is, only
contain values greater than or equal to zero. In the next section we
describe a method that will produce 95% CIs for β that by construction
contain only plausible values. Note: The value of 1000β may be
interpreted as approximately the percentage increase in the number
of persons who will die on average per day if there is an increase of
10 μg/m3 in PM two days earlier.

2.3. The tail functions approach

The tail functions approach is a recently developed methodology
that can be used for constructing CIs (Puza and O'Neill, 2009, 2008,
2006a,b). Briefly, this approach involves a “twisting” of the confidence
bounds obtained using the standard approach, whilst ensuring that
the desired coverage properties of the CI are preserved. To apply this
approach in the present context, we begin with the fact that β̂ is
approximately N(β,δ2), where δ = SEðβ̂Þ. This fact leads to the
standard 95% CI, β̂−1:96δ; β̂ + 1:96δ

h i
, via the identity

0:95 = P 0:025≤Φ
β̂−β
δ

 !
≤ 0:975

 !
= P β̂−1:96δ≤β≤β̂ + 1:96δ

! "
;

where Z = β̂−β
! "

= δ eN 0;1ð Þ and Φ(z)=P(Z≤z), so that Φ(Z)~

U(0,1). The lower and upper bounds of the standard CI are the
solutions in β of the equations Φ β̂−β

! "
= δ

! "
= 0:975 and 0:025 =

Φ β̂−β
! "

= δ
! "

, respectively.
Next, consider any non-decreasing function, τ(β), which has a

range in the interval [0,1]. Then observe that for any value of β it is
also true that

0:95 = P 0:05τ βð Þ≤Φ
β̂−β
δ

 !
≤0:95 + 0:05τ βð Þ

 !
= P L β̂

! "
≤β≤U β̂

! "! "
;

where the bounds L β̂
! "

and U β̂
! "

are the solutions in β of the

two equations Φ β̂−β
! "

= δ
! "

= 0:95 + 0:05τ βð Þ and 0:05τ βð Þ =

Φ β̂−β
! "

= δ
! "

, respectively.We call τ(β) the “tail function.”Note that

the associated CI, L β̂
! "

;U β̂
! "h i

, is a generalization of the standard CI

as defined by the “standard” tail function, τ(β)=1/2,−∞bβb∞.
Typically, the calculations required to obtain the bounds defined by a
particular tail function τ(β) can be performed easily using the
Newton–Raphson algorithm.

In the context where β is known to be non-negative, one suitable
tail function τ(β) has the form:

τ βð Þ =
0;
β = 2cð Þ;
1 = 2;

βb0
0≤β≤c
β N c:

8
<

: ð1:2Þ

Fig. 1a shows the standard tail function, τ(β)=1/2,−∞bβb∞, and
the alternative tail function (Eq. (1.2)) for c=1 and c=2, respec-
tively. Fig. 1b shows the associated 95% confidence bounds, calculated
taking δ=1 (without loss of generality). It will be observed that, after
elimination of all negative values of β (or “truncation”), the
alternative CI exists (i.e. is non-empty) for all possible values of β̂,
whereas the standard CI is empty for values less than −1.96.
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For example, if β̂ = −3, the standardCI is [−3−1.96,−3+1.96]=
[−4.96,−1.04], which finally becomes empty after truncation. By
contrast, the alternative CI works out as [−4.645,0.046] for c=1 and
[−4.645,0.082] for c=2. These two CIs finally become [0,0.046] and
[0,0.082], respectively, after truncation. We see that the truncated
standardCI is empty for all β̂b−1:96δ.Also, for any chosenvalue of c, the
truncated alternative CI has the attractive properties of: (a) never being
empty, (b) becoming narrower and more focused near zero as β̂
decreases, and (c) approaching the standard CI as β̂ increases. In more
detail, the lower bound of the truncated alternative CI is zero for
β̂b1:645δ and identical to the lower bound of the standard CI for
β̂ N c + 1:96δ. Also, the upper bound of the truncated alternative CI is
identical to the upper bound of the standard CI for β̂ N c−1:96δ.

In the application below, a suitable value of c is chosen, utilizing
information from all 100 cities, so as to approximately minimize the
prior expected length (PEL) of the proposed alternative CI. See the
Supplemental material for details. Note that the exact value of c used
is not critical, as any value will lead to a “proper” CI, meaning one with
the desired coverage probabilities. Also see the Supplemental material
for additional notes on the tail functions method and how it preserves
coverage.

