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Abstract: This paper considers an important problem in sensor networks, i.e. clock synchronization
in wireless sensor networks with a focus on those scenarios where the inter-node time-of-arrival
measurements are noisy. Initially, a simple convex, constraint based, optimization protocol for the
problem of relative clock synchronization in wireless (sensor) networks is presented. Later, we provide
a distributed discrete-time solution to the same problem and show exponential convergence. Then we
provide a similar algorithm for achieving the same solution in continuous-time. Both the discrete-time
algorithm and the continuous-time algorithm are distributed in that each node in the network requires
very little information from its neighbours in the network. In the end, we provide a modification of the
continuous time algorithm that achieves a finite-time convergence to the desired solution under some
additional requirements.

1. INTRODUCTION

Wireless sensor networks provide a novel solution to a wide
range of problems across a number of application areas. In
many applications Cristian (1989); Sundararaman et al. (2005),
individual sensor nodes are often required to attach so-called
“where” and “when” information to the underlying sensed data.

The first question is addressed in those works that are concerned
with the question of localization of sensor networks, e.g. con-
vex optimization based localization algorithms (Doherty et al.
(2001); Beck et al. (2008); Carter et al. (2006); Biswas et al.
(2006); Biswas and Ye (2004); Ding et al. (2010)), algorithms
using sum of squares relaxation (Nie (2009); Shames et al.
(2009b,a)), graph connectivity based algorithms (Shang et al.
(2003); Lederer et al. (2009)), methods that use multidimen-
sional scaling (Costa et al. (2006)), or other approaches de-
scribed in Moore et al. (2004); Bruck et al. (2009); Bachrach
and Taylor (2005).

The second question, which this paper is concerned with, is re-
lated to the more general problem of network synchronization,
see Wang and Chen (2002); Barahona and Pecora (2002) and
the references therein, and is referred to as the problem of clock
synchronization. The problem of relative clock synchronization
for wireless networks (or distributed networks more generally)
is not new Cristian (1989); Sundararaman et al. (2005) and a
number of protocols exist. We consider algorithms based on the
time-of-arrival (TOA) stamps measured at individual sensors
from a limited number of wireless signals transmitted by certain
neighbour nodes in the network. The measurements at sensor i
typically take the form

t̂κ̄ij = tκ̄ij + eκ̄i = τ κ̄i +
rij
v

+ eκ̄i (1)
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for a signal, indexed by κ, transmitted from sensor j. The inter-
sensor range is rij and the speed of signal propogation is v.
Here, eκ̄i represents the noise in the measurement. In general,
we assume that eκ̄i and eκ̄j are independent. The time τ κ̄i is the
unknown time of transmission for message κ measured in node
i’s internal time frame. We assume that node j transmits

τ̂ κ̄j = τ κ̄j + nκ̄j (2)

to node i where τ κ̄j is the time of signal transmission as
measured in node j’s time frame. We assume nκ̄i corresponds
to the noise in this transmission.

Note that tκ̄ij = τ κ̄i +
rij
v = τ κ̄j + (τ κ̄i − τ κ̄j ) +

rij
v and we can

now introduce the following definition.

Definition 1. The relative clock bias between node i and j is
given by βij = τj−τi = −βji. If node i knows βij for all nodes
j within node i’s communication range then node i is said to be
synchronized. Moreover, if all nodes are synchronized then the
network is said to be globally synchronized. Two nodes i and j
within communication range are said to be adjacent.

We assume that events stamped in node j’s internal clock
as θj which are transmitted to an adjacent node i are then
transformed into node i’s internal frame using θi = θj − βij .
The simplest approach for pair-wise clock synchronization is to
compute the estimate

β̃ij =
(t̂aji − τ̂ai )− (t̂bij − τ̂ bj )

2
(3)

when i and j are adjacent. Node i broadcasts a packet a to node
j along with τ̂ai . Node j measures t̂aji and subsequently returns
a packet b to node i along with t̂aji and τ̂ bj . Node i then measures
t̂bij and computes β̃ij . Given multiple measurements over time,
and a Gaussian error assumption, then taking the average of
τ̂ ij results in the unconstrained maximum likelihood estimate
(MLE) for β̃ij ; see e.g. Sundararaman et al. (2005).

