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Effect of Coulomb friction on orientational correlation and velocity distribution functions
in a sheared dilute granular gas
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From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have
dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution
functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient
(μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing
the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes
the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the
Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished
orientational correlation for small enough μ, are responsible for the transition from non-Gaussian to Gaussian
distribution functions in the double limit of small friction (μ → 0) and nearly elastic particles (e → 1). This
double limit in fact corresponds to perfectly smooth particles, and hence the Maxwellian (Gaussian) is indeed
a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero
Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched
exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from
a Gaussian with increasing friction.
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I. INTRODUCTION

Granular gases, a collection of macroscopic particles under
external forcing, resemble molecular gases with particle
interactions being binary and instantaneous [1]; the dissipative
nature of particle collisions requires external pumping of
energy into the system so as to maintain the fluidized state
of particles. The well-established dense gas kinetic theory
has been appropriately modified in formulating the theory
of rapid granular gases by incorporating the inelastic nature
of particle collisions [2–4]. The concept of coarse-graining
over single-particle distribution function is utilized while
making a transition from the particle-level properties to the
macroscale (hydrodynamic) fields, leading to appropriate
balance equations for hydrodynamic fields. It may be noted
that the molecular gases possess a thermodynamic equilibrium,
with Maxwell-Boltzmann (Maxwellian, Gaussian) distribu-
tion playing the role of the equilibrium distribution function.
This thermodynamic equilibrium corresponds to a uniform,
homogeneous state of constant density and temperature with
zero macroscopic velocity.

In contrast to molecular gases, the collisional dissipation
does not permit granular gases to evolve toward any equilib-
rium uniform state [1,2]. The simplest “nondriven” granular
system is the homogeneous cooling state (HCS), which
corresponds to a collection of randomly moving particles
with some initial granular temperature and zero macroscopic
velocity. The HCS is a spatially homogeneous state since
both the number density and the granular temperature re-
main homogeneous (constant) in space (and the macroscopic
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velocity is always zero), but the granular temperature decays
with time [T (t) ∼ (1 + t/τ )−2, where τ is the relaxation time
that depends on the restitution coefficient, e �= 1, the number
density n, and the initial temperature T (0)] due to collisional
dissipation. For HCS, the Boltzmann equation can be reduced
to a time-independent equation for the “scaled” velocity dis-
tribution function [5]—the solution of this scaled equation has
been obtained via perturbation methods, with its zeroth-order
solution being a Maxwellian (Gaussian) that holds for e → 1.
The non-Gaussian corrections can be expressed in terms of
Sonine polynomials (or any other orthogonal polynomials),
and the first nontrivial correction is given in terms of the fourth
velocity cumulant, which is proportional to inelasticity ε =
(1 − e2) [2,5] and hence vanishes in the elastic limit (e → 1).
Therefore the velocity distribution function (VDF) of HCS is
non-Gaussian at any finite dissipation (e �= 1). (It may be noted
that the radius of convergence of the above mentioned per-
turbation solution of the inelastic Boltzmann equation is still
debated [6].) Apart from undriven HCS of a granular gas, there
also exists nonequilibrium steady-states for various “driven”
granular flow configurations (e.g., vibrated bed, simple shear
flow, etc.) for which the Maxwellian (Gaussian) still remains
the leading-order velocity distribution in the double limit of
both Knudsen number and inelasticity approaching zero [4].

The non-Gaussian nature of velocity distribution function
of granular gases has been studied in a variety of driven and
undriven granular gases using theory [4,7,8], simulation [9–17]
and experiment [18–24]. As mentioned above [2,4,5], the low-
velocity regions of the VDF (i.e., for particle velocities that are
equal to or less than the thermal velocity) can be approximated
in terms of Sonine polynomials with the Maxwellian being
the zeroth-order solution. However, the high-velocity tails of
VDFs can differ significantly from a Gaussian, depending on
the restitution coefficient, and has been characterized in terms
of a stretched exponential [8,19], or an exponential [7,24], or
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a power law [17]. The tails of a VDF correspond to particle
velocities that are much larger than the thermal velocity. More
importantly, it has been recently shown for HCSs [6] that the
Sonine expansions are nonconvergent (though asymptotic and
Borel resummable) at large inelasticity due to the exponential
tails of VDF.

Considering the “large-velocity” asymptotic limit of the
Boltzmann equation for HCSs, Esipov and Pöschel [7] showed
that the high-velocity tails decay as f ∼ exp[−δv/v0(t)],
where v0(t) = √

T (t) is the time dependent thermal velocity
and δ ∼ ε−1 = (1 − e2)−1 is a constant. For both undriven
(HCS) and driven homogeneous granular gases, van Noije
and Ernst [8] obtained analytical expressions for the sin-
gle particle velocity distribution function by solving the
Enskog-Boltzmann equation perturbatively in terms of Sonine
polynomials. They further showed that the high energy tails
of velocity distributions in the driven case satisfy a stretched
exponential of the f ∼ exp(−δvα), where v is the velocity
scaled by the thermal velocity, α = 1.5 and δ ∼ O(ε−1). These
predictions of exponential and stretched exponential VDFs
have been verified in various simulations [11–14] as well as in
experiments [19,24]. The most recent experiments of Tatsumi
et al. [24] demonstrated that while the exponent α is close
to 1.5 in a steady driven system, its value evolves with time
from 1.5 to 1 in a freely cooling system. It is clear that the
theory and experiment on VDFs agree with each other for
both driven and undriven granular gases of smooth particles
(for which rotational degrees of freedom do not play any role).