2.4. Illustration

Here we highlight the similarities and differences between the
standard 95% CI and the alternative 95% CI to three cities of the US. The

cities Los Angeles, Tacoma, and Syracuse were selected because they
correspond to cases where the standard 95% CI contains: only non-
negative values (Los Angeles); both negative and non-negatives
values (Tacoma); and only negative values (Syracuse). The standard
CI for these three cities spans the range of possibilities in terms of the
coverage of positive and negative values.

Using Eq. (1.1) and the tail functions methodology with c=0.0003
(see the Supplemental material for details of how this value was
obtained), 95% CIs for the lag-2 effect of PMonmortalitywere produced
using both the standard and alternative (tail functions) approaches
discussed above. Fig. 2 shows the CIs produced by eachmethod for each
city. It will be noted that for Los Angeles the standard and alternative
intervals are identical. This is a desirable property of the tail functions
approach. It is reasonable that when the standard CI contains only
plausible values that the alternative CI will be similar or the same. This
property is evident in Fig. 1b which shows that the standard and
alternative CIs coincide exactly when the estimate is sufficiently large
(at least c+1.96δ). In the case of Los Angeles, β̂=0.0009173, which is
larger than c+1.96δ=0.0003+1.96×0.0002054=0.0007026.

In the case of Tacoma, both the standard and alternative CIs
straddle zero, so that both intervals are finally from zero up to an
upper bound, following elimination of all implausible values. The
utility of the tail functions approach is made most clear by comparing
the standard and alternative 95% CIs for Syracuse. Here the standard CI
is entirely negative and the alternative CI straddles zero. Thus, the
final alternative CI is from zero up to an upper bound, whereas the
final standard CI is empty. The results for Syracuse clearly illustrate
why the process of truncating the standard CI is untenable.

The interpretation of the truncated alternative intervals is
intuitive. A truncated CI that contains zero as its lower bound
suggests that there is not enough evidence to conclude a positive
association between air pollution and mortality, whilst an entirely
positive interval constitutes evidence for a positive association. The
advantage of truncating a CI is that it avoids the problems of
interpretation that may arise if negative values are taken literally.
The main advantage of the truncated alternative CI over the truncated
standard CI is that it guarantees that the final interval will not be
empty, whilst preserving the desired 95% coverage probability.

Fig. 1. Examples of (a) tail functions and (b) the confidence bounds implied by the tail
functions in a. The solid lines correspond to tail function (Eq. (1.2)) with c=1, the
dashed lines to Eq. (1.2) with c=2, and the dotted lines to the standard tail function,
namely the constant (1/2).

Fig. 2. Confidence intervals for the effect of lag-2 PM on mortality (1000β) for three
selected cities. For each city the four CIs, top to bottom are: untruncated standard,
truncated standard, untruncated alternative and truncated alternative. The blue and red
intervals correspond to the standard and alternative intervals, respectively. For
Syracuse the truncated standard CI is empty.
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3. Application

Here we apply the methods illustrated in the previous section to
100 of the US cities contained in the NMMAPS database so as to obtain
both an untruncated standard CI and a truncated alternative CI for
each city. In Figs. 3 and 4 it can be seen that many of the standard CIs
contain negative values. This could lead to problems of interpretation,
such as the belief that increases in air pollution might be beneficial to
health. This problem is avoided by the truncated alternative CIs. A
natural interpretation of the large number of truncated alternative CIs
containing zero is that for a majority of cities there is not enough
evidence to conclude a positive association between air pollution and
mortality.

Fig. 4 also displays a pooled estimate and 95% CIs (standard and
truncated alternative) for the “overall” effect of air pollution on
mortality, where this effect is defined as the weighted average of the
100 regression parameters obtained from Eq. (1.1) applied to each
city, β̂1; :::; β̂100, with the weights being proportional to the cities'
populations. These CIs for the overall effect were obtained using

exactly the same theory as for each individual city effect, βi, making
use of the fact that the weighted average of the 100 regression
parameter estimates is normal with mean equal to the overall effect
and a known variance. As might be expected, the pooled standard CI
(0.0000476, 0.0003352) and alternative CI (0.0000666, 0.0003352)
are similar, with an identical upper bound. (Here there is no
truncation, since both lower bounds 0.0000476 and 0.0000666 are
already positive.)

4. Discussion

The tail functions approach to CI estimation is a generalisation
of the standard approach, as implicitly defined by the constant
tail function equal to 1/2. Two other constant tail functions, equal to
0 and 1, respectively, lead to one-sided CIs, and the tail functions
approach may be thought of as a “graduated blend” of the intervals
defined by these two extremes. The choice of tail function is
to some extent arbitrary, since any tail function will lead to a
“proper” CI, meaning one that has the desired frequentist coverage

Fig. 3. Confidence intervals for the effect of lag-2 PM on mortality (1000β) for 50 of the
100 US cities considered. These 50 cities have the smallest values of β̂: For each city, the
two CIs, top to bottom, are: untruncated standard (blue interval) and truncated
alternative (red interval).