Assumption 1. The clock drift is neglible over short time
intervals, e.g. those considered in this work. That is, the true
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relative bias βij = 1
2 [(taji − τai )− (tbij − τ bj )] is independent of

the packet indices a and b.

The solution to (3) is widely used and is a variant on the
remote clock reading algorithm Cristian (1989). A wide range
of distributed clock synchronization prototols are based on vari-
ants of this technique Sundararaman et al. (2005). A widely
referenced technique known as the reference broadcast syn-
chronization (RBS) protocol can be regarded as a simplified
variant of the above approach Elson et al. (2002) where a single
node is elected as a reference transmitter (at least within defined
clusters) and the time difference between time stamps receieved
at adjacent nodes amounts to a bias estimate. Other techniques
such as the Timing-sync Protocol for Sensor Networks (TPSN)
Ganeriwal et al. (2003), the Flooding-Time Synchronization
Protocol (FTSP) Maroti et al. (2004), the Routing Integrated
Time Synchronization protocol (RITS) Sallai et al. (2006) and
others also use a variant of the above solution with various
modifications, e.g. the broadast technique and toplogy, com-
pensation for drift etc. For brevity, we point to the survey
Sundararaman et al. (2005) for details.

Alternatively, a number of algorithms based on the idea of
distributed consensus (developed in the control community
Shames et al. (2009a)) have recently been introduced; see
e.g. Schenato and Gamba (2007); Xiong and Kishore (2008);
Bolognani et al. (2009). Many of these techniques have the
advantage of being truly distributed. However, such protocols
typically neglect the addition of noisy measurements and are
often based on the notion of asymptotic convergence, i.e. they
require continual execution, and none of them take advantage
of the structure of the network to improve their performance.
However, some of these techniques Sommer and Wattenhofer
(2009); Bolognani et al. (2009) inherently solve the problem
in the face of clock drift, albeit under ideal (noiseless) sensor
conditions.

Additional, and more recent, detailed studies are provided in
Simeone and Spagnolini (2007); Freris and Kumar (2007);
Solis et al. (2006); Giridhar and Kumar (2006); Freris et al.
(2009) where convergence and mathematically rigorous results
concerning performance are provided. In particular, we refer to
Freris and Kumar (2007). The work of Barooah and Hespanha
(2005) is also related and discusses the general problem of
distributed estimation using only relative measurements. The
clock synchronization problem considered here is one such
instance of a general estimation problem with relative measure-
ments.

Our approach is based on the relative communication protocol
and equation (3). We explicitly stated that the solution (3) is
unconstrained as it naively neglects the constraints imposed on
the relative clock biases by the existence of network cycles.
For example, consider a simple network of three sensor nodes
{i, j, k} with a triangular network topology. Now it follows
from simple algebra that

βij + βjk + βki = 0 (4)

and thus any solution to (3) must satisfy such a constraint. We
are unaware of any similar algorithm in the literature which
explicitly considers such constraints.

This paper extends the author’s previous work Shames and
Bishop (2010) on relative clock synchronization. In Shames
and Bishop (2010) a simple centralized solution to the problem
of clock synchronization for wireless sensor networks was

introduced based on constraint opimization. That approach
explicitly considered the constraints imposed on the solution
by the network topology.

In this paper, after outlining some preliminary results, we ex-
tend Shames and Bishop (2010) and introduce a number of
distributed mechanisms for solving the stated constrained op-
timization algorithm. Firstly, we provide a discrete-time solu-
tion that is guaranteed to converge to the optimal constrained
linear least-squares solution with an exponential speed. Then
we provide a similar algorithm for achieving the same solution
in continuous-time. Both the discrete-time algorithm and the
continuous-time algorithm are distributed in that each node in
the network requires very little information from its neighbours
in the network.

Finally, we provide an algorithm that achieves a finite-time con-
vergence to the desired solution. This algorithm requires that
each node in the network have access to knowledge concerning
the network topology and in particular certain kinds of network
cycles.

2. CONSTRAINT-BASED CLOCK SYNCHRONIZATION

We start this section by formally presenting the problem that
we address in this paper.