Literature on velocity distribution functions and correla-
tions in frictional, rough granular gases is very scarce. One
reason could be that the Coulomb friction might not be
important in a granular gas or it is nontrivial (difficult) to
model Coulomb friction in any theory, presumably the latter.
However, friction is known to be very important in dense
granular materials [25–28]; the effect of Coulomb friction on
various properties of dense granular materials, especially on
rheology and jamming, are currently being investigated by
many researchers [25,29]. The earliest works of Walton and
Braun [30,31] and Lun [32] probed the rheology of a rough
granular gas (with Coulomb friction) for a range of densities up
to the freezing density, and the latter work [32] also validated
a related kinetic theory constitutive model [3]. Another related
work is that of Jenkins and Zhang [33] who incorporated
Coulomb friction in the kinetic theory of dense, collisional
flows of slightly frictional particles in the quasielastic limit.
Our focus is, however, in the opposite limit of a dilute granular
gas for which the Coulomb friction is found to be equally
important as we show in this paper.

The earliest work on the effect of Coulomb friction on
the mean field quantities (translational and rotational granular
temperatures) seems to be that of Huthmann and Zippelius
[34], and the most comprehensive recent simulation and
theoretical work is that Herbst et al. [35]. However, none of
these papers probed particle-level properties like the velocity
distribution functions and correlations. The only work that
probed the effect of Coulomb friction on VDFs of a driven
granular gas is that Goldhirsch et al. [36] who solved
Boltzmann equation perturbatively in the limit of smooth
particles with small friction for a sheared granular gas. Cafiero
et al. [37] showed that, under stochastic rotational driving

of a granular gas (without Coulomb friction), the translational
velocity fluctuations are non-Gaussian but the angular velocity
fluctuations remain Gaussian. Recent experiments of Schmick
and Markus [22] indeed found Gaussian angular velocity dis-
tributions for a wide range of parameters; in these experiments
the rotational driving was achieved by an alternating magnetic
field interacting with magnetic dipoles embedded in spheres.

This paper is a sequel to our previous paper [38] on the
uniform shear flow of a dilute (i.e., the Boltzmann limit)
rough granular gas. The adopted collision model had only
tangential restitution (β) to model the roughness of particles
in an approximate manner. From event driven simulations,
it was shown [38] that both the translational and rotational
velocity fluctuations remain close to a Gaussian at perfectly
smooth and rough limits for elastic collisions (e = 1). Away
from these two limits, the orientational as well as velocity
correlations are responsible for the emergence of non-Gaussian
high-velocity tails that follow stretched exponentials. Another
important finding of Ref. [38] is that the translational and
rotational velocities are strongly coupled (dubbed orientational
correlation), however, there is no orientational correlation-
induced singularity at perfectly smooth and rough limits for
elastic collisions (e = 1). The latter observation is in contrast
to that in a freely cooling granular gas [39].

The effect of Coulomb friction on velocity distributions and
various correlations was neglected in Ref. [38], which is the
central focus of this paper. Here we use Walton’s collision
model [30,31] that incorporates both tangential restitution and
Coulomb friction along with normal restitution coefficient as
in Sec. II. The justification of this three-parameter collision
model and the related literature are given in Sec. II B. The
role of Coulomb friction on temperature ratio and particle
clustering is discussed in Sec. III A, orientational correlation
in Sec. III B, velocity distribution functions in Sec. III C, and
density and velocity correlations in Sec. III D. We conclude
with a brief discussion of the pertinent Boltzmann equation
for a frictional granular gas in Sec. IV.

II. COLLISION MODEL AND SIMULATION METHOD

Our simulations are based on inelastic rough hard spheres
(of diameter d, mass m, and the moment of inertia I )
for which the interaction potential is purely repulsive with
dissipative frictional collisions. In the absence of any external
force, the particles move in straight lines at a constant speed
between collisions and change their velocities immediately
when a collision occurs. This means that the collisions are
instantaneous and the impulsive force comes in the picture
at the moment of their collision at the contact point. The
precollisional translational and angular velocities of particle i

are denoted by vi and ωi , respectively, and the corresponding
postcollisional velocities are denoted by the primed symbols,
v′

i and ω′
i . The total precollisional relative velocity at contact

gij between particle i and j is given by

gij = vij − d

2
k × (ωi + ωj ) ≡ gn + gt , (1)

where

gn = (gij · k)k and gt = k × (gij × k) (2)
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are the normal and tangential components of the contact
velocity, respectively. Here vij = vi − vj is the translational
velocity of particle i relative to j , and kij = (rj − ri)/|rj −
ri | ≡ k is the unit vector directed from the center of the ith
particle to that of j th particle.

A. Constant β model

For the simplest model of rough, inelastic spheres, two
material parameters are needed to characterize the collision
process [3,32,43,44]: (1) the normal coefficient of restitution,
e, and (2) the tangential coefficient of restitution, β. The pre-
and postcollisional relative velocities of the contact point are
related via the following expressions:

g′
n = −egn, and g′

t = −βgt , (3)

with primes denoting postcollisional velocities and bare
quantities being their precollisional counterparts. In general,
0 � e � 1 and −1 � β � 1. It may be noted that the collision
model for perfectly rough (β = 1), perfectly elastic (e = 1),
and rigid elastic molecules was originally proposed by Bryan
[40] more than one hundred years back. About 25 later,
Pidduck [41] incorporated Bryan’s model into the kinetic
theory; in particular, he generalized the Chapman-Enskog’s
method and calculated viscosity of rough spherical molecules
[42]. The above inelastic version (3) of Bryan’s collision
model has been used to model rough granular particles in
a variety of contexts: (1) to calculate the transport coefficients
of rough granular gases from kinetic theory [2,3,5], (2) to
validate the kinetic-theory constitutive relations via particle
simulations [32,43], and (3) to understand instabilities in
unbounded granular shear flow [44].

In the collision model (3), β = −1 refers to collisions
between perfectly smooth particles, with increasing value of β

being an indicator of increasing degrees of particle surface
friction. The limit of β = 1 is referred to perfectly rough
particles for which the tangential velocity completely reverses
it sign (i.e., complete spin reversal) and partial spin reversal
occurs for 0 < β < 1; the value of β = 0 represents the case
for which the particle surface roughness and inelasticity are
sufficient to eliminate the postcollisional tangential relative
velocities. This will henceforth be called the constant-β model,
which incorporates surface roughness in a gross manner and
neglects Coulomb friction (discussed in the next section).

