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ABSTRACT 

Sound reproduction systems aim to produce a desired sound 
field over a region of space. At high frequencies, the number 
of loudspeakers required is prohibitive. This paper shows 
that the use of Nth order loudspeakers, in which each 
loudspeaker produces polar responses up to ( )cos Nφ  and

( )sin Nφ , produces accurate reproduction over N times the 
area of a first order array and can largely eliminate any 
exterior field. This allows a significant reduction in the 
number of loudspeaker units, at the expense of increased 
complexity in each loudspeaker unit. 

Index Terms— Sound, surround, reproduction, 
loudspeakers,  sources

1. INTRODUCTION 

Sound reproduction systems aim to reproduce an arbitrary 
desired sound field within a region of space. The desired 
sound field may be generated using the Kirchhoff-Helmholtz 
(K-H) integral [1], or cylindrical or spherical harmonic 
decompositions (higher order Ambisonics) [2,3]. 

The accuracy of sound reproduction is governed by the 
wavelength and the size of the region over which 
reproduction is required. For wave number k and 
reproduction radius r the number of required loudspeakers in 
the 2D case is given approximately by [2] 

2 1L kr≈ + .   (1) 
Hence, large numbers of loudspeakers are required for the 
reproduction of high frequencies over significant areas. For 
example, reproduction over 0.1m radius at 16 kHz requires 
60 loudspeakers. In the 3D case the required number of 
loudspeakers is significantly higher [3].  

A further limitation of reproduction in rooms is that the 
loudspeakers produce a reverberant field which corrupts the 
sound field within the array [4]. This reverberant field can 
be cancelled using calibration and pre-processing but such 
techniques require accurate measurement of acoustic transfer 
functions and significant computing power [3,5-7]. If, 
however, loudspeakers with omnidirectional and radial 

dipole directivities are used, it is possible to produce a 
sound field within the loudspeaker array and no exterior 
field, by using the K-H integral [1]. Exterior cancellation is 
possible below the Nyquist frequency of the array, where the 
transducers are a half wavelength apart which, in the 2D 
case and for a loudspeaker radius rL, and speed of sound c, is 
[8] 

( ) ( )1 1 4
L

f c L rπ= − .   (2) 
We use the subscript 1 to denote the fact that the 
loudspeakers have first order polar responses. 

At frequencies at or above Nyquist, the K-H approach 
fails and a nonzero exterior sound field is produced. In this 
case fixed-directivity speakers can reduce the exterior field 
[4,9,10]. The K-H approach can, however, be made more 
accurate near the Nyquist frequency by including tangential 
dipoles in each loudspeaker response [8]. This suggests that 
higher order variable polar responses may produce further 
improvements in sound reproduction. In this paper we show 
that this is indeed the case. We present the 2D cylindrical 
harmonic description of higher order sound sources and 
derive the required source amplitudes for producing a 
desired sound field. It is shown through simulations that a 
circular array of Nth order loudspeakers produces a Nyquist 
frequency of N times that in (2). Hence, the reproduction 
area, or equivalently, the bandwidth of accurate 
reconstruction over a specified area, is increased by a factor 
N.  

2. THEORY  

The interior solution to the wave equation at a point 
( ),r r φ=  in the simple case of height invariance has the 

general form [11] 

( ) ( ) ( ), , im

m m

m

p r k J kr A k e φφ
∞

=−∞

=  (3)

where Jm(.) is the mth cylindrical Bessel function, and Am the 
mth expansion coefficient. Due to the properties of the 
Bessel function, this expansion can be truncated to order 
M kr≈  for a radius r and wavenumber k [2]. From (1), with 
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L loudspeakers, the desired field can be reproduced up to 
mode order  

( )1 2M L= − .   (4)
Equation (3) represents a desired sound field we wish to 
produce within a circular array of L loudspeakers positioned 
at ( ) [ ], , 1,

l L l
r r l Lφ= ∈ .  
In a simple zeroth order sound reproduction system, each 

loudspeaker is a monopole [8], with expansion [11] 
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where ( ) ( )1 .mH  is the mth cylindrical Hankel function of the 

first kind and 0 l
r r r= − . We assume a single frequency 

sound field with a time dependency ( )exp i tω− , which 
produces outward propagating wave fronts.  

Zeroth order sources can produce a desired interior field, 
but first order sources are required to independently control 
the exterior field. Here we consider the more general case of 
Nth order sources, which are represented as 

( ) ( ) ( )0

1, lin
n np r H kr e βφ =    (6)

where βl is the angle measured from the field point to the 
source vector  

l
r  (figure 1). 
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Fig. 1: Higher order source geometry for source vector 

lr  and field vector r

The nth order sound field (6) can be expressed in a similar 
manner to (5) using the cylindrical addition theorem [12].  
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A combination of order n = N and n = -N sources has a far-
field polar response which is a combination of ( )cos Nφ

and ( )sin Nφ  terms. A loudspeaker which produces a 

general Nth order source consists of a sum of source orders 
[ ],n N N∈ −  with weights wn,l.  

( ) ( ),, , , l

l

N
in

Nl L l n l n
n N

p r r w H k r r e βφ φ
=−

= − . (8)

An array of L such sources then produces the sound field 

( ) ( ),
1

ˆ , l

L N
in

n l n l
l n N

p r w H k r r e βφ
= =−

= − .  (9)

which must closely approximate the desired field in (3). 