Problem 1. Consider the network N , with underlying graph
G(V, E), where V = {i}Ni=1 with |V| = N , is its vertex set and
E is its edge set. Moreover the undirected edge {i, j} ∈ E if and
only if nodes i and j are adjacent in the network, in other words
one can calculate a β̃ij as in (3). The answers to the following
questions are sought.

(1) In the absence of noise, under what conditions can one
find βij for any pair of nodes i and j in the network?

(2) In the presence of noise, how can one improve the calcu-
lated values of β̃ij obtained from (3)?

It is common to say two nodes i and j are adjacent if they are
in close physical proximity to one another, i.e. {i, j} ∈ E iff
the range rij is less than some threshold dt. We do not restrict
ourselves to this case however.

In the following theorem we answer the first question posed in
Problem 1.

Theorem 1. All the relative clock biases in the network, βij ,
∀ i, j ∈ V , can be calculated if and only if graph G is
connected.

Now we address the second question posed in Problem 1 by
proposing a method which takes a similar approach to the one
proposed in Piovan et al. (2008) to improve the relative clock
biases obtained from solving (3) in the presence of noise. Note
that for every cycle in the network, we can enforce a constraint
along the lines of (4). If G is a tree, then there are no redundant
cyclic constraints and we cannot reduce the effect of noise on
the bias estimates beyond the solution (3).

Before continuing further, we have the following definitions.

Definition 2. Define the directed edge set Ed as
Ed = {(i, j)|{i, j} ∈ E , & i < j)}, (5)

furthermore, let Gd denote the directed graph (digraph) with
vertex set Vd and edge set Ed.
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Definition 3 (Path and cycle). Let G be either a directed or
undirected non-empty graph. A path is a non-empty graph
P = (VP , EP ) ⊂ G of the form VP = {i}ki=1 and
Ep = {(ji, ji+1)}k−1

i=1 , where {j1, · · · , jk} is a permutation
of {1, · · · , k}. The vertices j2, · · · , jk−1 are the inner vertices
of P . Furthermore, every sequence of edges that form a closed
path in G and do not visit the same node twice, except the
start/end node, is called cycle and it is denoted by Λ.

The direction of a cycle is the order in which the nodes are
visited. We let L(G) denote the set of all cycles of G, and |Λ|
denote the number of edges in the cycle Λ.

Definition 4 (Cycle vector). For Λ ∈ L(Gd), the cycle vector
is the vector 1Λ ∈ {−1, 0,+1}|E|, Λ ⊂ R|E| whose i-th entry is
+1 if the i-th edge belongs to Λ and its orientation is consistent
with the orientation of Λ, −1 if the i-th edge belongs to Λ
and its orientation is opposite the orientation of Λ, and is 0
otherwise.

Definition 5 (Set of cycle and fundamental cycle vectors).
The set of cycle vectors is L = {1Λ, ∀Λ ∈ L(Gd)}. A
set of fundamental cycle vectors Lf ⊂ L is a subset of L
that constitutes a basis for L. The elements of Lf are called
fundamental cycle vectors.

Given a set of fundamental cycle vectors Lf , we let Lf (Gd)
denote the associated fundamental cycles Lf (G) = {Λ ∈
L(Gd)|1Λ ∈ Lf}.
Definition 6 (Cycle and fundamental cycle matrix). The cycle
matrix C of a directed graph Gd is the k × |E| matrix C =
[1Λ1

, ..., 1Λk
]> where k is the dimension ofL. The r×|E|matrix

Cf ⊂ C, with r = dim(Lf ), such that each row represents a
fundamental cycle vector in Lf , is called the fundamental cycle
matrix

Cf = [1Λ1 , ..., 1Λr ]>, ∀1Λi ∈ Lf (6)

Note that Cf is not unique since it depends on the choice of the
fundamental cycles vectors, and it is a full rank matrix.

For more information on how to calculate fundamental sets of
cycles one may refer to Welch (1966).