For collisions of rough particles, both linear and angular
momentums are conserved; the momentum transfer occurs
along the contact normal as well as along the tangent to the
contact point. Therefore the collisional impulse (change of
momentum after collision) can be decomposed into normal
and tangential components:

J = Jn + Jt , (4)

where the expressions for Jn and Jt follow from the conserva-
tions of linear and angular momentum of the colliding particle
pair:

Jn = − (1 + e)

2
mgn, (5)

Jt = (1 + β)

2
(1 + I−1)−1mgt . (6)

Here I = 4I/(md2) is the nondimensional moment of inertia
of a particle, with I = 2/5 for solid spheres and 2/3 for a
thin-shell sphere.

B. Coulomb friction: Variable-β model

To study the dynamics of frictional particles, we need a
realistic collision model of rough particles that takes into
account the effect of Coulomb friction. One widely used model
is due to Walton [30,31] who proposed a three-parameter
model (discussed below): (1) the coefficient of normal resti-
tution (e), (2) the coefficient of tangential restitution (β)
that acts during sticking contacts, and (3) the coefficient
of Coulomb friction (μ) that acts during sliding or grazing
contacts. Later on, Foerster et al. [45] carried out a series
of experiments to measure collision properties of spheres
involved in binary collisions with spheres or with a flat surface,
and they found that Walton’s collision model provides an
accurate description of collision dynamics of spheres as in their
experiments. Since then, several researchers adopted Walton’s
collision model to probe frictional properties of rough granular
materials: for example, the numerical simulations of Luding
[46] on vertically vibrated granular materials demonstrated
the important role of Coulomb friction on the dynamical
behavior of this system. More recently, Herbst et al. [35]
conducted simulations in a two-dimensional heated frictional
granular gas, and developed mean-field-type rate equations
for both translational and rotational granular temperatures by
considering five different limiting cases of Walton’s model.
They concluded that the theory based on the full frictional
model (i.e., Walton’s model) is able to reproduce the simulation
results quantitatively for all values of friction coefficient.
For related issues on different collision models for granular
materials, the readers are referred to a recent book [47].

As mentioned, the Coulomb friction helps to distinguish
between the sliding and the sticking contacts: in the former
case the Coulomb friction decides the tangential component
of impulse and in the latter the tangential restitution decides
the tangential impulse. When the tangential impulse is greater
or equal to the product of the friction coefficient and the normal
impulse, the sliding contact occurs and the following equality
holds:

|Jt | = μ|Jn|. (7)

The sliding contact between two spheres leads to dissipation
of energy [48]; if this energy loss is large enough to overcome
the total relative tangential velocity of colliding spheres, they
cease to slide past each other, and hence the contact becomes
a sticking one. Therefore, for real particles, all contacts cannot
be sliding and we must take account of both sliding and sticking
contacts in any realistic contact model of particle collisions.

If the tangential impulse is less than the product of the
friction coefficient and the normal impulse, i.e., |k × J| <

μ|k · J|, the sticking contact occurs. The tangential velocity
of the contact point is

g′
t = −β0gt , (8)

where β0 is a phenomenological constant, characterizing the
restitution of velocity in the tangential direction for sticking
contacts, with −1 � β0 � 1. From experiments, it has been
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FIG. 1. (Color online) (a) Schematic of granular shear flow with linear velocity profile. (b) Time evolution of translational (T , upper curve)
and rotational (θ , lower curve) granular temperatures. Parameter values are φ = 0.01, N = 8000, e = 0.5, β0 = 0, and μ = 0.01.

found that typical values of β0 and μ are 0.4 and 0.123,
respectively, for commercial ball bearings [49,50] and β0 =
0.44 and μ = 0.09 for glass beads [45]. A positive value for
β0 in Eq. (8) implies that the relative tangential velocity of
colliding particles cannot only go to zero but also reverses its
sign—the origin of this sign reversal can be tied to the release
of the tangential strain energy in the contact region [49,50].
Therefore the spin reversal [β0 > 0, Eq. (8)] indeed occurs for
real particles [45,49,50] and is not an artefact of the adopted
contact model.

From Eqs. (5)–(7), the tangential coefficient of restitution
can be found explicitly as

β(	) = −1 + μ(1 + e)(1 + I−1)
|k · gij |
|k × gij |

≡ −1 + μ(1 + e)(1 + I−1) cot 	. (9)

Here 	 is the impact angle, which is defined as the angle
between the contact vector k and the relative velocity at the
contact of two particles:

cos 	 = k · gij

|gij | , with 0 � 	 � π

2
. (10)

Let us define a critical angle 	0 such that when 	 > 	0

there is sliding (Coulomb friction) during a collision and when
	 � 	0 there is sticking contact (or the particles are rough).
With β = β0 at 	 = 	0, an expression for this critical angle
immediately follows from Eq. (9):

cot 	0 = I(1 + β0)

μ(1 + e)(1 + I)
. (11)

In all simulations the value of β is chosen from β(	) and β0

such that

β(	) = min{β0, − 1 + (1 + β0) tan 	0 cot 	}. (12)

Note that this model distinguishes between sliding and sticking
contacts: there is a sliding contact for −1 � β(	) < β0 and

a sticking contact for β(	) � β0. The collision model with
impact-angle-dependent tangential restitution coefficient (12),

g′
n = −egn, and g′

t = −β(	)gt , (13)

will henceforth be referred to as the variable-β model.
It is clear that the constant-β model can be obtained from

the variable-β model in the limit of infinite friction. This holds
since the sliding contacts are inhibited in the limit μ → ∞
and hence the collisions are always sticking with constant
tangential restitution coefficient as modeled by Eq. (3).