3. SOLUTION 

Substituting equation (7) into (9) and equating with (3), then 
multiplying each side by ( )exp ivφ−  for integers v and 
integrating over φ yields, for each mode m, the interior mode 
matching equation 

( ) [ ],
1

, ,l

L

N L
im

m n n l m
n N l

H kr w e A m M Mφ−
+

=− =

= ∈ − . (10) 

A similar process produces, for the exterior sound field 

( ) [ ],
1

0, ,l

N L
im

m n L n l
n N l

J kr w e m M Mφ−
+

=− =

= ∈ − .  (11) 

The set of equations (10) and (11) may be put in matrix form 
w d=H ,  (12) 

where H is a (4M+2) by (2N+1)L matrix, w is a (2N+1)L by 
1 vector of weights wn,l and d is a (4M+2) by 1 vector 
containing the 2M+1 desired sound field coefficients, and 
2M+1 zeros. 

This matrix equation can be solved for the higher order 
source weights when 4M+2 is less than (2N+1)L (the 
underdetermined case) using a minimum energy criterion 
[2,3]. This suggests that the maximum number of modes that 
can be reproduced in the interior of the array is 

( )1 2 2 1 2M N L= + − . However, in the first order case 
the mode order is given by (4) which is inconsistent with the 
above for N = 1. Since exterior cancellation is only possible 
for first order sources, we infer that the maximum mode 
order that can be controlled for interior/exterior control is  

( ) ( )1 2 , 0M N NL N= − >  (13) 
which is consistent with (4). The maximum region of 
reproduction is, with this assumption (and using the M kr≈
equivalence), 

( ) ( ) ( )1 4
N

r f c LN fπ= − . (14) 
The maximum frequency at which the reproduction system 
can produce accurate reconstruction out to a radius rL and 
cancel the exterior field is the Nth order Nyquist frequency 

( ) ( )1 4
N L

f c LN rπ= − .  (15) 
This suggests that an Nth order array is able to produce N
times the performance of a first order array. 
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4. SIMULATION RESULTS 

To investigate the performance improvement of an Nth order 
loudspeaker array we developed Matlab simulations of a 
circular array containing L=15 higher order sources. The 
array radius is 3 m and, from (2), this produces a first order 
array Nyquist frequency of 126 Hz. We aim to reproduce the 
sound field due to a line source, as in equation (5), at a 
source radius of 6 m and a worst-case source angle of 36 
degrees, half way between adjacent loudspeakers. 

Figure 2 shows the sound field produced at a frequency 
of 125 Hz, at the Nyquist frequency of the array, for N=1,  
the K-H case. The circle shows the maximum radius of 
reproduction from (14). Reproduction is accurate over the 
interior region, and the exterior sound field is small.  

Fig. 2: Sound field for N=1, frequency 125 Hz 

At 350 Hz, well above the Nyquist frequency of the first-
order array, the maximum radius of reproduction is 1.08 m, 
and the sound field, shown in figure 3, is inaccurate for radii 
greater than this value. The loudspeakers are greater than 
half a wavelength apart and are therefore unable to generate 
a cancelled exterior field. 

The reproduction error relative to the desired pressure at 
the origin,  

( )
( ) ( ) ( )

( ) ( )
ˆ , , / 0 ,

,
ˆ , / 0 ,

L

L

p r p r p r r
r

p r p r r

φ φ
ε φ

φ

− <
=

>
, (16) 

for the sound field in figure 3 is shown in figure 4. The field 
is incorrect for radii greater than 1.08m, and the exterior 
field is no longer small. Figure 5 shows the field at 350 Hz 
using a source order N=3, for which, from (15), the array 
Nyquist frequency is 400 Hz. The field is now accurate out 
to the loudspeaker radius and the exterior field is small. 
The reproduction error is shown in figure 6. The region of 
accurate reproduction is three times that of the first order 
array, supporting equation (14). The exterior field is small, 
but as the source frequency approaches Nyquist, the exterior 
field begins to increase. 

Fig. 3: Sound field for N=1, frequency 350 Hz 

Fig. 4: Reproduction error (16), N=1, frequency 350 Hz 

Fig. 5: Sound field for N=3, frequency 350 Hz 
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Fig. 6: Reproduction error (16), N=3, frequency 350 Hz 

Fig. 7: Sound field for N=6, frequency 800 Hz 

This is shown in figure 7 for a 6th order array at a frequency 
of 800 Hz, close to the Nyquist frequency of the array (803 
Hz). The interior field is accurate within the array, 
confirming again the N-fold increase in reproduction radius. 
The exterior field is now significant, but rapidly reduces in 
amplitude for frequencies below 800 Hz 

5. CONCLUSION 

This paper has considered the use of an array of higher order 
sound sources for sound field reproduction, in the 2D case, 
which can in practice be approximated using monopole 
sources [13,14]. It has been demonstrated by simulation that 
an Nth order array – capable of radiating polar responses up 
to and including ( )cos Nφ  and ( )sin Nφ  – is able to extend 
the reproduction region, or the frequency range, by a factor 
N, while significantly reducing the exterior sound field. This 
suggests that sound reproduction can be carried out using 

1/Nth of the number of simple loudspeakers, if those 
loudspeakers are able to produce all responses up to Nth
order. 
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