Let Ni be the set of all the nodes j such that (i, j) ∈ Ed. Define
bi ∈ R|Ni|, as the vector obtained from stacking all the pseudo-
measurements β̃ij calculated from solving (3) , ∀ j ∈ Ni.
Now let b = [b>1 , · · · ,b>N ]>, and Θ be the vector of the to
be calculated estimates, where its k-th entry corresponds to the
estimate of the k-th entry of b.

We want to solve the estimation problem in a least square sense,
hence we have

minimize
Θ∈R|E|

‖b−Θ‖2

subject to C>f Θ = 0
(7)

Moreover, we recast the constraint as Θ ∈ ker(C>f ). Assume
ker(C>f ) has δ1, · · · , δm as a basis so we have

Θ =

m∑
i=1

αiδi. (8)

And the optimization problem (7) transforms into

minimize
α1,··· ,αm∈R

‖b−
m∑
i=1

αiδi‖2, (9)

which can be solved easily. The solution to (7) is a constrained
maximum likelihood estimate under the adopted error assump-
tions. Furthermore, note that if the graph does not have any
cycles (it is a tree), the solution to (7), will be the same as the
solution obtained from solving the unconstrained equation (3)
for all the edges in the network, in other words Θ = b.

3. A DISCRETE-TIME DISTRIBUTED CLOCK
SYNCHRONIZATION SCHEME

In this section we propose a cyclicly-distributed method for
solving the relative clock synchronization problem subject to
the cycle constraints introduced in the previous section.

Recall we want to solve the following least squares problem
minimize

Θ∈R|E|
‖b−Θ‖2

subject to C>f Θ = 0
(10)

where b = [b>1 , · · · ,b>N ]> and bi ∈ R|Ni| is the vector
obtained from stacking all the pseudo-measurements β̃ij cal-
culated from solving (3), ∀ j ∈ Ni. Again, Θ is the estimated
vector of clock biases where the k-th entry corresponds to the
estimate of the k-th entry of b.

Now we want to solve (10) in a cyclicly-distributed iterative
fashion, in a similar way to Piovan et al. (2008). Consider the
following iterative algorithm executed at the ith sensor for the
link e = (i, j)

θe(t+ 1) = θe(t)− κ
∑

Λl s.t. e ∈ Λl
Λl ∈ Lf

1>Λl
Θ(t) (11)

where θe(0) = β̃ij when e = (i, j) and κ > 0 is specified
later. As t → ∞ we find that θe(t) approaches the constrained
least-squares estimate of βij and is across the entire network
this equates to solving (7) in a cyclicly-distributed fashion (the
proof of this equivalence is given in the next theorem). We
say this iterative algorithm is cyclicly-distributed because it is
distributed in the sense that sensor i only requires information
from the set of sensors on the fundamental cycles in Lf (Gd) on
which it is a node.

Theorem 2. If 0 < κ < 2/(1 + λmax(F )) where F = CfC
>
f

and λmax(F ) is the maximum eigenvalue of F , then the so-
lution of the discrete-time system (11) converges exponentially
fast with exponential convergence factor ρ = (1 − κ)2 to the
set of times θij such that C>f Θ = 0. Moreover, (11) converges
exponentially fast to the solution of (10).

Proof. Let dim(Lf ) = r. Given the fundamental cycle matrix
Cf and the associated cycles Λ1, . . . ,Λr, define the cycle error
vector ε at Θ by ε = [εΛ1

. . . εΛr
]> where εΛi

is defined by
1Λi
·Θ for all i ∈ {1, . . . , r}. With this notation we have

Θ(t+ 1) = Θ(t)− κC>f ε(t) (12)
where 1ε,Λl

is equal to ε with all elements equated to zero
except the entry εΛl

. From this we can write down an iterative
equation for the cycle error vectors

ε(t+ 1) = ε(t)− κCfC>f ε(t)
ε(t+ 1) = (I − κF ) ε(t) (13)
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where F = CfC
>
f . Consider the Lyapunov equation v(ε) =

ε>ε such that
v(ε(t+ 1))− v(ε(t)) = ε>

(
A>A− I

)
ε (14)

where A = I − κF . We need to show that there exists a
positive definite Q such that A>A − I < −Q. Write F =
UV U> where U is orthogonal and V is a diagonal matrix
V = diag(λ1, . . . , λr) and λi is the ith eigenvalue of F . Pick
Q = (2κ− κ2)I and thus

U (I − κV )
>

(I − κV )U> − I ≤ −U(2κ− κ2)U> (15)
which is satisfied if and only if

(1− κλi)2 − 1 + 2κ− κ2 < 0, ∀i ∈ {1, . . . , r} (16)
or alternatively if κ < 2/(1 + λmax(F )) since λmin(F ) ≥ 1;
see Arioli et al. (2006). Also, I −Q = ρI where ρ = (1− κ)2.