C. Simulation method

Both the constant-β and variable-β collision models are
implemented in an event-driven code [47,51] to simulate
the dynamics of frictional spheres under uniform shear. The
particles (spheres) are randomly placed in a cubic box with
random initial velocity, which is taken from a Gaussian
distribution. To achieve the state of uniform shear flow, we
have used the well-known Lees-Edward boundary condition
[52] along the gradient direction (y), with periodic boundary
conditions along streamwise (x) and spanwise (z) directions
as depicted in Fig. 1(a). To reduce the computational time
for a large number of particles, the search algorithm of
Lubachevsky [53] has been implemented as in our previous
work [38]. In a shear flow the work is done on the system due
to the imposed shear field, and there is dissipation of granular
energy due to particle collisions. The balance between the
shear work and collisional dissipation results in a nonequi-
librium steady state of uniform shear with constant granular
temperature and number density [44]. Figure 1(b) shows the
time evolution of translational (T ) and rotational (θ ) granular
temperatures:

T = 1

3
〈C · C〉, (14a)

θ = I

3m
〈� · �〉, (14b)
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FIG. 2. (Color online) Probability distributions of (a) mean
density, (b) translational, and (c) rotational granular temperatures,
respectively, for φ = 0.01, N = 8000, β0 = 0, and e = 0.5 for
different values of μ.

where C = v − 〈v〉 and � = ω − 〈ω〉 are the fluctuating
(peculiar) translational and rotational velocities, respectively.
[Clearly, by definition, the granular temperature is a measure
of the kinetic energy associated with particles’ fluctuation
motion (with the mean motion being subtracted out) and
hence dubbed “fluctuation” kinetic energy of particles.] It is
clear from Fig. 1(b) that both temperatures reach well-defined
statistical mean values after a short transient period. Other
macroscopic properties of the flow also remain invariant in
time once the system has reached a statistical steady state
at which the measurements of various quantities are carried
out. Typically, we have discarded data for first 8000 collisions
per particle and the simulation was continued until 25 000
collisions per particle.

In the next section (Sec. III), we present simulation results
with the Coulomb friction model as discussed in Sec. II B and
contrast them with those for the constant-β model as discussed
in Sec. II A. Recall that in contrast to the constant-β model,
the impact-angle dependent tangential restitution coefficient
β(	), Eq. (12), is used to identify the sliding or sticking type
of collisions in the variable-β model. The effects of Coulomb
friction on the temperature ratio θ/T , orientation correlation,
velocity distribution functions, and density and spatial velocity
correlations are systematically unveiled in Secs. III A–III D.

III. RESULTS: CRUCIAL ROLE OF COULOMB FRICTION
AND ROUGHNESS

We present results for a particle volume fraction of φ =
0.01 that corresponds to the Boltzmann limit (φ → 0) of a
dilute granular gas, with the number of particles being N =
8000. It may be noted that the results were checked by using
N = 4000 and 16 000, with no discernible difference as in our
previous study [38] (without Coulomb friction).

A. Possible clustering and temperature ratio

Since particle clustering or density inhomogeneity (in-
homogeneous distribution of particles) is known to affect
the microscopic and rheological properties of a granular
gas [54], we first need to ascertain whether the particles are
homogeneously distributed or not in the computational box. To
this end, we probe the distribution of mean density (φ, volume
fraction of particles) by dividing the computational box into
8 × 8 × 8 cells such that there are about 15 particles in each
cell. In Fig. 2(a), the normalized probability distribution of
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FIG. 3. (Color online) Profiles of (a) density (φ), (b) streamwise
velocity (ux), (c) translational granular temperature (T ), and (d)
rotational granular temperature (θ ), respectively. Parameter values
are φ = 0.01, N = 8000, β0 = 0, and e = 0.5.

density is shown for two values of friction coefficient for a
very dissipative gas (e = 0.5). It is observed that there is no
friction-induced density inhomogeneity in the system even
at e = 0.5; for all dissipation levels the local density varies
from 0.004 to 0.017 in about 90% cells. In Figs. 2(b) and
2(c), the normalized probability distributions of translational
and rotational temperatures are shown, respectively; these
distributions also remain relatively unchanged (except the
tail regions) with increasing friction. The variance of each
distribution remains relatively unaffected by the Coulomb
friction.

Although there is a slight variation of mean density and
temperatures in different regions of the computational box
(Fig. 2), we have found that the density and the translational
and rotational temperatures remain constant across the gradi-
ent (y) direction as shown in Fig. 3. All these bin-averaged
quantities are calculated by dividing the computational box
into 15 bins along the y direction [see Fig. 1(a)], and then
taking averages over a few thousand collisions per particle. It
is also clear from Fig. 3(b) that the streamwise component of
the mean velocity ux is linearly varying along the gradient
direction (the other two velocity components, uy and uz,
remain zero) and hence the system is under uniform shear.
Note in Fig. 3 that the Coulomb friction (μ = 0.01, 10) does
not change the above observations.

For the constant-β model, the variation of the temperature
ratio, θ/(θ + T ), with the tangential restitution coefficient β

is shown in Fig. 4(a) for three values of normal restitution
coefficient (e). The black dashed line represents the theoretical
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FIG. 4. (Color online) (a) Effect of roughness on temperature
ratio θ/(θ + T ) for different values of e for φ = 0.01 with constant-β
model. Temperature ratio based on variable-β model for (b) μ = 0.1
and (c) μ = 1, with β0 = 0.

prediction for temperature ratio [44] using a Navier-Stokes
order constitutive model of rough particles [3]:

θ

θ + T
= η2

1 + η2(1 − I−1)
, (15)

where η2 = (1 + β)/2(1 + I−1). The translational and rota-
tional energies are equally partitioned [θ = T , i.e., θ/(θ +
T ) = 1/2] for only perfectly rough particles (β = 1) with
e = 1. The nonequipartition of energy prevails at other values
of β; even for β = 1, θ �= T at e < 1. The simulation data
in Fig. 4(a) suggest that there is a weak dependence of the
temperature ratio on e but the theoretical prediction of Eq. (15)
is independent of e. It is interesting to note that a Navier-
Stokes-level constitutive model [3] gives good prediction for
the temperature ratio for the whole range of β at e = 1.