Fig. 4. Confidence intervals for the effect of lag-2 PM on mortality (1000β) for 50 of the
100 US cities considered. These 50 cities have the largest values of β̂ For each city, the
two CIs, top to bottom, are: untruncated standard (blue interval) and truncated
alternative (red interval).
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probability for all possible values of the target parameter. However,
some tail functions may be preferable to others in the presence
of prior information, since they lead to CIs with more attractive
properties.

In the present context of inference on a regression parameter, β,
the prior information comes in two forms. First, we believe that β is
non-negative, and for this a suitable tail function, τ(β), is one which
equals 0 for values less than 0 andwhich continuously approaches 1/2
as β tends to infinity. A convenient example of τ(β) with these
properties is Eq. (1.2), namely the function that is 0 for βb0, 1/2 for
βNc, and linear between the points (0,0) and (c,1/2). The question of
how the tuning constant c should be chosen can be addressed using
the remaining prior information, for example to select the value
which minimises prior expected length (see the Supplemental
material). Although other classes of tail functions could be considered,
such as one with two tuning parameters defining a curved line
between (0,0) and (c,1/2), it is not clear that any improvements
would be worth the added computational burden.

The availability of prior information suggests that a Bayesian
approach could also be adopted for the construction of constrained
CIs. In the present context this approach leads to posterior intervals
that are guaranteed to exist, contain no negative values, andmoreover
have a smaller prior expected length than the corresponding tail
functions CIs. However, under the informative prior used in this
paper, such posterior intervals have a frequentist coverage probability
that falls severely below the desired 95% for extreme values of β. If the
uninformative prior f(β)∝1, β≥0, is used instead, the coverage
probability of the corresponding posterior intervals is greatly
improved but still falls distinctly below 95% over a range of β values,
and in that case the prior expected length of those intervals becomes
very comparable to that of the tail functions CI. Moreover, under both
priors the associated posterior intervals have an actual length which
converges to zero at a much slower rate than the tail functions CI as β̂
tends to minus infinity. For a more detailed account of these
comparisons, see the Supplemental material. Also see Puza and
O'Neill (2006b) for a related comparison regarding inference on an
unconstrained normal mean. In any case, the tail functions approach
provides an alternative to the Bayesian approach when prior
information is available and it is deemed important that a CI be
constructed with a frequentist coverage probability that is guaranteed
to be at least 95%, as is the case in the present context.

Another way to perform CI estimation is via the unified approach
of Feldman and Cousins (1998). This involves inverting a likelihood
ratio test and leads to confidence bounds similar to those depicted
in Fig. 1b. The unified approach may be thought of as another
special case of the tail functions approach, with an implicit tail
function that could be calculated and added to Fig. 1a (see Puza
and O'Neill, 2008 for an example). However, the unified approach
typically does not provide the optimal constrained CI, at least in
terms of prior expected length. Yet other approaches have been
considered, as in Mandelkern (2002), Silvapulle and Sen (2004) and
Fraser et al. (2004), but each of these has its own problems, such
as being only approximate or not leading to a “proper” confidence
interval.

The approach proposed in this paper is equally applicable to other
ambient air pollutants and/or to other end-points such as counts of
morbidity or cause-specific mortality, the only difference being that
the value of the tuning constant c would need to be re-calculated. In
any particular situation, the benefits of the proposed approach will
depend on the likelihood that the standard CIs for the location under
investigation will contain negative values, remembering that the
standard and alternative CIs are essentially the same when both
intervals are strictly positive. The likelihood that a standard CI will
contain negative values will be a function, among other things, of the
number of days of data available and the size of the observed end-
point counts.

The limitations of the proposed approach need to be acknowl-
edged. Firstly, this approach is a more complicated process, both
conceptually and computationally, than the straightforward standard
approach. Secondly, the proposed approachmay not “add value” if the
only goal of an investigation is to produce a single pooled estimate of
the effect of air pollution based on a number of locations. The reason
for this is that the process of pooling information across cities results
in a more powerful estimation process and as a result the CIs for the
pooled estimate are typically much narrower than those for any
individual city and strictly positive. Thirdly, the tail functions
approach does not provide an avenue for improved point estimation
under constraints, as discussed, for example, in Tripathi and Kumar
(2007). Finally, the truncated tail functions approach should only be
applied if there is strong justification for the assumption of the
parameter of interest being non-negative.
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