Note that equation (13) is the orthogonal projection of the cycle
errors onto the subspace spanned by the constraints which is
exactly the solution to the constrained least-squares problem
(10) or (7). This completes the proof.

The preceding theorem states that the cyclicly-distributed itera-
tive algorithm converges exponentially fast to the desired least-
squares solution such that the cycle errors, i.e. the sum of the
relative clock biases around the fundamental cycles, are zero.

We can find a particular network topology such that each
network node requires only the bias estimates associated with
the edges incident to its one-hop neighbours.

Proposition 1. If G is a triangulation graph, then ∃Lf (Gd) on
the associated directed graph Gd such for any Λ ∈ Lf it holds
that |Λ| = 3, i.e. each fundamental cycle has exactly 3 vertices.

Proof. From Euler’s characteristic it follows that the number of
faces of a triangulation is equal to 2−|V|+|Ec| or, excluding the
outer face, the number of triangular faces is equal to 1− |V|+
|Ec|. It follows from the MacLane planarity criterion that the
boundaries of the faces, of a planar graph, form cycles whose
edge sets form a basis for the cycle space.

4. A CONTINUOUS-TIME DISTRIBUTED CLOCK
SYNCHRONIZATION SCHEME

We extend the discrete-time iterative algorithm outlined in the
previous section to a continuous-time algorithm.

Consider the following iterative algorithm executed at the ith
sensor for the link e = (i, j)

θ̇e = −κ
∑

Λl s.t. e ∈ Λl
Λl ∈ Lf

1>Λl
Θ (17)

where θe(0) = β̃ij when e = (i, j) and κ > 0. As t → ∞
we find that θe(t) approaches the constrained least-squares
estimate of βij and is across the entire network this equates
to solving (7) in a cyclicly-distributed fashion (the proof of
this equivalence is given in the next theorem). Again, as in
the previous section, we say this iterative algorithm is cyclicly-
distributed because it is distributed in the sense that sensor
i only requires information from the set of sensors on the
fundamental cycles in Lf (Gd) on which it is a node.

Theorem 3. If κ > 0 then the solution of the continuous-time
system (17) converges exponentially fast to the set of times θij
such that C>f Θ = 0. Moreover, (17) converges exponentially
fast to the solution of (10).

Proof. Let dim(Lf ) = r. Given the fundamental cycle matrix
Cf and the associated cycles Λ1, . . . ,Λr, define the cycle error
vector ε at Θ by ε = [εΛ1 . . . εΛr ]> where εΛi is defined by
1Λi ·Θ for all i ∈ {1, . . . , r}. With this notation we have

Θ̇ = −κC>f ε (18)

where 1ε,Λl
is equal to ε with all elements equated to zero

except the entry εΛl
. From this we can write down an iterative

equation for the cycle error vectors

ε̇ = −κCfC>f ε (19)

which is stable at the origin for any κ > 0.

Note that equation (19) is the orthogonal projection of the cycle
errors onto the subspace spanned by the constraints which is
exactly the solution to the constrained least-squares problem
(10) or (7). This completes the proof.

The preceding theorem states that the cyclicly-distributed itera-
tive algorithm converges exponentially fast to the desired least-
squares solution such that the cycle errors, i.e. the sum of the
relative clock biases around the fundamental cycles, are zero.
However, an advantage of the continuous-time formulation is
that there is a simple algorithm addition, inspired by the re-
sults presented in Cao and Ren (2010); Cao et al. (2010), one
can make to achieve a considerable speed-up in convergence.
Specifically, one can achieve finite-time convergence if one is
willing to assume that each node in the network knows the the
set of fundamental cycles and more specifically the fundamen-
tal cycle matrix Cf . Such knowledge is obtainable in practice
from the topology of the network. Consider the following iter-
ative algorithm executed for the entire network

Θ̇ = −κC>f ε(t)− ζC
#
f sgn

(
CfC

>
f ε(t)

)
(20)

where Θ(0) = b and κ, ζ > 0 and C#
f is the generalized

inverse. Note that for a particular network and in particular a
specifed Cf we can extract a differential equation for θ̇e as
before.