Moving to the variable-β model, the effect of critical
roughness parameter β0 on the temperature ratio is plotted
for different values of e, setting the Coulomb friction to
μ = 1 and 0.1 in Figs. 4(b) and 4(c), respectively. For large
friction (μ = 10, not shown), the results resemble those for
the constant-β model as in Fig. 4(a). The temperature ratio is
seen to be independent of the normal restitution coefficient at
μ = 1 as in Fig. 4(b); note that the equipartition of energy
does not hold even for β = 1 with e = 1—this is due to
additional energy loss due to Coulomb friction. At lower
values of Coulomb friction (μ = 0.1), the temperature ratio
monotonically increases from the smooth limit (β0 = −1) and
becomes independent of β0 for β0 > 0, and hence deviates
from the the constant-β model for 0 < β0 < 1. This deviation
increases if we increase collisional dissipation.

B. Orientational correlation: Coupling between translation
and rotation

It has been recently reported that the translational and
rotational fluctuating velocities are strongly correlated in
direction in both undriven (freely cooling [39]) and driven
(sheared [38]) granular gases, even though they are uncorre-
lated in a molecular gas—this is an additional property of a
frictional granular gas, and adds to one of the many differences
between molecular and granular gases. The coupling between
orientational and translational velocities has been dubbed
“orientational correlation” [38,39]. This correlation can be
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FIG. 5. (Color online) (a) Effect of roughness on orientational
correlation for different values of e for φ = 0.01 for constant-β
model. Variable-β model: (b) μ = 1 and (c) μ = 0.1 The dot-dashed
line in each plot corresponds to  = 1/3.

quantified [38,39] in terms of the peculiar translational and
rotational velocities:

(t) = 1

N

N∑
i=1

(Ci · �i)2(
C2

i �
2
i

) = 1

N

N∑
i=1

cos2�i ≡ cos2 �, (16)

where � is the angle between C = v − 〈v〉 and � = ω − 〈ω〉.
In other words, the mean square of the cosine of the angle
between C and � is a measure of orientational correlation; for
a molecular gas,  = 1/3.

First we consider results for the constant-β model for which
μ → ∞: Fig. 5(a) shows the effect of particle roughness (β) on
〈(t)〉 for three values of normal restitution coefficient (e). The
dot-dashed line represents the limiting value of 〈(t)〉 = 1/3
for a molecular gas; it is seen that 〈(t)〉 deviates from 1/3
for all e, signaling the presence of orientational correlation.
For any value of e, the orientational correlation is maximum
at β ∼ 0 and it decreases monotonically as we approach the
perfectly smooth (β = −1) and perfectly rough (β = 1) limits.
As discussed previously [38], this latter observation is in
contrast to that in a freely cooling granular gas [39] for which
〈(t)〉 varies nonmonotonically with β for −1 < β < 0 and
0 < β < 1. Another important observation is that the case
of quasielastic collisions (e ∼ 1) appears to be nonsingular
in a sheared granular gas in the sense that the orientational
correlation smoothly decreases to its uncorrelated value (1/3)
for both the perfectly smooth (β = −1) and rough (β = 1)
limits.

The friction coefficient μ has a pronounced effect on
orientational correlation as depicted in Fig. 5(b) (μ = 1)
and 5(c) (μ = 0.1). For a given μ, 〈(t)〉 is calculated by
varying the critical roughness β0 following Eqs. (11) and
(12). For larger friction [μ = 1, Fig. 5(b)], the orientational
correlation follows the same trend with roughness as in the
case of constant-β model [Fig. 5(a)]; however, 〈(t)〉 deviates
from 1/3 at the perfectly rough limit (β0 = 1) even for
the elastic case (e = 1). For small values of friction [μ =
0.1, Fig. 5(c)], 〈(t)〉 decreases with increasing roughness
(β) from the smooth particle limit (β = −1) and becomes
independent of the critical roughness parameter, irrespective
of normal restitution (e), after a certain value of β0 ∼ −0.75.
Therefore the inclusion of any finite Coulomb friction induces
orientational correlation at β0 = 1.

A close comparison among three cases (μ = ∞, 1, and
0.1) in Fig. 5 suggests that the Coulomb friction has a
dual role of enhancing and diminishing the orientational
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FIG. 6. (Color online) Variation of orientational correlation with
friction coefficient (μ) for different values of β0. Main panel: e = 0.5
and inset: e = 1; other parameters as in Fig. 5.

correlation, depending on the value of particle roughness (β0).
This is evident from Fig. 6 which shows the variation of
〈(t)〉 with friction coefficient μ for four values of β0; the
trends are similar for both dissipative (e = 0.5, main panel)
and elastic (e = 1, inset) collisions. Near the smooth limit
(β0 = −0.5, red circles), 〈(t)〉 decreases monotonically with
increasing μ; however, this variation becomes nonmonotonic
for β0 > 0, with the minima of 〈(t)〉 [i.e., the correlation, =
|〈(t)〉 − 1/3|, is maximum] occurring at some intermediate
values of μ.

It is clear from Fig. 6 that all curves 〈(t)〉 for different
values of β0 coincide with each other if the friction coefficient
μ is sufficiently small. This implies that there is a critical value
for μ = μc (∼0.2, which has a weak dependence on β0) below
which (μ < μc) the magnitude of correlation [= |〈(t)〉 −
1/3|] decreases for all β0, eventually approaching the value
for the degenerate case of smooth particles (β = −1) in the
limit of zero friction (μ → 0). There is also a critical value for
β0 = βc ∼ 0 such that this correlation either decreases with
increasing μ > μc (over βc < β0 < 1) or remains constant
with increasing μ > μc (over −1 < β0 < βc).

C. Translational and angular velocity distribution functions

The probability distributions of fluctuating/peculiar veloc-
ities, C = v − 〈vk〉 and � = ω − 〈ωk〉, are calculated based
on cellwise averaging, where 〈vk〉 and 〈ωk〉 denote the mean
translational and rotational velocity of the kth cell, respec-
tively. More specifically, the computational box is divided into
a number of cells and the cell-averaged velocities (of kth cell)
are calculated as follows:

〈vk〉 = 1

Nk

∑
j

vj , (17a)

〈ωk〉 = 1

Nk

∑
j

ωj , (17b)

with Nk being the number of particles in the kth cell.

It is known from previous theoretical and simulation
works [4,55,56] on the uniform shear flow of a smooth
granular gas that the VDFs deviate from a Gaussian. Even
an approximate Bhatnagar-Gross-Krook (BGK)-type kinetic
model [57] can provide an accurate description of the VDFs for
small velocities but there are significant discrepancies between
theory and simulation at large velocities. It is important to
characterize the high-velocity tails of VDFs since it has
recently been found [6] that the non-Gaussian (exponential)
tails of HCSs are responsible for the nonconvergent behavior
(at large inelasticity) of the Sonine expansions for velocity
distribution functions. Therefore our primary focus is on the
high-velocity tails of VDFs for a frictional granular gas, which
seem to follow stretched exponentials in the present flow. In the
following, the results are shown only for Cx (the streamwise
component of peculiar translational velocity) and �z (the
spanwise component of peculiar angular velocity), and other
velocity components follow similar behavior (except at low
velocities where there are some deviations among VDFs of
different velocity components when the dissipation is large
enough).

1. Constant-β model: μ = ∞
Before presenting results for Coulomb friction, let us

discuss a representative set of velocity distribution functions
(VDFs) for the constant-β model (μ = ∞) in Fig. 7. The
main panels of Figs. 7(a) and 7(b) display the VDFs of Cx

and �z, respectively; note that the horizontal axis of each
VDF is scaled by the standard deviation of respective VDFs
(σ ≡ σCx

or σ�z
). In each plot, two data sets for e = 0.5

(circles) and 1 (squares) have been superimposed and the
tangential restitution coefficient has been set to β = 0; the
black dashed line represents a Gaussian distribution. The
high-velocity tails (Cx/σCx

,�z/σ�z
> 3) of both VDFs are

seen to deviate noticeably from a Gaussian even at e =
1, and this deviation increases with increasing dissipation
(e = 0.5).

Focusing on the low-velocity regions of VDFs, we show
the variations of the normalized deviation from a Gaussian,

D(x) =
(

P (x)

φ(x)
− 1

)
, with x = Cx/σCx

,�z/σ�z
, (18)

where φ(x) = (2π )−1/2 exp(−x2/2) represents a Gaussian, in
the upper right insets of Figs. 7(a) and 7(b) for translational
and rotational velocities, respectively. It is seen that there
are significant deviations from a Gaussian at low velocities
(Cx/σCx

,�z/σ�z
< 2) even for elastic collisions (e = 1).

There are two reasons for the observed departure from a
Gaussian: (1) the additional dissipation due to tangential
restitution (β = 0 �= −1) and (2) the imposed shear field
(∇u �= 0). These deviations become stronger with decreasing
normal restitution coefficient (e = 0.5, red circles in upper
right insets) for a given roughness β.

Figures 8(a) and 8(b) display the normalized deviation of
the VDF of each velocity component, Eq. (18), of translational
and rotational velocities, respectively. The deviations of VDFs
for different velocity components are almost indistinguishable
at e = 1 (main panel), but noticeable differences among
different velocity components appear at e = 0.5 (inset). For
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FIG. 7. (Color online) Velocity distribution functions (VDFs) of
(a) Cx (main panel) and (b) �z (main panel) for the constant-β
model with β = 0 and φ = 0.01. Top left inset shows the variation
of − ln{− ln[P (x/σ )/P (0)]} with ln(x/σ ); top right inset depicts the
normalized deviation of the respective VDF from a Gaussian, D(x)
as defined in Eq. (18), for low velocities; the bottom inset shows
the effect of normal restitution coefficient, e, on the kurtosis of each
distribution.

the translational velocity [inset of Fig. 8(a)], the deviations
are found to be the least for the z component of velocity
(Cz, orthogonal to the shear plane); the VDFs of the velocity
components in the shear plane (Cx and Cy) seem to have
deviations of same magnitude. For the rotational velocity [inset
of Fig. 8(b)], however, the deviation is the largest for �z and
the least in the shear plane (�x and �y). This overall trend
persists at other parameter values. For all cases, we found
that the functional form of the deviations of VDFs from a
Gaussian is well represented by a double-well potential in
the low-velocity regions. For a smooth granular gas, such
deviations have been quantified in terms of the second Sonine
polynomial in theory [5,8,11] and experiment [21,23].

In order to quantify the deviation of each VDF from a
Gaussian, we have calculated the kurtosis of the distribution:

κ = μ4

μ2
2

, (19)
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Main panel: e = 1.0; inset: e = 0.5; other parameters are as in Fig. 7.

where

μn =
∫ ∞

−∞
(x − x)nP (x)dx (20)

is the nth moment about the mean of the distribution. The
dependence of the kurtosis of P (Cx) and P (�z) on normal
restitution coefficient (e) is shown in the lower insets of
Figs. 7(a) and 7(b). For both P (Cx) and P (�z), κ > 3, clearly
signaling that the VDFs are indeed non-Gaussian for any e at
β = 0.

In our previous work [38] with constant-β model, we have
found that the high-velocity tails of the VDFs, such as those
in Fig. 7, approximately follow stretched exponentials:

P (x) ∼ exp(−δxα), with x = Cx/σCx
,�z/σ�z

, (21)

where δ and α are the prefactor and exponent of the distribu-
tion, respectively; for a Gaussian distribution, δ = 1/2 and α =
2. This implies that in a plot of − ln{− ln[P (Cx/σCx

)/P (0)]}
versus ln(Cx/σCx

), the tails would follow a straight line with
a slope of α. Such plots are displayed in the upper left insets
of Figs. 7(a) and 7(b). To calculate αCx

and α�z
from such
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FIG. 9. (Color online) Surface plots for the exponents of tails of
(a) P (Cx) and (b) P (�z) as functions of β and e for constant-β model.
Parameter values are as in Fig. 7.

plots, we fit straight line (via the least-square method) to all
high-velocity data points that correspond to ln(Cx/σCx

) � 1
for all velocity components.