Theorem 4. If κ, ζ > 0 then the solution of the continuous-
time system (20) and, in particular, for a specified Cf the
continuous-time equation for θ̇e converges in finite-time period
to the set of times θij such that C>f Θ = 0. Moreover, (20)
converges in a finite-time period to the solution of (10).

Proof. Let dim(Lf ) = r. Given the fundamental cycle matrix
Cf and the associated cycles Λ1, . . . ,Λr, define the cycle error
vector ε at Θ by ε = [εΛ1 . . . εΛr ]> where εΛi is defined by
1Λi · Θ for all i ∈ {1, . . . , r}. We can write down an iterative
equation for the cycle error vectors

ε̇ = −κCfC>f ε− ζsgn
(
CfC

>
f ε
)

(21)

Pick v = 1
2ε
>Fε where F = CfC

>
f . It follows that
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v̇ = ε>F (−κFε− ζsgn(Fε))

≤−κε>F 2ε− ζ‖Fε‖1
≤−ζ‖Fε‖

≤−ζ
√
λ2
min(F )‖ε‖

≤−ζ 2λmin(F )

λmax(F )

√
v (22)

Then it follows that

2
√
v ≤ 2

√
v(0)− ζ 2λmin(F )

λmax(F )
t (23)

and thus v(t) = 0 for all t ≥ T where

T =

√
λmax(F )ε>(0)Fε(0)

ζλmin(F )
(24)

and T <∞.

Note that equation (21) is the orthogonal projection of the cycle
errors onto the subspace spanned by the constraints which is
exactly the solution to the constrained least-squares problem
(10) or (7). The addition of the ζsgn

(
CfC

>
f ε
)

does not change
the direction of motion for ε but rather it changes only the
magnitude of the motion velocity. This completes the proof.

In the next section we present an example in which we compare
the result obtained from solving the constrained optimization
introduced here and the result obtained from solving the un-
constrained equations of type (3).

5. ILLUSTRATIVE EXAMPLE

Consider a network of 100 nodes (An example of such net-
work is depicted in Fig. 1(a)). Relative clock bias estimates
are calculated at node 1 for different levels of Gaussian mea-
surement noise (node 1 is assumed to have access to all the
measurements in the network.). The mean-square error in the
clock bias estimate is computed over 1000 runs. The position
of the nodes are randomly generated during each run according
to a uniform distribution and the topology of the network is the
standard random geometric graph. The mean-square error of the
estimates for both unconstrained and constrained solutions are
compared in Fig. 1(b).

6. CONCLUSION

In this paper we first formalized in what type of graph structure
can one compute all the relative clock biases between each
pair of nodes. We then reviewed a centralized method based on
solving a convex constrained optimization problem to estimate
relative clock biases in a (sensor) network. We the introduced
a number of distributed mechanisms for solving the stated
constrained optimization algorithm. We provided a discrete-
time solution that is guaranteed to converge to the optimal
constrained linear least-squares solution with an exponential
speed. Then we provided a similar algorithm for achieving
the same solution in continuous-time. Both the discrete-time
algorithm and the continuous-time algorithm are distributed in
that each node in the network requires very little information
from its neighbours in the network.

Finally, we provide an algorithm that achieves a finite-time
convergence to the desired solution in a distributed manner.
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(a) An example of a network with 100 nodes that is considered here.
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(b) The mean square error of clock bias estimates for
different noise levels.

This algorithm requires that each node in the network have
access to knowledge concerning the network topology and in
particular certain kinds of network cycles.

The constrained optimization methods will in general outper-
form the simple unconstrained method already available in the
literature. Simulation results are presented to back this claim.
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