The variations of the exponents for the tails of translational
(αCx

) and rotational (α�z
) velocities as functions of e and β

are shown as surface plots in Figs. 9(a) and 9(b), respectively.
It is clear that even for perfectly elastic collisions (e = 1) the
tails of both translational and rotational VDFs deviate from
a Gaussian (except at β = ±1 for which αC = 2 = α�); this
deviation is maximum at β ∼ 0. Note that the functional forms
of αCx

and α�z
are asymmetric and symmetric (around β =

0), respectively, at e = 1. With increasing inelasticity (i.e.,
decreasing e), both αCx

and α�z
decrease sharply, and α�z

also
becomes asymmetric around β = 0.

2. Effect of Coulomb friction on VDFs

To ascertain the effect of finite Coulomb friction on VDFs,
we set the critical roughness to β0 = 0 (the results at other
values of β0 are qualitatively similar) and four different
values of friction coefficient (μ = 10, 1, 0.1, and 0.01) are
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FIG. 10. (Color online) Same as Fig. 7, but for the variable-β
model with β0 = 0 and μ = 1.

investigated using the variable-β model [see Eqs. (11) and
(12)]. Typical results are displayed in Figs. 10 and 11 for
two values of friction coefficient μ = 1 and 0.01, respectively.
[The VDFs of Cx and �z for large friction (μ = 10, not shown)
closely resemble those in Fig. 7 for the constant-β model; this
is expected since the latter model corresponds to μ = ∞.]
For each case, the variation of − ln{− ln[P (x)/P (0)]} with
ln(x), where x = Cx/σCx

,�z/σ�z
, looks similar to those for

the constant-β model (the left inset of Fig. 7) and hence is not
shown. The top right insets of Fig. 10 display the normalized
deviation [Eq. (18)] of VDF at low velocities from a Gaussian,
and the bottom insets of Fig. 10 and Fig. 11 show the variations
of kurtosis with normal restitution coefficient. When we
decrease the value of friction coefficient from μ = ∞ (Fig. 7)
to μ = 1 (Fig. 10), the kurtosis of each VDF (lower insets)
decreases toward 3, signaling a relatively lesser deviation
from a Gaussian. The deviations in the low-velocity regions
also decrease with decreasing friction coefficient (compare top
right insets of Figs. 7 and 10); note that the functional form
of D(x) [Eq. (18)] still retains a double-well potential shape
in the presence of Coulomb friction. For very small values of
μ = 0.01 (Fig. 11), the kurtosis of each VDF approaches 3 and
the respective tails also have exponents αi ∼ 2, characterizing
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FIG. 11. (Color online) Same as Fig. 10, but for μ = 0.01.

a near Gaussian, for e = 1. Of course, even for the latter case
of elastic collisions, there are small but finite deviations from
a Gaussian due to the nonzero shear field.

The effect of Coulomb friction on the non-Gaussianity of
VDFs is summarized in Figs. 12(a) and 12(b). The main panel
of Fig. 12(a) shows the variation of the kurtosis of P (Cx) with
the friction coefficient (μ) for three different normal restitution
coefficients (e), and the inset shows the same for P (�z); the
critical roughness is set to β0 = 0. For e = 1, the kurtosis of
both distributions is close to that of a Gaussian (κ = 3) for
small friction (μ = 0.01), increases with increasing Coulomb
friction, and appears to saturate at large enough μ (which
corresponds to the limit of constant-β model). With decreasing
e, the kurtosis of both distributions strongly deviates from a
Gaussian at any μ. The main panel and the inset of Fig. 12(b)
show the variations of the exponents of tails of P (Cx) and
P (�z), respectively, with μ for different e. These results
mirror those for the kurtosis: the exponents (αCx

and α�z
)

decrease from the Gaussian limit (α = 2) with increasing μ

and decreasing e, signaling larger deviations from a Gaussian.

D. Density and velocity correlations

Last, we would like to ascertain the possible role of
Coulomb friction as well as that of normal and tangential
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FIG. 12. (Color online) (a) Variations of the kurtosis for stream-
wise translational and spanwise rotational velocities on friction
coefficient μ for different values of e in the main panel and in the
inset, respectively. (b) Effect of μ on the exponent of P (Cx) and
P (�z) in the main panel and inset, respectively. Parameter values are
φ = 0.01 and β0 = 0.

restitution coefficients on the pair correlation and the spatial
velocity correlation functions since both are known to be pro-
genitors of non-Gaussianity of velocity distribution functions
in smooth (β = −1) granular gases [14,17,58,59]. The pair
correlation function (g(r)) is defined as the probability of
finding another particle at a distance r from the test particle;
thus g(r) gives information about the local spatial ordering of
particles and hence of density correlation. This is calculated
from [51]:

g(r) = 2V

N2

〈
N∑

i−1

N∑
j>1

δ(r − rij )

〉
, (22)

where V is the volume and N is the number of particles.
Similar information about the spatial correlation between any
two components of fluctuating particle velocities is quantified
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FIG. 13. (Color online) Effect of Coulomb friction on the pair
correlation function (main panel), translational velocity correlation
(upper inset), and rotational velocity correlation (lower inset) for (a)
e = 1.0 and (b) e = 0.5, with φ = 0.01 and β0 = 0.

in terms of the spatial velocity correlation function [51] which
is defined as

Gζiζj
(r) = 〈ζi(R)ζj (R + r)〉, (23)

where i/j = x,y,z and ζ = C,�. When particle velocities
are random, the correlation is zero; a nonzero value of Gζiζi

indicates correlation.
The effect of Coulomb friction on the pair correlation

function of a dilute granular gas (φ = 0.01) can be ascertained
from the main panel of Fig. 13(a), which displays the variation
of g(r) for two values of friction coefficient μ = 10 (circles)
and 0.01 (triangles) at a normal restitution coefficient of e = 1.
The same set of data at e = 0.5 is displayed in Fig. 13(b).
For both cases, g(r) remains featureless (i.e., there are no
peaks, which implies that there is no “local” spatial ordering
of particles) and it behaves almost like a molecular gas.
However, the contact value of g(r/d = 1) increases sharply
with increasing friction; for a given μ, g(r/d = 1) increases
with decreasing e.

The upper and lower insets in Figs. 13(a) and 13(b) display
spatial velocity correlations for 〈CxCx〉 and 〈�z�z〉, respec-

tively. (The velocity correlation data for other velocity compo-
nents, 〈CiCj 〉, etc., look similar and hence are not shown.) The
velocity correlation increases with increasing μ, and becomes
more pronounced at higher dissipations (e = 0.5). At e = 0.5
and μ = 10 there is a significant correlation of streamwise
velocity, GCxCx

, as seen in the top inset of Fig. 13(b); the
corresponding correlation for G�z�z

is relatively weaker than
GCxCx

. For given e and roughness β0, the lower the value
of μ the weaker the (both density and velocity) correlations.
Collectively, the results in Fig. 13 suggest that the dissipation
associated with both Coulomb friction and inelasticity is
responsible for enhanced density and velocity correlations.

IV. SUMMARY AND CONCLUSION

We studied the effect of Coulomb friction on the granular
temperature ratio, orientational correlation (coupling between
translational and rotational velocities), velocity distribution
functions (VDF), and density and spatial velocity correlations
in the uniform shear flow of a dilute granular gas. Event-
driven simulations with Lees-Edwards boundary conditions
have been employed using a three-parameter collision model
[30,31] that incorporates both normal (e) and tangential (β)
restitution coefficients as well as Coulomb friction (μ). It
has been argued that this is the minimal collision model
for frictional particles since it incorporates both sliding and
sticking type contacts. It is known that the translational (T ) and
rotational (θ ) granular temperatures are unequally partitioned
in a rough granular gas, except in the singular case of perfectly
rough particles (β = 1); our results suggest that the degree
of nonequipartition between two granular temperatures is
enhanced with the inclusion of friction.

We found that the friction has a dual role of enhancing
and diminishing the orientational correlation, depending on
the particle roughness (β0) and the friction coefficient (μ).
The increase/decrease of orientational correlation occurs near
the perfectly rough (β ∼ 1) and smooth (β ∼ −1) limits,
respectively, for a range of μ from the sticking limit of
μ → ∞. Below some threshold value of μ = μc ∼ 0.2,
the orientational correlation again decreases (for any β0),
eventually approaching the value for the degenerate case of
smooth particles (β = −1) in the limit of zero friction (μ →
0). We speculate that the observed nonmonotonic dependence
of orientational correlation on μ (for given β0 and e) is due to
how energy is transferred between translational and rotational
modes—this needs to be investigated in future.

In a driven system the VDFs are always non-Gaussian
as we confirmed in the present shear flow of a frictional
granular gas. The functional form of the deviations of VDFs
from a Gaussian [Eq. (18)] takes the well-known form of a
double-well potential in the low-velocity regions as found
in previous studies of a smooth granular gas. However, the
high-velocity tails of both translational and rotational VDFs
can deviate strongly from a Gaussian (depending on the values
of two restitution coefficients and Coulomb friction), and
have been characterized in terms of stretched exponentials
[P (C) ∼ exp(−δCα), with α < 2]. We found that the tails of
both VDFs undergo a transition from stretched exponential
to Gaussian with decreasing friction coefficient (μ) in the
elastic limit (e = 1) at any roughness β0. The degree of
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non-Gaussianity (which is measured in terms of the kurtosis
κ of respective VDFs as well as in terms of the exponent of
the stretched exponential high-velocity tails, α) decreases with
decreasing μ for dissipative collisions (e < 1). We found that
the Coulomb friction is responsible for enhanced density and
velocity correlations for a given normal restitution coefficient
e. These correlations, together with orientational correlation,
seem to be responsible for non-Gaussian tails around the
sticking limit.

The latter finding of a Gaussian distribution in the double
limit of μ → 0 and e → 1 (at any critical roughness) can
be understood from the Boltzmann equation. The Boltzmann
equation for the single particle distribution function, f1 ≡
f (v1,ω1,r,t), is

∂f1

∂t
+ v1 · ∇f1 = C(f,f ′; e,β0,μ), (24)

where the collision integral is given by [36]

C(·) = d2

2

∫
k·g12>0

[(eJ )−1f1f2 − f ′
1f

′
2](k · g12)dkdv2dω2,

(25)

with the prime on a distribution function representing its
postcollisional value; J (e,β0,	) is the determinant of the Ja-
cobian of transformation from precollisional to postcollisional
particle velocities:

J (e,β0,	) =
∣∣∣∣∂

(
v′

1,v
′
2,ω

′
1,ω

′
2

)
∂(v1,v2,ω1,ω2)

∣∣∣∣ =
{
eβ2

0 , 	 � 	0,

eβ(	)2, 	 > 	0,
(26)

where 	0 is the critical impact angle, Eq. (11). Considering
the sliding limit of small friction (i.e., μ → 0, or, cot 	0 → 0),
we find from Eq. (12) that the tangential restitution coefficient,

β(	) → −1 ∀ β0, (27)

approaches a value that coincides with the limiting case of
perfectly smooth particles. In this case, the Jacobian of trans-
formation is J (e,β0,	) = eβ(	)2 → e, irrespective of critical
roughness β0. Clearly, J → 1 in the double limit of e → 1 and
μ → 0, for which case the solution of the Boltzmann equation
is well known, i.e., a Maxwellian (Gaussian). This agrees with
the findings of our simulations.

The above discussion suggests that the Chapman-Enskog-
type perturbative expansion around the smooth limit of a fric-
tional granular gas (with Maxwellian being the zeroth-order
solution) will hold at any value of critical roughness β0. More
importantly, given the prevalence of orientational correlation
at any roughness and its nonmontonic variation with Coulomb
friction, it must be incorporated in the theory of frictional
granular gases even in the Boltzmann limit. Last, the high-
velocity tails of VDFs in a shear flow with Coulomb friction
should be theoretically analyzed so that a comparison with
present findings of stretched exponential tails can be made.
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